aboutsummaryrefslogtreecommitdiff
path: root/libc/src
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src')
-rw-r--r--libc/src/__support/math/CMakeLists.txt15
-rw-r--r--libc/src/__support/math/cbrt.h350
-rw-r--r--libc/src/math/generic/CMakeLists.txt10
-rw-r--r--libc/src/math/generic/cbrt.cpp328
4 files changed, 368 insertions, 335 deletions
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index 9631ab5..e1076ed 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -332,6 +332,21 @@ add_header_library(
)
add_header_library(
+ cbrt
+ HDRS
+ cbrt.h
+ DEPENDS
+ libc.src.__support.FPUtil.double_double
+ libc.src.__support.FPUtil.dyadic_float
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.polyeval
+ libc.src.__support.macros.optimization
+ libc.src.__support.integer_literals
+)
+
+add_header_library(
erff
HDRS
erff.h
diff --git a/libc/src/__support/math/cbrt.h b/libc/src/__support/math/cbrt.h
new file mode 100644
index 0000000..9d86bf3
--- /dev/null
+++ b/libc/src/__support/math/cbrt.h
@@ -0,0 +1,350 @@
+//===-- Implementation header for erff --------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LIBC_SRC___SUPPORT_MATH_CBRT_H
+#define LIBC_SRC___SUPPORT_MATH_CBRT_H
+
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
+#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+#endif
+
+namespace cbrt_internal {
+using namespace fputil;
+
+// Initial approximation of x^(-2/3) for 1 <= x < 2.
+// Polynomial generated by Sollya with:
+// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
+// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
+// 0x1.28...p-21
+LIBC_INLINE static double intial_approximation(double x) {
+ constexpr double COEFFS[8] = {
+ 0x1.bc52aedead5c6p1, -0x1.b52bfebf110b3p2, 0x1.1d8d71d53d126p3,
+ -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2, -0x1.5973c66ee6da7p0,
+ 0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
+ };
+
+ double x_sq = x * x;
+
+ double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
+ double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
+ double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
+ double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);
+
+ double x_4 = x_sq * x_sq;
+ double d0 = fputil::multiply_add(x_sq, c1, c0);
+ double d1 = fputil::multiply_add(x_sq, c3, c2);
+
+ return fputil::multiply_add(x_4, d1, d0);
+}
+
+// Get the error term for Newton iteration:
+// h(x) = x^3 * a^2 - 1,
+#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+LIBC_INLINE static double get_error(const DoubleDouble &x_3,
+ const DoubleDouble &a_sq) {
+ return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
+ fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
+}
+#else
+LIBC_INLINE static constexpr double get_error(const DoubleDouble &x_3,
+ const DoubleDouble &a_sq) {
+ DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
+ return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
+}
+#endif
+
+} // namespace cbrt_internal
+
+// Correctly rounded cbrt algorithm:
+//
+// === Step 1 - Range reduction ===
+// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
+// x_r = 1.m
+// a = (-1)^s * 2^(e % 3) * (1.m)
+// Then cbrt(x) = x^(1/3) can be computed as:
+// x^(1/3) = 2^(e / 3) * a^(1/3).
+//
+// In order to avoid division, we compute a^(-2/3) using Newton method and then
+// multiply the results by a:
+// a^(1/3) = a * a^(-2/3).
+//
+// === Step 2 - First approximation to a^(-2/3) ===
+// First, we use a degree-7 minimax polynomial generated by Sollya to
+// approximate x_r^(-2/3) for 1 <= x_r < 2.
+// p = P(x_r) ~ x_r^(-2/3),
+// with relative errors bounded by:
+// | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
+//
+// Then we multiply with 2^(e % 3) from a small lookup table to get:
+// x_0 = 2^(-2*(e % 3)/3) * p
+// ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
+// = a^(-2/3)
+// With relative errors:
+// | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
+// This step is done in double precision.
+//
+// === Step 3 - First Newton iteration ===
+// We follow the method described in:
+// Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
+// in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
+// to derive multiplicative Newton iterations as below:
+// Let x_n be the nth approximation to a^(-2/3). Define the n^th error as:
+// h_n = x_n^3 * a^2 - 1
+// Then:
+// a^(-2/3) = x_n / (1 + h_n)^(1/3)
+// = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
+// using the Taylor series expansion of (1 + h_n)^(-1/3).
+//
+// Apply to x_0 above:
+// h_0 = x_0^3 * a^2 - 1
+// = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
+// it's bounded by:
+// |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17.
+// So in the first iteration step, we use:
+// x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3)
+// Its relative error is bounded by:
+// | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70.
+// Then we perform Ziv's rounding test and check if the answer is exact.
+// This step is done in double-double precision.
+//
+// === Step 4 - Second Newton iteration ===
+// If the Ziv's rounding test from the previous step fails, we define the error
+// term:
+// h_1 = x_1^3 * a^2 - 1,
+// And perform another iteration:
+// x_2 = x_1 * (1 - h_1 / 3)
+// with the relative errors exceed the precision of double-double.
+// We then check the Ziv's accuracy test with relative errors < 2^-102 to
+// compensate for rounding errors.
+//
+// === Step 5 - Final iteration ===
+// If the Ziv's accuracy test from the previous step fails, we perform another
+// iteration in 128-bit precision and check for exact outputs.
+//
+// TODO: It is possible to replace this costly computation step with special
+// exceptional handling, similar to what was done in the CORE-MATH project:
+// https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c
+
+LIBC_INLINE static constexpr double cbrt(double x) {
+ using DoubleDouble = fputil::DoubleDouble;
+ using namespace cbrt_internal;
+ using FPBits = fputil::FPBits<double>;
+
+ uint64_t x_abs = FPBits(x).abs().uintval();
+
+ unsigned exp_bias_correction = 682; // 1023 * 2/3
+
+ if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() ||
+ x_abs >= FPBits::inf().uintval())) {
+ if (x == 0.0 || x_abs >= FPBits::inf().uintval())
+ // x is 0, Inf, or NaN.
+ // Make sure it works for FTZ/DAZ modes.
+ return static_cast<double>(x + x);
+
+ // x is non-zero denormal number.
+ // Normalize x.
+ x *= 0x1.0p60;
+ exp_bias_correction -= 20;
+ }
+
+ FPBits x_bits(x);
+
+ // When using biased exponent of x in double precision,
+ // x_e = real_exponent_of_x + 1023
+ // Then:
+ // x_e / 3 = real_exponent_of_x / 3 + 1023/3
+ // = real_exponent_of_x / 3 + 341
+ // So to make it the correct biased exponent of x^(1/3), we add
+ // 1023 - 341 = 682
+ // to the quotient x_e / 3.
+ unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent());
+ unsigned out_e = (x_e / 3 + exp_bias_correction);
+ unsigned shift_e = x_e % 3;
+
+ // Set x_r = 1.mantissa
+ double x_r =
+ FPBits(x_bits.get_mantissa() |
+ (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN))
+ .get_val();
+
+ // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa)
+ uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF;
+ a_bits |=
+ (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS))
+ << FPBits::FRACTION_LEN);
+ double a = FPBits(a_bits).get_val();
+
+ // Initial approximation of x_r^(-2/3).
+ double p = intial_approximation(x_r);
+
+ // Look up for 2^(-2*n/3) used for first approximation step.
+ constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1,
+ 0x1.965fea53d6e3dp-2};
+
+ // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8.
+ // Relative error: < 1.16 * 2^(-21).
+ double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p);
+
+ // First iteration in double precision.
+ DoubleDouble a_sq = fputil::exact_mult(a, a);
+
+ // h0 = x0^3 * a^2 - 1
+ DoubleDouble x0_sq = fputil::exact_mult(x0, x0);
+ DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq);
+
+ double h0 = get_error(x0_3, a_sq);
+
+#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+ constexpr double REL_ERROR = 0;
+#else
+ constexpr double REL_ERROR = 0x1.0p-51;
+#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+
+ // Taylor polynomial of (1 + h)^(-1/3):
+ // (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ...
+ constexpr double ERR_COEFFS[3] = {
+ -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error
+ 0x1.c71c71c71c71cp-3, // 2/9
+ -0x1.61f9add3c0ca4p-3, // -14/81
+ };
+ // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error.
+ double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], ERR_COEFFS[2]);
+ double x0_h0 = x0 * h0;
+
+ // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81)
+ // x1 approximate a^(-2/3) with relative errors bounded by:
+ // | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR
+ DoubleDouble x1_dd{x0_h0 * e0, x0};
+
+ // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3).
+ DoubleDouble r1 = fputil::quick_mult(a, x1_dd);
+
+ // Lambda function to update the exponent of the result.
+ auto update_exponent = [=](double r) -> double {
+ uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000;
+ // Adjust exponent and sign.
+ uint64_t r_bits =
+ r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN);
+ return FPBits(r_bits).get_val();
+ };
+
+#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+ // TODO: We probably don't need to use double-double if accurate tests and
+ // passes are skipped.
+ return update_exponent(r1.hi + r1.lo);
+#else
+ // Accurate checks and passes.
+ double r1_lower = r1.hi + r1.lo;
+ double r1_upper =
+ r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo);
+
+ // Ziv's accuracy test.
+ if (LIBC_LIKELY(r1_upper == r1_lower)) {
+ // Test for exact outputs.
+ // Check if lower (52 - 17 = 35) bits are 0's.
+ if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) ==
+ 0)) {
+ double r1_err = (r1_lower - r1.hi) - r1.lo;
+ if (FPBits(r1_err).abs().get_val() < 0x1.0p69)
+ fputil::clear_except_if_required(FE_INEXACT);
+ }
+
+ return update_exponent(r1_lower);
+ }
+
+ // Accuracy test failed, perform another Newton iteration.
+ double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0;
+
+ // Second iteration in double-double precision.
+ // h1 = x1^3 * a^2 - 1.
+ DoubleDouble x1_sq = fputil::exact_mult(x1, x1);
+ DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq);
+ double h1 = get_error(x1_3, a_sq);
+
+ // e1 = -x1*h1/3.
+ double e1 = h1 * (x1 * -0x1.5555555555555p-2);
+ // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101.
+ DoubleDouble x2 = fputil::exact_add(x1, e1);
+ // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100.
+ DoubleDouble r2 = fputil::quick_mult(a, x2);
+
+ double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo);
+ double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo);
+
+ // Ziv's accuracy test.
+ if (LIBC_LIKELY(r2_upper == r2_lower))
+ return update_exponent(r2_upper);
+
+ using Float128 = fputil::DyadicFloat<128>;
+
+ // TODO: Investigate removing float128 and just list exceptional cases.
+ // Apply another Newton iteration with ~126-bit accuracy.
+ Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo));
+ // x2^3
+ Float128 x2_3 =
+ fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128);
+ // a^2
+ Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a));
+ // x2^3 * a^2
+ Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128);
+ // h2 = x2^3 * a^2 - 1
+ Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0));
+ double h2 = static_cast<double>(h2_f128);
+ // t2 = 1 - h2 / 3
+ Float128 t2 =
+ fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2)));
+ // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3)
+ Float128 x3 = fputil::quick_mul(x2_f128, t2);
+ // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3)
+ Float128 r3 = fputil::quick_mul(Float128(a), x3);
+
+ // Check for exact cases:
+ Float128::MantissaType rounding_bits =
+ r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128;
+
+ double result = static_cast<double>(r3);
+ if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) ||
+ (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) {
+ // Output is exact.
+ r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128;
+
+ if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) {
+ Float128 tmp{r3.sign, r3.exponent - 123,
+ 0x8000'0000'0000'0000'0000'0000'0000'0000_u128};
+ Float128 r4 = fputil::quick_add(r3, tmp);
+ result = static_cast<double>(r4);
+ } else {
+ result = static_cast<double>(r3);
+ }
+
+ fputil::clear_except_if_required(FE_INEXACT);
+ }
+
+ return update_exponent(result);
+#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_SRC___SUPPORT_MATH_CBRT_H
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index 9df9973..a866195 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -4753,15 +4753,7 @@ add_entrypoint_object(
HDRS
../cbrt.h
DEPENDS
- libc.hdr.fenv_macros
- libc.src.__support.FPUtil.double_double
- libc.src.__support.FPUtil.dyadic_float
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.polyeval
- libc.src.__support.macros.optimization
- libc.src.__support.integer_literals
+ libc.src.__support.math.cbrt
)
add_entrypoint_object(
diff --git a/libc/src/math/generic/cbrt.cpp b/libc/src/math/generic/cbrt.cpp
index ce227e6..e9b69bb 100644
--- a/libc/src/math/generic/cbrt.cpp
+++ b/libc/src/math/generic/cbrt.cpp
@@ -7,334 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/cbrt.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/common.h"
-#include "src/__support/integer_literals.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-
-#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
-#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-#endif
+#include "src/__support/math/cbrt.h"
namespace LIBC_NAMESPACE_DECL {
-using DoubleDouble = fputil::DoubleDouble;
-using Float128 = fputil::DyadicFloat<128>;
-
-namespace {
-
-// Initial approximation of x^(-2/3) for 1 <= x < 2.
-// Polynomial generated by Sollya with:
-// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
-// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
-// 0x1.28...p-21
-double intial_approximation(double x) {
- constexpr double COEFFS[8] = {
- 0x1.bc52aedead5c6p1, -0x1.b52bfebf110b3p2, 0x1.1d8d71d53d126p3,
- -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2, -0x1.5973c66ee6da7p0,
- 0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
- };
-
- double x_sq = x * x;
-
- double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
- double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
- double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
- double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);
-
- double x_4 = x_sq * x_sq;
- double d0 = fputil::multiply_add(x_sq, c1, c0);
- double d1 = fputil::multiply_add(x_sq, c3, c2);
-
- return fputil::multiply_add(x_4, d1, d0);
-}
-
-// Get the error term for Newton iteration:
-// h(x) = x^3 * a^2 - 1,
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
- return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
- fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
-}
-#else
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
- DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
- return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
-}
-#endif
-
-} // anonymous namespace
-
-// Correctly rounded cbrt algorithm:
-//
-// === Step 1 - Range reduction ===
-// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
-// x_r = 1.m
-// a = (-1)^s * 2^(e % 3) * (1.m)
-// Then cbrt(x) = x^(1/3) can be computed as:
-// x^(1/3) = 2^(e / 3) * a^(1/3).
-//
-// In order to avoid division, we compute a^(-2/3) using Newton method and then
-// multiply the results by a:
-// a^(1/3) = a * a^(-2/3).
-//
-// === Step 2 - First approximation to a^(-2/3) ===
-// First, we use a degree-7 minimax polynomial generated by Sollya to
-// approximate x_r^(-2/3) for 1 <= x_r < 2.
-// p = P(x_r) ~ x_r^(-2/3),
-// with relative errors bounded by:
-// | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
-//
-// Then we multiply with 2^(e % 3) from a small lookup table to get:
-// x_0 = 2^(-2*(e % 3)/3) * p
-// ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
-// = a^(-2/3)
-// With relative errors:
-// | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
-// This step is done in double precision.
-//
-// === Step 3 - First Newton iteration ===
-// We follow the method described in:
-// Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
-// in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
-// to derive multiplicative Newton iterations as below:
-// Let x_n be the nth approximation to a^(-2/3). Define the n^th error as:
-// h_n = x_n^3 * a^2 - 1
-// Then:
-// a^(-2/3) = x_n / (1 + h_n)^(1/3)
-// = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
-// using the Taylor series expansion of (1 + h_n)^(-1/3).
-//
-// Apply to x_0 above:
-// h_0 = x_0^3 * a^2 - 1
-// = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
-// it's bounded by:
-// |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17.
-// So in the first iteration step, we use:
-// x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3)
-// Its relative error is bounded by:
-// | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70.
-// Then we perform Ziv's rounding test and check if the answer is exact.
-// This step is done in double-double precision.
-//
-// === Step 4 - Second Newton iteration ===
-// If the Ziv's rounding test from the previous step fails, we define the error
-// term:
-// h_1 = x_1^3 * a^2 - 1,
-// And perform another iteration:
-// x_2 = x_1 * (1 - h_1 / 3)
-// with the relative errors exceed the precision of double-double.
-// We then check the Ziv's accuracy test with relative errors < 2^-102 to
-// compensate for rounding errors.
-//
-// === Step 5 - Final iteration ===
-// If the Ziv's accuracy test from the previous step fails, we perform another
-// iteration in 128-bit precision and check for exact outputs.
-//
-// TODO: It is possible to replace this costly computation step with special
-// exceptional handling, similar to what was done in the CORE-MATH project:
-// https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c
-
-LLVM_LIBC_FUNCTION(double, cbrt, (double x)) {
- using FPBits = fputil::FPBits<double>;
-
- uint64_t x_abs = FPBits(x).abs().uintval();
-
- unsigned exp_bias_correction = 682; // 1023 * 2/3
-
- if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() ||
- x_abs >= FPBits::inf().uintval())) {
- if (x == 0.0 || x_abs >= FPBits::inf().uintval())
- // x is 0, Inf, or NaN.
- // Make sure it works for FTZ/DAZ modes.
- return static_cast<double>(x + x);
-
- // x is non-zero denormal number.
- // Normalize x.
- x *= 0x1.0p60;
- exp_bias_correction -= 20;
- }
-
- FPBits x_bits(x);
-
- // When using biased exponent of x in double precision,
- // x_e = real_exponent_of_x + 1023
- // Then:
- // x_e / 3 = real_exponent_of_x / 3 + 1023/3
- // = real_exponent_of_x / 3 + 341
- // So to make it the correct biased exponent of x^(1/3), we add
- // 1023 - 341 = 682
- // to the quotient x_e / 3.
- unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent());
- unsigned out_e = (x_e / 3 + exp_bias_correction);
- unsigned shift_e = x_e % 3;
-
- // Set x_r = 1.mantissa
- double x_r =
- FPBits(x_bits.get_mantissa() |
- (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN))
- .get_val();
-
- // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa)
- uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF;
- a_bits |=
- (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS))
- << FPBits::FRACTION_LEN);
- double a = FPBits(a_bits).get_val();
-
- // Initial approximation of x_r^(-2/3).
- double p = intial_approximation(x_r);
-
- // Look up for 2^(-2*n/3) used for first approximation step.
- constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1,
- 0x1.965fea53d6e3dp-2};
-
- // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8.
- // Relative error: < 1.16 * 2^(-21).
- double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p);
-
- // First iteration in double precision.
- DoubleDouble a_sq = fputil::exact_mult(a, a);
-
- // h0 = x0^3 * a^2 - 1
- DoubleDouble x0_sq = fputil::exact_mult(x0, x0);
- DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq);
-
- double h0 = get_error(x0_3, a_sq);
-
-#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
- constexpr double REL_ERROR = 0;
-#else
- constexpr double REL_ERROR = 0x1.0p-51;
-#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-
- // Taylor polynomial of (1 + h)^(-1/3):
- // (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ...
- constexpr double ERR_COEFFS[3] = {
- -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error
- 0x1.c71c71c71c71cp-3, // 2/9
- -0x1.61f9add3c0ca4p-3, // -14/81
- };
- // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error.
- double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], ERR_COEFFS[2]);
- double x0_h0 = x0 * h0;
-
- // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81)
- // x1 approximate a^(-2/3) with relative errors bounded by:
- // | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR
- DoubleDouble x1_dd{x0_h0 * e0, x0};
-
- // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3).
- DoubleDouble r1 = fputil::quick_mult(a, x1_dd);
-
- // Lambda function to update the exponent of the result.
- auto update_exponent = [=](double r) -> double {
- uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000;
- // Adjust exponent and sign.
- uint64_t r_bits =
- r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN);
- return FPBits(r_bits).get_val();
- };
-
-#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
- // TODO: We probably don't need to use double-double if accurate tests and
- // passes are skipped.
- return update_exponent(r1.hi + r1.lo);
-#else
- // Accurate checks and passes.
- double r1_lower = r1.hi + r1.lo;
- double r1_upper =
- r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo);
-
- // Ziv's accuracy test.
- if (LIBC_LIKELY(r1_upper == r1_lower)) {
- // Test for exact outputs.
- // Check if lower (52 - 17 = 35) bits are 0's.
- if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) ==
- 0)) {
- double r1_err = (r1_lower - r1.hi) - r1.lo;
- if (FPBits(r1_err).abs().get_val() < 0x1.0p69)
- fputil::clear_except_if_required(FE_INEXACT);
- }
-
- return update_exponent(r1_lower);
- }
-
- // Accuracy test failed, perform another Newton iteration.
- double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0;
-
- // Second iteration in double-double precision.
- // h1 = x1^3 * a^2 - 1.
- DoubleDouble x1_sq = fputil::exact_mult(x1, x1);
- DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq);
- double h1 = get_error(x1_3, a_sq);
-
- // e1 = -x1*h1/3.
- double e1 = h1 * (x1 * -0x1.5555555555555p-2);
- // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101.
- DoubleDouble x2 = fputil::exact_add(x1, e1);
- // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100.
- DoubleDouble r2 = fputil::quick_mult(a, x2);
-
- double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo);
- double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo);
-
- // Ziv's accuracy test.
- if (LIBC_LIKELY(r2_upper == r2_lower))
- return update_exponent(r2_upper);
-
- // TODO: Investigate removing float128 and just list exceptional cases.
- // Apply another Newton iteration with ~126-bit accuracy.
- Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo));
- // x2^3
- Float128 x2_3 =
- fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128);
- // a^2
- Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a));
- // x2^3 * a^2
- Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128);
- // h2 = x2^3 * a^2 - 1
- Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0));
- double h2 = static_cast<double>(h2_f128);
- // t2 = 1 - h2 / 3
- Float128 t2 =
- fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2)));
- // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3)
- Float128 x3 = fputil::quick_mul(x2_f128, t2);
- // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3)
- Float128 r3 = fputil::quick_mul(Float128(a), x3);
-
- // Check for exact cases:
- Float128::MantissaType rounding_bits =
- r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128;
-
- double result = static_cast<double>(r3);
- if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) ||
- (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) {
- // Output is exact.
- r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128;
-
- if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) {
- Float128 tmp{r3.sign, r3.exponent - 123,
- 0x8000'0000'0000'0000'0000'0000'0000'0000_u128};
- Float128 r4 = fputil::quick_add(r3, tmp);
- result = static_cast<double>(r4);
- } else {
- result = static_cast<double>(r3);
- }
-
- fputil::clear_except_if_required(FE_INEXACT);
- }
-
- return update_exponent(result);
-#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-}
+LLVM_LIBC_FUNCTION(double, cbrt, (double x)) { return math::cbrt(x); }
} // namespace LIBC_NAMESPACE_DECL