aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/Dialect/Linalg/canonicalize.mlir
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/test/Dialect/Linalg/canonicalize.mlir')
-rw-r--r--mlir/test/Dialect/Linalg/canonicalize.mlir46
1 files changed, 46 insertions, 0 deletions
diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index 39a7b1b..5c5f7e8 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -1176,6 +1176,52 @@ func.func @broadcast_same_shape(%input: tensor<2x3xf32>, %init: tensor<2x3xf32>)
// -----
+// CHECK-LABEL: @broadcast_broadcast_fold
+// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2xf32>
+// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<2x3xf32>
+// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<2x3x4xf32>
+// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[INPUT]] : tensor<2xf32>) outs(%[[INIT2]] : tensor<2x3x4xf32>) dimensions = [1, 2]
+// CHECK-NOT: linalg.broadcast
+// CHECK: return %[[BROADCAST]] : tensor<2x3x4xf32>
+func.func @broadcast_broadcast_fold(%input: tensor<2xf32>,
+ %init1: tensor<2x3xf32>,
+ %init2: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
+ %broadcast1 = linalg.broadcast
+ ins(%input: tensor<2xf32>)
+ outs(%init1: tensor<2x3xf32>)
+ dimensions = [1]
+ %broadcast2 = linalg.broadcast
+ ins(%broadcast1: tensor<2x3xf32>)
+ outs(%init2: tensor<2x3x4xf32>)
+ dimensions = [2]
+ func.return %broadcast2 : tensor<2x3x4xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @broadcast_broadcast_fold
+// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2xf32>
+// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<2x4xf32>
+// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<2x3x4xf32>
+// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[INPUT]] : tensor<2xf32>) outs(%[[INIT2]] : tensor<2x3x4xf32>) dimensions = [1, 2]
+// CHECK-NOT: linalg.broadcast
+// CHECK: return %[[BROADCAST]] : tensor<2x3x4xf32>
+func.func @broadcast_broadcast_fold(%input: tensor<2xf32>,
+ %init1: tensor<2x4xf32>,
+ %init2: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
+ %broadcast1 = linalg.broadcast
+ ins(%input: tensor<2xf32>)
+ outs(%init1: tensor<2x4xf32>)
+ dimensions = [1]
+ %broadcast2 = linalg.broadcast
+ ins(%broadcast1: tensor<2x4xf32>)
+ outs(%init2: tensor<2x3x4xf32>)
+ dimensions = [1]
+ func.return %broadcast2 : tensor<2x3x4xf32>
+}
+
+// -----
+
func.func @transpose_1d(%input: tensor<16xf32>,
%init: tensor<16xf32>) -> tensor<16xf32> {
%transpose = linalg.transpose