aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis')
-rw-r--r--llvm/lib/Analysis/ConstantFolding.cpp25
-rw-r--r--llvm/lib/Analysis/DependenceAnalysis.cpp475
-rw-r--r--llvm/lib/Analysis/VectorUtils.cpp6
3 files changed, 189 insertions, 317 deletions
diff --git a/llvm/lib/Analysis/ConstantFolding.cpp b/llvm/lib/Analysis/ConstantFolding.cpp
index 4969528..dd98b62 100644
--- a/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/llvm/lib/Analysis/ConstantFolding.cpp
@@ -1659,7 +1659,6 @@ bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
case Intrinsic::aarch64_sve_convert_from_svbool:
case Intrinsic::wasm_alltrue:
case Intrinsic::wasm_anytrue:
- case Intrinsic::wasm_dot:
// WebAssembly float semantics are always known
case Intrinsic::wasm_trunc_signed:
case Intrinsic::wasm_trunc_unsigned:
@@ -3990,30 +3989,6 @@ static Constant *ConstantFoldFixedVectorCall(
}
return ConstantVector::get(Result);
}
- case Intrinsic::wasm_dot: {
- unsigned NumElements =
- cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
-
- assert(NumElements == 8 && Result.size() == 4 &&
- "wasm dot takes i16x8 and produces i32x4");
- assert(Ty->isIntegerTy());
- int32_t MulVector[8];
-
- for (unsigned I = 0; I < NumElements; ++I) {
- ConstantInt *Elt0 =
- cast<ConstantInt>(Operands[0]->getAggregateElement(I));
- ConstantInt *Elt1 =
- cast<ConstantInt>(Operands[1]->getAggregateElement(I));
-
- MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
- }
- for (unsigned I = 0; I < Result.size(); I++) {
- int32_t IAdd = MulVector[I * 2] + MulVector[I * 2 + 1];
- Result[I] = ConstantInt::get(Ty, IAdd);
- }
-
- return ConstantVector::get(Result);
- }
default:
break;
}
diff --git a/llvm/lib/Analysis/DependenceAnalysis.cpp b/llvm/lib/Analysis/DependenceAnalysis.cpp
index f1473b2..256befa 100644
--- a/llvm/lib/Analysis/DependenceAnalysis.cpp
+++ b/llvm/lib/Analysis/DependenceAnalysis.cpp
@@ -180,8 +180,8 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
++SrcI) {
if (SrcI->mayReadOrWriteMemory()) {
- for (inst_iterator DstI = SrcI, DstE = inst_end(F);
- DstI != DstE; ++DstI) {
+ for (inst_iterator DstI = SrcI, DstE = inst_end(F); DstI != DstE;
+ ++DstI) {
if (DstI->mayReadOrWriteMemory()) {
OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
OS << " da analyze - ";
@@ -203,7 +203,7 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
// Normalize negative direction vectors if required by clients.
if (NormalizeResults && D->normalize(&SE))
- OS << "normalized - ";
+ OS << "normalized - ";
D->dump(OS);
for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
if (D->isSplitable(Level)) {
@@ -227,8 +227,8 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
const Module *) const {
- dumpExampleDependence(OS, info.get(),
- getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
+ dumpExampleDependence(
+ OS, info.get(), getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
}
PreservedAnalyses
@@ -249,33 +249,26 @@ bool Dependence::isInput() const {
return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
}
-
// Returns true if this is an output dependence.
bool Dependence::isOutput() const {
return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
}
-
// Returns true if this is an flow (aka true) dependence.
bool Dependence::isFlow() const {
return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
}
-
// Returns true if this is an anti dependence.
bool Dependence::isAnti() const {
return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
}
-
// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
// Leave this out of line, so it will serve as a virtual method anchor
-bool Dependence::isScalar(unsigned level) const {
- return false;
-}
-
+bool Dependence::isScalar(unsigned level) const { return false; }
//===----------------------------------------------------------------------===//
// FullDependence methods
@@ -338,8 +331,7 @@ bool FullDependence::normalize(ScalarEvolution *SE) {
DV[Level - 1].Direction = RevDirection;
// Reverse the dependence distance as well.
if (DV[Level - 1].Distance != nullptr)
- DV[Level - 1].Distance =
- SE->getNegativeSCEV(DV[Level - 1].Distance);
+ DV[Level - 1].Distance = SE->getNegativeSCEV(DV[Level - 1].Distance);
}
LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
@@ -355,14 +347,12 @@ unsigned FullDependence::getDirection(unsigned Level) const {
return DV[Level - 1].Direction;
}
-
// Returns the distance (or NULL) associated with a particular level.
const SCEV *FullDependence::getDistance(unsigned Level) const {
assert(0 < Level && Level <= Levels && "Level out of range");
return DV[Level - 1].Distance;
}
-
// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
@@ -371,7 +361,6 @@ bool FullDependence::isScalar(unsigned Level) const {
return DV[Level - 1].Scalar;
}
-
// Returns true if peeling the first iteration from this loop
// will break this dependence.
bool FullDependence::isPeelFirst(unsigned Level) const {
@@ -379,7 +368,6 @@ bool FullDependence::isPeelFirst(unsigned Level) const {
return DV[Level - 1].PeelFirst;
}
-
// Returns true if peeling the last iteration from this loop
// will break this dependence.
bool FullDependence::isPeelLast(unsigned Level) const {
@@ -387,14 +375,12 @@ bool FullDependence::isPeelLast(unsigned Level) const {
return DV[Level - 1].PeelLast;
}
-
// Returns true if splitting this loop will break the dependence.
bool FullDependence::isSplitable(unsigned Level) const {
assert(0 < Level && Level <= Levels && "Level out of range");
return DV[Level - 1].Splitable;
}
-
//===----------------------------------------------------------------------===//
// DependenceInfo::Constraint methods
@@ -405,7 +391,6 @@ const SCEV *DependenceInfo::Constraint::getX() const {
return A;
}
-
// If constraint is a point <X, Y>, returns Y.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getY() const {
@@ -413,7 +398,6 @@ const SCEV *DependenceInfo::Constraint::getY() const {
return B;
}
-
// If constraint is a line AX + BY = C, returns A.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getA() const {
@@ -422,7 +406,6 @@ const SCEV *DependenceInfo::Constraint::getA() const {
return A;
}
-
// If constraint is a line AX + BY = C, returns B.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getB() const {
@@ -431,7 +414,6 @@ const SCEV *DependenceInfo::Constraint::getB() const {
return B;
}
-
// If constraint is a line AX + BY = C, returns C.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getC() const {
@@ -440,7 +422,6 @@ const SCEV *DependenceInfo::Constraint::getC() const {
return C;
}
-
// If constraint is a distance, returns D.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getD() const {
@@ -448,7 +429,6 @@ const SCEV *DependenceInfo::Constraint::getD() const {
return SE->getNegativeSCEV(C);
}
-
// Returns the loop associated with this constraint.
const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
assert((Kind == Distance || Kind == Line || Kind == Point) &&
@@ -499,17 +479,16 @@ LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
else if (isPoint())
OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
else if (isDistance())
- OS << " Distance is " << *getD() <<
- " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
+ OS << " Distance is " << *getD() << " (" << *getA() << "*X + " << *getB()
+ << "*Y = " << *getC() << ")\n";
else if (isLine())
- OS << " Line is " << *getA() << "*X + " <<
- *getB() << "*Y = " << *getC() << "\n";
+ OS << " Line is " << *getA() << "*X + " << *getB() << "*Y = " << *getC()
+ << "\n";
else
llvm_unreachable("unknown constraint type in Constraint::dump");
}
#endif
-
// Updates X with the intersection
// of the Constraints X and Y. Returns true if X has changed.
// Corresponds to Figure 4 from the paper
@@ -591,15 +570,14 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
const SCEVConstant *C1A2_C2A1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
+ dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
const SCEVConstant *C1B2_C2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
+ dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
const SCEVConstant *A1B2_A2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
+ dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
const SCEVConstant *A2B1_A1B2 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
- if (!C1B2_C2B1 || !C1A2_C2A1 ||
- !A1B2_A2B1 || !A2B1_A1B2)
+ dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
+ if (!C1B2_C2B1 || !C1A2_C2A1 || !A1B2_A2B1 || !A2B1_A1B2)
return false;
APInt Xtop = C1B2_C2B1->getAPInt();
APInt Xbot = A1B2_A2B1->getAPInt();
@@ -626,8 +604,8 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
++DeltaSuccesses;
return true;
}
- if (const SCEVConstant *CUB =
- collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
+ if (const SCEVConstant *CUB = collectConstantUpperBound(
+ X->getAssociatedLoop(), Prod1->getType())) {
const APInt &UpperBound = CUB->getAPInt();
LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
@@ -636,8 +614,7 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
return true;
}
}
- X->setPoint(SE->getConstant(Xq),
- SE->getConstant(Yq),
+ X->setPoint(SE->getConstant(Xq), SE->getConstant(Yq),
X->getAssociatedLoop());
++DeltaSuccesses;
return true;
@@ -667,7 +644,6 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
return false;
}
-
//===----------------------------------------------------------------------===//
// DependenceInfo methods
@@ -737,8 +713,7 @@ void Dependence::dump(raw_ostream &OS) const {
// tbaa, non-overlapping regions etc), then it is known there is no dependecy.
// Otherwise the underlying objects are checked to see if they point to
// different identifiable objects.
-static AliasResult underlyingObjectsAlias(AAResults *AA,
- const DataLayout &DL,
+static AliasResult underlyingObjectsAlias(AAResults *AA, const DataLayout &DL,
const MemoryLocation &LocA,
const MemoryLocation &LocB) {
// Check the original locations (minus size) for noalias, which can happen for
@@ -773,8 +748,7 @@ static AliasResult underlyingObjectsAlias(AAResults *AA,
// Returns true if the load or store can be analyzed. Atomic and volatile
// operations have properties which this analysis does not understand.
-static
-bool isLoadOrStore(const Instruction *I) {
+static bool isLoadOrStore(const Instruction *I) {
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isUnordered();
else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
@@ -782,7 +756,6 @@ bool isLoadOrStore(const Instruction *I) {
return false;
}
-
// Examines the loop nesting of the Src and Dst
// instructions and establishes their shared loops. Sets the variables
// CommonLevels, SrcLevels, and MaxLevels.
@@ -860,14 +833,12 @@ void DependenceInfo::establishNestingLevels(const Instruction *Src,
MaxLevels -= CommonLevels;
}
-
// Given one of the loops containing the source, return
// its level index in our numbering scheme.
unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
return SrcLoop->getLoopDepth();
}
-
// Given one of the loops containing the destination,
// return its level index in our numbering scheme.
unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
@@ -880,7 +851,6 @@ unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
return D;
}
-
// Returns true if Expression is loop invariant in LoopNest.
bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
const Loop *LoopNest) const {
@@ -896,8 +866,6 @@ bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
}
-
-
// Finds the set of loops from the LoopNest that
// have a level <= CommonLevels and are referred to by the SCEV Expression.
void DependenceInfo::collectCommonLoops(const SCEV *Expression,
@@ -924,9 +892,9 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
+ assert(SrcTy == DstTy &&
+ "This function only unify integer types and "
+ "expect Src and Dst share the same type otherwise.");
continue;
}
if (SrcTy->getBitWidth() > widestWidthSeen) {
@@ -939,7 +907,6 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
}
}
-
assert(widestWidthSeen > 0);
// Now extend each pair to the widest seen.
@@ -949,9 +916,9 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
+ assert(SrcTy == DstTy &&
+ "This function only unify integer types and "
+ "expect Src and Dst share the same type otherwise.");
continue;
}
if (SrcTy->getBitWidth() < widestWidthSeen)
@@ -1028,7 +995,6 @@ bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
return checkSubscript(Dst, LoopNest, Loops, false);
}
-
// Examines the subscript pair (the Src and Dst SCEVs)
// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
// Collects the associated loops in a set.
@@ -1049,14 +1015,12 @@ DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
return Subscript::ZIV;
if (N == 1)
return Subscript::SIV;
- if (N == 2 && (SrcLoops.count() == 0 ||
- DstLoops.count() == 0 ||
+ if (N == 2 && (SrcLoops.count() == 0 || DstLoops.count() == 0 ||
(SrcLoops.count() == 1 && DstLoops.count() == 1)))
return Subscript::RDIV;
return Subscript::MIV;
}
-
// A wrapper around SCEV::isKnownPredicate.
// Looks for cases where we're interested in comparing for equality.
// If both X and Y have been identically sign or zero extended,
@@ -1069,12 +1033,9 @@ DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
// involving symbolics.
bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
const SCEV *Y) const {
- if (Pred == CmpInst::ICMP_EQ ||
- Pred == CmpInst::ICMP_NE) {
- if ((isa<SCEVSignExtendExpr>(X) &&
- isa<SCEVSignExtendExpr>(Y)) ||
- (isa<SCEVZeroExtendExpr>(X) &&
- isa<SCEVZeroExtendExpr>(Y))) {
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+ if ((isa<SCEVSignExtendExpr>(X) && isa<SCEVSignExtendExpr>(Y)) ||
+ (isa<SCEVZeroExtendExpr>(X) && isa<SCEVZeroExtendExpr>(Y))) {
const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
const SCEV *Xop = CX->getOperand();
@@ -1111,7 +1072,10 @@ bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
}
}
-/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
+/// Compare to see if S is less than Size, using
+///
+/// isKnownNegative(S - max(Size, 1))
+///
/// with some extra checking if S is an AddRec and we can prove less-than using
/// the loop bounds.
bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
@@ -1178,7 +1142,6 @@ const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
return nullptr;
}
-
// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
// If the cast fails, returns NULL.
const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
@@ -1188,7 +1151,6 @@ const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
return nullptr;
}
-
// testZIV -
// When we have a pair of subscripts of the form [c1] and [c2],
// where c1 and c2 are both loop invariant, we attack it using
@@ -1218,7 +1180,6 @@ bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
return false; // possibly dependent
}
-
// strongSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.1
//
@@ -1270,9 +1231,9 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
const SCEV *AbsDelta =
- SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
+ SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
const SCEV *AbsCoeff =
- SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
+ SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
// Distance greater than trip count - no dependence
@@ -1286,7 +1247,7 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
- APInt Distance = ConstDelta; // these need to be initialized
+ APInt Distance = ConstDelta; // these need to be initialized
APInt Remainder = ConstDelta;
APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
@@ -1307,29 +1268,25 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
else
Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
++StrongSIVsuccesses;
- }
- else if (Delta->isZero()) {
+ } else if (Delta->isZero()) {
// since 0/X == 0
Result.DV[Level].Distance = Delta;
NewConstraint.setDistance(Delta, CurLoop);
Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
++StrongSIVsuccesses;
- }
- else {
+ } else {
if (Coeff->isOne()) {
LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
Result.DV[Level].Distance = Delta; // since X/1 == X
NewConstraint.setDistance(Delta, CurLoop);
- }
- else {
+ } else {
Result.Consistent = false;
- NewConstraint.setLine(Coeff,
- SE->getNegativeSCEV(Coeff),
+ NewConstraint.setLine(Coeff, SE->getNegativeSCEV(Coeff),
SE->getNegativeSCEV(Delta), CurLoop);
}
// maybe we can get a useful direction
- bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
+ bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
@@ -1353,7 +1310,6 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
return false;
}
-
// weakCrossingSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
@@ -1447,8 +1403,8 @@ bool DependenceInfo::weakCrossingSIVtest(
if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
- const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
- ConstantTwo);
+ const SCEV *ML =
+ SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), ConstantTwo);
LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
// Delta too big, no dependence
@@ -1498,7 +1454,6 @@ bool DependenceInfo::weakCrossingSIVtest(
return false;
}
-
// Kirch's algorithm, from
//
// Optimizing Supercompilers for Supercomputers
@@ -1519,9 +1474,11 @@ static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
APInt R = G0;
APInt::sdivrem(G0, G1, Q, R);
while (R != 0) {
+ // clang-format off
APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
G0 = G1; G1 = R;
+ // clang-format on
APInt::sdivrem(G0, G1, Q, R);
}
G = G1;
@@ -1543,8 +1500,7 @@ static APInt floorOfQuotient(const APInt &A, const APInt &B) {
APInt::sdivrem(A, B, Q, R);
if (R == 0)
return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
+ if ((A.sgt(0) && B.sgt(0)) || (A.slt(0) && B.slt(0)))
return Q;
else
return Q - 1;
@@ -1556,8 +1512,7 @@ static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
APInt::sdivrem(A, B, Q, R);
if (R == 0)
return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
+ if ((A.sgt(0) && B.sgt(0)) || (A.slt(0) && B.slt(0)))
return Q + 1;
else
return Q;
@@ -1733,17 +1688,14 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
}
-
// Return true if the divisor evenly divides the dividend.
-static
-bool isRemainderZero(const SCEVConstant *Dividend,
- const SCEVConstant *Divisor) {
+static bool isRemainderZero(const SCEVConstant *Dividend,
+ const SCEVConstant *Divisor) {
const APInt &ConstDividend = Dividend->getAPInt();
const APInt &ConstDivisor = Divisor->getAPInt();
return ConstDividend.srem(ConstDivisor) == 0;
}
-
// weakZeroSrcSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
@@ -1807,11 +1759,11 @@ bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
if (!ConstCoeff)
return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
+ const SCEV *AbsCoeff = SE->isKnownNegative(ConstCoeff)
+ ? SE->getNegativeSCEV(ConstCoeff)
+ : ConstCoeff;
const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
+ SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
// check that Delta/SrcCoeff < iteration count
// really check NewDelta < count*AbsCoeff
@@ -1853,7 +1805,6 @@ bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
return false;
}
-
// weakZeroDstSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
@@ -1916,11 +1867,11 @@ bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
if (!ConstCoeff)
return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
+ const SCEV *AbsCoeff = SE->isKnownNegative(ConstCoeff)
+ ? SE->getNegativeSCEV(ConstCoeff)
+ : ConstCoeff;
const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
+ SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
// check that Delta/SrcCoeff < iteration count
// really check NewDelta < count*AbsCoeff
@@ -1962,7 +1913,6 @@ bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
return false;
}
-
// exactRDIVtest - Tests the RDIV subscript pair for dependence.
// Things of the form [c1 + a*i] and [c2 + b*j],
// where i and j are induction variable, c1 and c2 are loop invariant,
@@ -2084,7 +2034,6 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
return TL.sgt(TU);
}
-
// symbolicRDIVtest -
// In Section 4.5 of the Practical Dependence Testing paper,the authors
// introduce a special case of Banerjee's Inequalities (also called the
@@ -2167,8 +2116,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
return true;
}
}
- }
- else if (SE->isKnownNonPositive(A2)) {
+ } else if (SE->isKnownNonPositive(A2)) {
// a1 >= 0 && a2 <= 0
if (N1 && N2) {
// make sure that c2 - c1 <= a1*N1 - a2*N2
@@ -2187,8 +2135,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
return true;
}
}
- }
- else if (SE->isKnownNonPositive(A1)) {
+ } else if (SE->isKnownNonPositive(A1)) {
if (SE->isKnownNonNegative(A2)) {
// a1 <= 0 && a2 >= 0
if (N1 && N2) {
@@ -2207,8 +2154,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
++SymbolicRDIVindependence;
return true;
}
- }
- else if (SE->isKnownNonPositive(A2)) {
+ } else if (SE->isKnownNonPositive(A2)) {
// a1 <= 0 && a2 <= 0
if (N1) {
// make sure that a1*N1 <= c2 - c1
@@ -2233,7 +2179,6 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
return false;
}
-
// testSIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
@@ -2260,17 +2205,17 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
Level = mapSrcLoop(CurLoop);
bool disproven;
if (SrcCoeff == DstCoeff)
- disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint);
+ disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, Level,
+ Result, NewConstraint);
else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
Level, Result, NewConstraint, SplitIter);
else
disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
Level, Result, NewConstraint);
- return disproven ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
+ return disproven || gcdMIVtest(Src, Dst, Result) ||
+ symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
+ CurLoop);
}
if (SrcAddRec) {
const SCEV *SrcConst = SrcAddRec->getStart();
@@ -2278,9 +2223,9 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
const SCEV *DstConst = Dst;
const Loop *CurLoop = SrcAddRec->getLoop();
Level = mapSrcLoop(CurLoop);
- return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
+ return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, Level,
+ Result, NewConstraint) ||
+ gcdMIVtest(Src, Dst, Result);
}
if (DstAddRec) {
const SCEV *DstConst = DstAddRec->getStart();
@@ -2288,15 +2233,14 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
const SCEV *SrcConst = Src;
const Loop *CurLoop = DstAddRec->getLoop();
Level = mapDstLoop(CurLoop);
- return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
- CurLoop, Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
+ return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, CurLoop, Level,
+ Result, NewConstraint) ||
+ gcdMIVtest(Src, Dst, Result);
}
llvm_unreachable("SIV test expected at least one AddRec");
return false;
}
-
// testRDIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
// where i and j are induction variables, c1 and c2 are loop invariant,
@@ -2333,46 +2277,37 @@ bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
DstConst = DstAddRec->getStart();
DstCoeff = DstAddRec->getStepRecurrence(*SE);
DstLoop = DstAddRec->getLoop();
- }
- else if (SrcAddRec) {
+ } else if (SrcAddRec) {
if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
+ dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
SrcConst = tmpAddRec->getStart();
SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
SrcLoop = tmpAddRec->getLoop();
DstConst = Dst;
DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
DstLoop = SrcAddRec->getLoop();
- }
- else
+ } else
llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else if (DstAddRec) {
+ } else if (DstAddRec) {
if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
+ dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
DstConst = tmpAddRec->getStart();
DstCoeff = tmpAddRec->getStepRecurrence(*SE);
DstLoop = tmpAddRec->getLoop();
SrcConst = Src;
SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
SrcLoop = DstAddRec->getLoop();
- }
- else
+ } else
llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else
+ } else
llvm_unreachable("RDIV expected at least one AddRec");
- return exactRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop,
+ return exactRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, SrcLoop, DstLoop,
Result) ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop);
+ gcdMIVtest(Src, Dst, Result) ||
+ symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, SrcLoop,
+ DstLoop);
}
-
// Tests the single-subscript MIV pair (Src and Dst) for dependence.
// Return true if dependence disproved.
// Can sometimes refine direction vectors.
@@ -2383,7 +2318,7 @@ bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
Result.Consistent = false;
return gcdMIVtest(Src, Dst, Result) ||
- banerjeeMIVtest(Src, Dst, Loops, Result);
+ banerjeeMIVtest(Src, Dst, Loops, Result);
}
// Given a product, e.g., 10*X*Y, returns the first constant operand,
@@ -2428,7 +2363,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
// we can't quit the loop just because the GCD == 1.
const SCEV *Coefficients = Src;
while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+ dyn_cast<SCEVAddRecExpr>(Coefficients)) {
const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
// If the coefficient is the product of a constant and other stuff,
// we can use the constant in the GCD computation.
@@ -2446,7 +2381,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
// we can't quit the loop just because the GCD == 1.
Coefficients = Dst;
while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+ dyn_cast<SCEVAddRecExpr>(Coefficients)) {
const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
// If the coefficient is the product of a constant and other stuff,
// we can use the constant in the GCD computation.
@@ -2468,16 +2403,14 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
if (isa<SCEVConstant>(Operand)) {
assert(!Constant && "Surprised to find multiple constants");
Constant = cast<SCEVConstant>(Operand);
- }
- else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
+ } else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
// Search for constant operand to participate in GCD;
// If none found; return false.
std::optional<APInt> ConstOp = getConstantPart(Product);
if (!ConstOp)
return false;
ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, ConstOp->abs());
- }
- else
+ } else
return false;
}
}
@@ -2512,7 +2445,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
bool Improved = false;
Coefficients = Src;
while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+ dyn_cast<SCEVAddRecExpr>(Coefficients)) {
Coefficients = AddRec->getStart();
const Loop *CurLoop = AddRec->getLoop();
RunningGCD = ExtraGCD;
@@ -2578,7 +2511,6 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
return false;
}
-
//===----------------------------------------------------------------------===//
// banerjeeMIVtest -
// Use Banerjee's Inequalities to test an MIV subscript pair.
@@ -2652,8 +2584,8 @@ bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
// Explore the direction vector hierarchy.
unsigned DepthExpanded = 0;
- unsigned NewDeps = exploreDirections(1, A, B, Bound,
- Loops, DepthExpanded, Delta);
+ unsigned NewDeps =
+ exploreDirections(1, A, B, Bound, Loops, DepthExpanded, Delta);
if (NewDeps > 0) {
bool Improved = false;
for (unsigned K = 1; K <= CommonLevels; ++K) {
@@ -2670,23 +2602,20 @@ bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
}
if (Improved)
++BanerjeeSuccesses;
- }
- else {
+ } else {
++BanerjeeIndependence;
Disproved = true;
}
- }
- else {
+ } else {
++BanerjeeIndependence;
Disproved = true;
}
- delete [] Bound;
- delete [] A;
- delete [] B;
+ delete[] Bound;
+ delete[] A;
+ delete[] B;
return Disproved;
}
-
// Hierarchically expands the direction vector
// search space, combining the directions of discovered dependences
// in the DirSet field of Bound. Returns the number of distinct
@@ -2788,27 +2717,26 @@ unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
// test bounds for <, *, *, ...
if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
+ NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+ Delta);
// Test bounds for =, *, *, ...
if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
+ NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+ Delta);
// test bounds for >, *, *, ...
if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
+ NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+ Delta);
Bound[Level].Direction = Dependence::DVEntry::ALL;
return NewDeps;
- }
- else
- return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
+ } else
+ return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+ Delta);
}
-
// Returns true iff the current bounds are plausible.
bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
BoundInfo *Bound, const SCEV *Delta) const {
@@ -2822,7 +2750,6 @@ bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
return true;
}
-
// Computes the upper and lower bounds for level K
// using the * direction. Records them in Bound.
// Wolfe gives the equations
@@ -2840,17 +2767,16 @@ bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::ALL] =
+ nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::ALL] =
+ nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
- Bound[K].Lower[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
- Bound[K].Iterations);
- Bound[K].Upper[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
- Bound[K].Iterations);
- }
- else {
+ Bound[K].Lower[Dependence::DVEntry::ALL] = SE->getMulExpr(
+ SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), Bound[K].Iterations);
+ Bound[K].Upper[Dependence::DVEntry::ALL] = SE->getMulExpr(
+ SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), Bound[K].Iterations);
+ } else {
// If the difference is 0, we won't need to know the number of iterations.
if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
Bound[K].Lower[Dependence::DVEntry::ALL] =
@@ -2861,7 +2787,6 @@ void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
}
}
-
// Computes the upper and lower bounds for level K
// using the = direction. Records them in Bound.
// Wolfe gives the equations
@@ -2879,18 +2804,19 @@ void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::EQ] =
+ nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::EQ] =
+ nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
const SCEV *NegativePart = getNegativePart(Delta);
Bound[K].Lower[Dependence::DVEntry::EQ] =
- SE->getMulExpr(NegativePart, Bound[K].Iterations);
+ SE->getMulExpr(NegativePart, Bound[K].Iterations);
const SCEV *PositivePart = getPositivePart(Delta);
Bound[K].Upper[Dependence::DVEntry::EQ] =
- SE->getMulExpr(PositivePart, Bound[K].Iterations);
- }
- else {
+ SE->getMulExpr(PositivePart, Bound[K].Iterations);
+ } else {
// If the positive/negative part of the difference is 0,
// we won't need to know the number of iterations.
const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
@@ -2903,7 +2829,6 @@ void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
}
}
-
// Computes the upper and lower bounds for level K
// using the < direction. Records them in Bound.
// Wolfe gives the equations
@@ -2919,35 +2844,35 @@ void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::LT] =
+ nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::LT] =
+ nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Iter_1 = SE->getMinusSCEV(
Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
+ getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
Bound[K].Lower[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
+ SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
+ getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
Bound[K].Upper[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
- }
- else {
+ SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
+ } else {
// If the positive/negative part of the difference is 0,
// we won't need to know the number of iterations.
const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
+ getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
if (NegPart->isZero())
Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
+ getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
if (PosPart->isZero())
Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
}
}
-
// Computes the upper and lower bounds for level K
// using the > direction. Records them in Bound.
// Wolfe gives the equations
@@ -2963,45 +2888,45 @@ void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::GT] =
+ nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::GT] =
+ nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Iter_1 = SE->getMinusSCEV(
Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
+ getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
Bound[K].Lower[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
+ SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
+ getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
Bound[K].Upper[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
- }
- else {
+ SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
+ } else {
// If the positive/negative part of the difference is 0,
// we won't need to know the number of iterations.
- const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
+ const SCEV *NegPart =
+ getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
if (NegPart->isZero())
Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
- const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
+ const SCEV *PosPart =
+ getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
if (PosPart->isZero())
Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
}
}
-
// X^+ = max(X, 0)
const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
return SE->getSMaxExpr(X, SE->getZero(X->getType()));
}
-
// X^- = min(X, 0)
const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
return SE->getSMinExpr(X, SE->getZero(X->getType()));
}
-
// Walks through the subscript,
// collecting each coefficient, the associated loop bounds,
// and recording its positive and negative parts for later use.
@@ -3046,7 +2971,6 @@ DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
return CI;
}
-
// Looks through all the bounds info and
// computes the lower bound given the current direction settings
// at each level. If the lower bound for any level is -inf,
@@ -3062,7 +2986,6 @@ const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
return Sum;
}
-
// Looks through all the bounds info and
// computes the upper bound given the current direction settings
// at each level. If the upper bound at any level is +inf,
@@ -3078,7 +3001,6 @@ const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
return Sum;
}
-
//===----------------------------------------------------------------------===//
// Constraint manipulation for Delta test.
@@ -3098,7 +3020,6 @@ const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
return findCoefficient(AddRec->getStart(), TargetLoop);
}
-
// Given a linear SCEV,
// return the SCEV given by zeroing out the coefficient
// corresponding to the specified loop.
@@ -3112,12 +3033,10 @@ const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
if (AddRec->getLoop() == TargetLoop)
return AddRec->getStart();
return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
- AddRec->getStepRecurrence(*SE),
- AddRec->getLoop(),
+ AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
AddRec->getNoWrapFlags());
}
-
// Given a linear SCEV Expr,
// return the SCEV given by adding some Value to the
// coefficient corresponding to the specified TargetLoop.
@@ -3128,17 +3047,13 @@ const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
const SCEV *Value) const {
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
if (!AddRec) // create a new addRec
- return SE->getAddRecExpr(Expr,
- Value,
- TargetLoop,
+ return SE->getAddRecExpr(Expr, Value, TargetLoop,
SCEV::FlagAnyWrap); // Worst case, with no info.
if (AddRec->getLoop() == TargetLoop) {
const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
if (Sum->isZero())
return AddRec->getStart();
- return SE->getAddRecExpr(AddRec->getStart(),
- Sum,
- AddRec->getLoop(),
+ return SE->getAddRecExpr(AddRec->getStart(), Sum, AddRec->getLoop(),
AddRec->getNoWrapFlags());
}
if (SE->isLoopInvariant(AddRec, TargetLoop))
@@ -3149,7 +3064,6 @@ const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
AddRec->getNoWrapFlags());
}
-
// Review the constraints, looking for opportunities
// to simplify a subscript pair (Src and Dst).
// Return true if some simplification occurs.
@@ -3178,7 +3092,6 @@ bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
return Result;
}
-
// Attempt to propagate a distance
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
@@ -3204,7 +3117,6 @@ bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
return true;
}
-
// Attempt to propagate a line
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
@@ -3224,22 +3136,22 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
if (A->isZero()) {
const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Bconst || !Cconst) return false;
+ if (!Bconst || !Cconst)
+ return false;
APInt Beta = Bconst->getAPInt();
APInt Charlie = Cconst->getAPInt();
APInt CdivB = Charlie.sdiv(Beta);
assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
const SCEV *AP_K = findCoefficient(Dst, CurLoop);
- // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
Dst = zeroCoefficient(Dst, CurLoop);
if (!findCoefficient(Src, CurLoop)->isZero())
Consistent = false;
- }
- else if (B->isZero()) {
+ } else if (B->isZero()) {
const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
+ if (!Aconst || !Cconst)
+ return false;
APInt Alpha = Aconst->getAPInt();
APInt Charlie = Cconst->getAPInt();
APInt CdivA = Charlie.sdiv(Alpha);
@@ -3249,11 +3161,11 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
Src = zeroCoefficient(Src, CurLoop);
if (!findCoefficient(Dst, CurLoop)->isZero())
Consistent = false;
- }
- else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
+ } else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
+ if (!Aconst || !Cconst)
+ return false;
APInt Alpha = Aconst->getAPInt();
APInt Charlie = Cconst->getAPInt();
APInt CdivA = Charlie.sdiv(Alpha);
@@ -3264,8 +3176,7 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
Dst = addToCoefficient(Dst, CurLoop, A_K);
if (!findCoefficient(Dst, CurLoop)->isZero())
Consistent = false;
- }
- else {
+ } else {
// paper is incorrect here, or perhaps just misleading
const SCEV *A_K = findCoefficient(Src, CurLoop);
Src = SE->getMulExpr(Src, A);
@@ -3281,7 +3192,6 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
return true;
}
-
// Attempt to propagate a point
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
@@ -3302,7 +3212,6 @@ bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
return true;
}
-
// Update direction vector entry based on the current constraint.
void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
const Constraint &CurConstraint) const {
@@ -3322,34 +3231,28 @@ void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
NewDirection |= Dependence::DVEntry::GT;
Level.Direction &= NewDirection;
- }
- else if (CurConstraint.isLine()) {
+ } else if (CurConstraint.isLine()) {
Level.Scalar = false;
Level.Distance = nullptr;
// direction should be accurate
- }
- else if (CurConstraint.isPoint()) {
+ } else if (CurConstraint.isPoint()) {
Level.Scalar = false;
Level.Distance = nullptr;
unsigned NewDirection = Dependence::DVEntry::NONE;
- if (!isKnownPredicate(CmpInst::ICMP_NE,
- CurConstraint.getY(),
+ if (!isKnownPredicate(CmpInst::ICMP_NE, CurConstraint.getY(),
CurConstraint.getX()))
// if X may be = Y
NewDirection |= Dependence::DVEntry::EQ;
- if (!isKnownPredicate(CmpInst::ICMP_SLE,
- CurConstraint.getY(),
+ if (!isKnownPredicate(CmpInst::ICMP_SLE, CurConstraint.getY(),
CurConstraint.getX()))
// if Y may be > X
NewDirection |= Dependence::DVEntry::LT;
- if (!isKnownPredicate(CmpInst::ICMP_SGE,
- CurConstraint.getY(),
+ if (!isKnownPredicate(CmpInst::ICMP_SGE, CurConstraint.getY(),
CurConstraint.getX()))
// if Y may be < X
NewDirection |= Dependence::DVEntry::GT;
Level.Direction &= NewDirection;
- }
- else
+ } else
llvm_unreachable("constraint has unexpected kind");
}
@@ -3425,7 +3328,7 @@ bool DependenceInfo::tryDelinearizeFixedSize(
dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
assert(SrcBase && DstBase && SrcBase == DstBase &&
"expected src and dst scev unknowns to be equal");
- });
+ });
SmallVector<int, 4> SrcSizes;
SmallVector<int, 4> DstSizes;
@@ -3737,9 +3640,8 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
Pair[P].Group.resize(Pairs);
removeMatchingExtensions(&Pair[P]);
Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
+ classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), Pair[P].Dst,
+ LI->getLoopFor(Dst->getParent()), Pair[P].Loops);
Pair[P].GroupLoops = Pair[P].Loops;
Pair[P].Group.set(P);
LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
@@ -3814,18 +3716,15 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
if (Pair[SI].Classification == Subscript::NonLinear) {
// ignore these, but collect loops for later
++NonlinearSubscriptPairs;
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
+ collectCommonLoops(Pair[SI].Src, LI->getLoopFor(Src->getParent()),
Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
+ collectCommonLoops(Pair[SI].Dst, LI->getLoopFor(Dst->getParent()),
Pair[SI].Loops);
Result.Consistent = false;
} else if (Pair[SI].Classification == Subscript::ZIV) {
// always separable
Separable.set(SI);
- }
- else {
+ } else {
// SIV, RDIV, or MIV, so check for coupled group
bool Done = true;
for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
@@ -3843,8 +3742,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
if (Pair[SI].Group.count() == 1) {
Separable.set(SI);
++SeparableSubscriptPairs;
- }
- else {
+ } else {
Coupled.set(SI);
++CoupledSubscriptPairs;
}
@@ -3950,10 +3848,9 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
Constraints, Result.Consistent)) {
LLVM_DEBUG(dbgs() << "\t Changed\n");
++DeltaPropagations;
- Pair[SJ].Classification =
- classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
- Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[SJ].Loops);
+ Pair[SJ].Classification = classifyPair(
+ Pair[SJ].Src, LI->getLoopFor(Src->getParent()), Pair[SJ].Dst,
+ LI->getLoopFor(Dst->getParent()), Pair[SJ].Loops);
switch (Pair[SJ].Classification) {
case Subscript::ZIV:
LLVM_DEBUG(dbgs() << "ZIV\n");
@@ -3995,8 +3892,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
LLVM_DEBUG(dbgs() << "MIV test\n");
if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
return nullptr;
- }
- else
+ } else
llvm_unreachable("expected only MIV subscripts at this point");
}
@@ -4052,8 +3948,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
break;
}
}
- }
- else {
+ } else {
// On the other hand, if all directions are equal and there's no
// loop-independent dependence possible, then no dependence exists.
bool AllEqual = true;
@@ -4158,9 +4053,8 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
Pair[P].Group.resize(Pairs);
removeMatchingExtensions(&Pair[P]);
Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
+ classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), Pair[P].Dst,
+ LI->getLoopFor(Dst->getParent()), Pair[P].Loops);
Pair[P].GroupLoops = Pair[P].Loops;
Pair[P].Group.set(P);
}
@@ -4172,15 +4066,12 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
for (unsigned SI = 0; SI < Pairs; ++SI) {
if (Pair[SI].Classification == Subscript::NonLinear) {
// ignore these, but collect loops for later
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
+ collectCommonLoops(Pair[SI].Src, LI->getLoopFor(Src->getParent()),
Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
+ collectCommonLoops(Pair[SI].Dst, LI->getLoopFor(Dst->getParent()),
Pair[SI].Loops);
Result.Consistent = false;
- }
- else if (Pair[SI].Classification == Subscript::ZIV)
+ } else if (Pair[SI].Classification == Subscript::ZIV)
Separable.set(SI);
else {
// SIV, RDIV, or MIV, so check for coupled group
@@ -4214,8 +4105,8 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
case Subscript::SIV: {
unsigned Level;
const SCEV *SplitIter = nullptr;
- (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
- Result, NewConstraint, SplitIter);
+ (void)testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
+ SplitIter);
if (Level == SplitLevel) {
assert(SplitIter != nullptr);
return SplitIter;
diff --git a/llvm/lib/Analysis/VectorUtils.cpp b/llvm/lib/Analysis/VectorUtils.cpp
index b3b4c37..425ea31 100644
--- a/llvm/lib/Analysis/VectorUtils.cpp
+++ b/llvm/lib/Analysis/VectorUtils.cpp
@@ -81,6 +81,7 @@ bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
case Intrinsic::exp:
case Intrinsic::exp10:
case Intrinsic::exp2:
+ case Intrinsic::ldexp:
case Intrinsic::log:
case Intrinsic::log10:
case Intrinsic::log2:
@@ -108,6 +109,8 @@ bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
case Intrinsic::canonicalize:
case Intrinsic::fptosi_sat:
case Intrinsic::fptoui_sat:
+ case Intrinsic::lround:
+ case Intrinsic::llround:
case Intrinsic::lrint:
case Intrinsic::llrint:
case Intrinsic::ucmp:
@@ -189,6 +192,8 @@ bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(
switch (ID) {
case Intrinsic::fptosi_sat:
case Intrinsic::fptoui_sat:
+ case Intrinsic::lround:
+ case Intrinsic::llround:
case Intrinsic::lrint:
case Intrinsic::llrint:
case Intrinsic::vp_lrint:
@@ -203,6 +208,7 @@ bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(
case Intrinsic::vp_is_fpclass:
return OpdIdx == 0;
case Intrinsic::powi:
+ case Intrinsic::ldexp:
return OpdIdx == -1 || OpdIdx == 1;
default:
return OpdIdx == -1;