aboutsummaryrefslogtreecommitdiff
path: root/libc/src
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src')
-rw-r--r--libc/src/__support/GPU/allocator.cpp2
-rw-r--r--libc/src/__support/math/CMakeLists.txt78
-rw-r--r--libc/src/__support/math/asin_utils.h2
-rw-r--r--libc/src/__support/math/atan2.h209
-rw-r--r--libc/src/__support/math/atan2f.h351
-rw-r--r--libc/src/__support/math/atan2f128.h212
-rw-r--r--libc/src/__support/math/atan2f_float.h (renamed from libc/src/math/generic/atan2f_float.h)24
-rw-r--r--libc/src/__support/math/atanhf.h76
-rw-r--r--libc/src/__support/math/atanhf16.h234
-rw-r--r--libc/src/__support/threads/CMakeLists.txt8
-rw-r--r--libc/src/__support/threads/gpu/CMakeLists.txt5
-rw-r--r--libc/src/__support/threads/gpu/mutex.h32
-rw-r--r--libc/src/__support/threads/mutex.h57
-rw-r--r--libc/src/math/generic/CMakeLists.txt49
-rw-r--r--libc/src/math/generic/atan2.cpp187
-rw-r--r--libc/src/math/generic/atan2f.cpp328
-rw-r--r--libc/src/math/generic/atan2f128.cpp190
-rw-r--r--libc/src/math/generic/atan2l.cpp4
-rw-r--r--libc/src/math/generic/atanhf.cpp56
-rw-r--r--libc/src/math/generic/atanhf16.cpp86
-rw-r--r--libc/src/math/generic/common_constants.cpp78
-rw-r--r--libc/src/math/generic/common_constants.h8
-rw-r--r--libc/src/math/generic/explogxf.h43
-rw-r--r--libc/src/sched/linux/CMakeLists.txt26
-rw-r--r--libc/src/sched/linux/sched_getaffinity.cpp4
-rw-r--r--libc/src/sched/linux/sched_getcpucount.cpp3
-rw-r--r--libc/src/sched/linux/sched_getscheduler.cpp1
-rw-r--r--libc/src/sched/linux/sched_rr_get_interval.cpp2
-rw-r--r--libc/src/sched/linux/sched_setaffinity.cpp4
-rw-r--r--libc/src/sched/sched_getaffinity.h5
-rw-r--r--libc/src/sched/sched_getcpucount.h3
-rw-r--r--libc/src/sched/sched_getparam.h4
-rw-r--r--libc/src/sched/sched_getscheduler.h3
-rw-r--r--libc/src/sched/sched_rr_get_interval.h4
-rw-r--r--libc/src/sched/sched_setaffinity.h5
-rw-r--r--libc/src/sched/sched_setparam.h4
-rw-r--r--libc/src/sched/sched_setscheduler.h4
-rw-r--r--libc/src/wchar/wcstok.cpp13
38 files changed, 1315 insertions, 1089 deletions
diff --git a/libc/src/__support/GPU/allocator.cpp b/libc/src/__support/GPU/allocator.cpp
index bd0a55c..250bebd 100644
--- a/libc/src/__support/GPU/allocator.cpp
+++ b/libc/src/__support/GPU/allocator.cpp
@@ -156,7 +156,7 @@ static inline constexpr uint32_t get_start_index(uint32_t chunk_size) {
// Returns the id of the lane below this one that acts as its leader.
static inline uint32_t get_leader_id(uint64_t ballot, uint32_t id) {
- uint64_t mask = id < BITS_IN_DWORD ? ~0ull << (id + 1) : 0;
+ uint64_t mask = id < BITS_IN_DWORD - 1 ? ~0ull << (id + 1) : 0;
return BITS_IN_DWORD - cpp::countl_zero(ballot & ~mask) - 1;
}
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index 04cbd3f..9631ab5 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -158,7 +158,7 @@ add_header_library(
asinhf16
HDRS
asinhf16.h
-DEPENDS
+ DEPENDS
.acoshf_utils
libc.src.__support.FPUtil.fenv_impl
libc.src.__support.FPUtil.fp_bits
@@ -176,7 +176,7 @@ add_header_library(
atan_utils
HDRS
atan_utils.h
-DEPENDS
+ DEPENDS
libc.src.__support.integer_literals
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.dyadic_float
@@ -189,7 +189,21 @@ add_header_library(
atan
HDRS
atan.h
-DEPENDS
+ DEPENDS
+ .atan_utils
+ libc.src.__support.FPUtil.double_double
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.nearest_integer
+ libc.src.__support.macros.optimization
+)
+
+add_header_library(
+ atan2
+ HDRS
+ atan2.h
+ DEPENDS
.atan_utils
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.fenv_impl
@@ -200,6 +214,38 @@ DEPENDS
)
add_header_library(
+ atan2f
+ HDRS
+ atan2f_float.h
+ atan2f.h
+ DEPENDS
+ .inv_trigf_utils
+ libc.src.__support.FPUtil.double_double
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.nearest_integer
+ libc.src.__support.FPUtil.polyeval
+ libc.src.__support.macros.config
+ libc.src.__support.macros.optimization
+)
+
+add_header_library(
+ atan2f128
+ HDRS
+ atan2f128.h
+ DEPENDS
+ .atan_utils
+ libc.src.__support.integer_literals
+ libc.src.__support.uint128
+ libc.src.__support.FPUtil.dyadic_float
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.nearest_integer
+ libc.src.__support.macros.optimization
+)
+
+add_header_library(
atanf
HDRS
atanf.h
@@ -230,6 +276,32 @@ add_header_library(
)
add_header_library(
+ atanhf
+ HDRS
+ atanhf.h
+ DEPENDS
+ .acoshf_utils
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.macros.optimization
+)
+
+add_header_library(
+ atanhf16
+ HDRS
+ atanhf16.h
+ DEPENDS
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.polyeval
+ libc.src.__support.FPUtil.cast
+ libc.src.__support.FPUtil.except_value_utils
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.macros.config
+ libc.src.__support.macros.optimization
+)
+
+add_header_library(
asinf
HDRS
asinf.h
diff --git a/libc/src/__support/math/asin_utils.h b/libc/src/__support/math/asin_utils.h
index e0c9096..efe779c 100644
--- a/libc/src/__support/math/asin_utils.h
+++ b/libc/src/__support/math/asin_utils.h
@@ -45,7 +45,7 @@ static constexpr double ASIN_COEFFS[12] = {
0x1.2b5993bda1d9bp-6, -0x1.806aff270bf25p-7, 0x1.02614e5ed3936p-5,
};
-LIBC_INLINE static constexpr double asin_eval(double u) {
+LIBC_INLINE double asin_eval(double u) {
double u2 = u * u;
double c0 = fputil::multiply_add(u, ASIN_COEFFS[1], ASIN_COEFFS[0]);
double c1 = fputil::multiply_add(u, ASIN_COEFFS[3], ASIN_COEFFS[2]);
diff --git a/libc/src/__support/math/atan2.h b/libc/src/__support/math/atan2.h
new file mode 100644
index 0000000..90ed926
--- /dev/null
+++ b/libc/src/__support/math/atan2.h
@@ -0,0 +1,209 @@
+//===-- Implementation header for atan2 -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2_H
+
+#include "atan_utils.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/nearest_integer.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+// There are several range reduction steps we can take for atan2(y, x) as
+// follow:
+
+// * Range reduction 1: signness
+// atan2(y, x) will return a number between -PI and PI representing the angle
+// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
+// In particular, we have that:
+// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
+// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
+// Since atan function is odd, we can use the formula:
+// atan(-u) = -atan(u)
+// to adjust the above conditions a bit further:
+// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
+// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
+// Which can be simplified to:
+// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
+// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
+
+// * Range reduction 2: reciprocal
+// Now that the argument inside atan is positive, we can use the formula:
+// atan(1/x) = pi/2 - atan(x)
+// to make the argument inside atan <= 1 as follow:
+// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
+// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
+// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
+// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
+
+// * Range reduction 3: look up table.
+// After the previous two range reduction steps, we reduce the problem to
+// compute atan(u) with 0 <= u <= 1, or to be precise:
+// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
+// An accurate polynomial approximation for the whole [0, 1] input range will
+// require a very large degree. To make it more efficient, we reduce the input
+// range further by finding an integer idx such that:
+// | n/d - idx/64 | <= 1/128.
+// In particular,
+// idx := round(2^6 * n/d)
+// Then for the fast pass, we find a polynomial approximation for:
+// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
+// For the accurate pass, we use the addition formula:
+// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
+// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
+// And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
+// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
+// with absolute errors bounded by:
+// |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
+// and relative errors bounded by:
+// |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.
+
+LIBC_INLINE static constexpr double atan2(double y, double x) {
+ using namespace atan_internal;
+ using FPBits = fputil::FPBits<double>;
+
+ constexpr double IS_NEG[2] = {1.0, -1.0};
+ constexpr DoubleDouble ZERO = {0.0, 0.0};
+ constexpr DoubleDouble MZERO = {-0.0, -0.0};
+ constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
+ constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
+ constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
+ 0x1.921fb54442d18p0};
+ constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
+ -0x1.921fb54442d18p0};
+ constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
+ 0x1.921fb54442d18p-1};
+ constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
+ 0x1.2d97c7f3321d2p+1};
+ // Adjustment for constant term:
+ // CONST_ADJ[x_sign][y_sign][recip]
+ constexpr DoubleDouble CONST_ADJ[2][2][2] = {
+ {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
+ {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
+
+ FPBits x_bits(x), y_bits(y);
+ bool x_sign = x_bits.sign().is_neg();
+ bool y_sign = y_bits.sign().is_neg();
+ x_bits = x_bits.abs();
+ y_bits = y_bits.abs();
+ uint64_t x_abs = x_bits.uintval();
+ uint64_t y_abs = y_bits.uintval();
+ bool recip = x_abs < y_abs;
+ uint64_t min_abs = recip ? x_abs : y_abs;
+ uint64_t max_abs = !recip ? x_abs : y_abs;
+ unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
+ unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
+
+ double num = FPBits(min_abs).get_val();
+ double den = FPBits(max_abs).get_val();
+
+ // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
+ // overflow, or close to underflow.
+ if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
+ if (x_bits.is_nan() || y_bits.is_nan()) {
+ if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+ unsigned x_except = x == 0.0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
+ unsigned y_except = y == 0.0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
+
+ // Exceptional cases:
+ // EXCEPT[y_except][x_except][x_is_neg]
+ // with x_except & y_except:
+ // 0: zero
+ // 1: finite, non-zero
+ // 2: infinity
+ constexpr DoubleDouble EXCEPTS[3][3][2] = {
+ {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
+ {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
+ {{PI_OVER_2, PI_OVER_2},
+ {PI_OVER_2, PI_OVER_2},
+ {PI_OVER_4, THREE_PI_OVER_4}},
+ };
+
+ if ((x_except != 1) || (y_except != 1)) {
+ DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
+ return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
+ }
+ bool scale_up = min_exp < 128U;
+ bool scale_down = max_exp > 0x7ffU - 128U;
+ // At least one input is denormal, multiply both numerator and denominator
+ // by some large enough power of 2 to normalize denormal inputs.
+ if (scale_up) {
+ num *= 0x1.0p64;
+ if (!scale_down)
+ den *= 0x1.0p64;
+ } else if (scale_down) {
+ den *= 0x1.0p-64;
+ if (!scale_up)
+ num *= 0x1.0p-64;
+ }
+
+ min_abs = FPBits(num).uintval();
+ max_abs = FPBits(den).uintval();
+ min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
+ max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
+ }
+
+ double final_sign = IS_NEG[(x_sign != y_sign) != recip];
+ DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
+ unsigned exp_diff = max_exp - min_exp;
+ // We have the following bound for normalized n and d:
+ // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
+ if (LIBC_UNLIKELY(exp_diff > 54)) {
+ return fputil::multiply_add(final_sign, const_term.hi,
+ final_sign * (const_term.lo + num / den));
+ }
+
+ double k = fputil::nearest_integer(64.0 * num / den);
+ unsigned idx = static_cast<unsigned>(k);
+ // k = idx / 64
+ k *= 0x1.0p-6;
+
+ // Range reduction:
+ // atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
+ // = atan((n - d * k/64)) / (d + n * k/64))
+ DoubleDouble num_k = fputil::exact_mult(num, k);
+ DoubleDouble den_k = fputil::exact_mult(den, k);
+
+ // num_dd = n - d * k
+ DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
+ // den_dd = d + n * k
+ DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
+ den_dd.lo += num_k.lo;
+
+ // q = (n - d * k) / (d + n * k)
+ DoubleDouble q = fputil::div(num_dd, den_dd);
+ // p ~ atan(q)
+ DoubleDouble p = atan_eval(q);
+
+ DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
+ r.hi *= final_sign;
+ r.lo *= final_sign;
+
+ return r.hi + r.lo;
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2_H
diff --git a/libc/src/__support/math/atan2f.h b/libc/src/__support/math/atan2f.h
new file mode 100644
index 0000000..e3b1932
--- /dev/null
+++ b/libc/src/__support/math/atan2f.h
@@ -0,0 +1,351 @@
+//===-- Implementation header for atan2f ------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F_H
+
+#include "inv_trigf_utils.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/nearest_integer.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) && \
+ defined(LIBC_MATH_HAS_INTERMEDIATE_COMP_IN_FLOAT)
+
+// We use float-float implementation to reduce size.
+#include "atan2f_float.h"
+
+#else
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+namespace atan2f_internal {
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+// Look up tables for accurate pass:
+
+// atan(i/16) with i = 0..16, generated by Sollya with:
+// > for i from 0 to 16 do {
+// a = round(atan(i/16), D, RN);
+// b = round(atan(i/16) - a, D, RN);
+// print("{", b, ",", a, "},");
+// };
+static constexpr fputil::DoubleDouble ATAN_I[17] = {
+ {0.0, 0.0},
+ {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
+ {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
+ {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
+ {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
+ {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
+ {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
+ {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
+ {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
+ {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
+ {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
+ {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
+ {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
+ {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
+ {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
+ {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
+ {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
+};
+
+// Taylor polynomial, generated by Sollya with:
+// > for i from 0 to 8 do {
+// j = (-1)^(i + 1)/(2*i + 1);
+// a = round(j, D, RN);
+// b = round(j - a, D, RN);
+// print("{", b, ",", a, "},");
+// };
+static constexpr fputil::DoubleDouble COEFFS[9] = {
+ {0.0, 1.0}, // 1
+ {-0x1.5555555555555p-56, -0x1.5555555555555p-2}, // -1/3
+ {-0x1.999999999999ap-57, 0x1.999999999999ap-3}, // 1/5
+ {-0x1.2492492492492p-57, -0x1.2492492492492p-3}, // -1/7
+ {0x1.c71c71c71c71cp-58, 0x1.c71c71c71c71cp-4}, // 1/9
+ {0x1.745d1745d1746p-59, -0x1.745d1745d1746p-4}, // -1/11
+ {-0x1.3b13b13b13b14p-58, 0x1.3b13b13b13b14p-4}, // 1/13
+ {-0x1.1111111111111p-60, -0x1.1111111111111p-4}, // -1/15
+ {0x1.e1e1e1e1e1e1ep-61, 0x1.e1e1e1e1e1e1ep-5}, // 1/17
+};
+
+// Veltkamp's splitting of a double precision into hi + lo, where the hi part is
+// slightly smaller than an even split, so that the product of
+// hi * (s1 * k + s2) is exact,
+// where:
+// s1, s2 are single precsion,
+// 1/16 <= s1/s2 <= 1
+// 1/16 <= k <= 1 is an integer.
+// So the maximal precision of (s1 * k + s2) is:
+// prec(s1 * k + s2) = 2 + log2(msb(s2)) - log2(lsb(k_d * s1))
+// = 2 + log2(msb(s1)) + 4 - log2(lsb(k_d)) - log2(lsb(s1))
+// = 2 + log2(lsb(s1)) + 23 + 4 - (-4) - log2(lsb(s1))
+// = 33.
+// Thus, the Veltkamp splitting constant is C = 2^33 + 1.
+// This is used when FMA instruction is not available.
+[[maybe_unused]] LIBC_INLINE static constexpr fputil::DoubleDouble
+split_d(double a) {
+ fputil::DoubleDouble r{0.0, 0.0};
+ constexpr double C = 0x1.0p33 + 1.0;
+ double t1 = C * a;
+ double t2 = a - t1;
+ r.hi = t1 + t2;
+ r.lo = a - r.hi;
+ return r;
+}
+
+// Compute atan( num_d / den_d ) in double-double precision.
+// num_d = min(|x|, |y|)
+// den_d = max(|x|, |y|)
+// q_d = num_d / den_d
+// idx, k_d = round( 2^4 * num_d / den_d )
+// final_sign = sign of the final result
+// const_term = the constant term in the final expression.
+LIBC_INLINE static float
+atan2f_double_double(double num_d, double den_d, double q_d, int idx,
+ double k_d, double final_sign,
+ const fputil::DoubleDouble &const_term) {
+ fputil::DoubleDouble q;
+ double num_r = 0, den_r = 0;
+
+ if (idx != 0) {
+ // The following range reduction is accurate even without fma for
+ // 1/16 <= n/d <= 1.
+ // atan(n/d) - atan(idx/16) = atan((n/d - idx/16) / (1 + (n/d) * (idx/16)))
+ // = atan((n - d*(idx/16)) / (d + n*idx/16))
+ k_d *= 0x1.0p-4;
+ num_r = fputil::multiply_add(k_d, -den_d, num_d); // Exact
+ den_r = fputil::multiply_add(k_d, num_d, den_d); // Exact
+ q.hi = num_r / den_r;
+ } else {
+ // For 0 < n/d < 1/16, we just need to calculate the lower part of their
+ // quotient.
+ q.hi = q_d;
+ num_r = num_d;
+ den_r = den_d;
+ }
+#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+ q.lo = fputil::multiply_add(q.hi, -den_r, num_r) / den_r;
+#else
+ // Compute `(num_r - q.hi * den_r) / den_r` accurately without FMA
+ // instructions.
+ fputil::DoubleDouble q_hi_dd = split_d(q.hi);
+ double t1 = fputil::multiply_add(q_hi_dd.hi, -den_r, num_r); // Exact
+ double t2 = fputil::multiply_add(q_hi_dd.lo, -den_r, t1);
+ q.lo = t2 / den_r;
+#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+
+ // Taylor polynomial, evaluating using Horner's scheme:
+ // P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
+ // + x^17/17
+ // = x*(1 + x^2*(-1/3 + x^2*(1/5 + x^2*(-1/7 + x^2*(1/9 + x^2*
+ // *(-1/11 + x^2*(1/13 + x^2*(-1/15 + x^2 * 1/17))))))))
+ fputil::DoubleDouble q2 = fputil::quick_mult(q, q);
+ fputil::DoubleDouble p_dd =
+ fputil::polyeval(q2, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3],
+ COEFFS[4], COEFFS[5], COEFFS[6], COEFFS[7], COEFFS[8]);
+ fputil::DoubleDouble r_dd =
+ fputil::add(const_term, fputil::multiply_add(q, p_dd, ATAN_I[idx]));
+ r_dd.hi *= final_sign;
+ r_dd.lo *= final_sign;
+
+ // Make sure the sum is normalized:
+ fputil::DoubleDouble rr = fputil::exact_add(r_dd.hi, r_dd.lo);
+ // Round to odd.
+ uint64_t rr_bits = cpp::bit_cast<uint64_t>(rr.hi);
+ if (LIBC_UNLIKELY(((rr_bits & 0xfff'ffff) == 0) && (rr.lo != 0.0))) {
+ Sign hi_sign = fputil::FPBits<double>(rr.hi).sign();
+ Sign lo_sign = fputil::FPBits<double>(rr.lo).sign();
+ if (hi_sign == lo_sign) {
+ ++rr_bits;
+ } else if ((rr_bits & fputil::FPBits<double>::FRACTION_MASK) > 0) {
+ --rr_bits;
+ }
+ }
+
+ return static_cast<float>(cpp::bit_cast<double>(rr_bits));
+}
+
+#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+} // namespace atan2f_internal
+
+// There are several range reduction steps we can take for atan2(y, x) as
+// follow:
+
+// * Range reduction 1: signness
+// atan2(y, x) will return a number between -PI and PI representing the angle
+// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
+// In particular, we have that:
+// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
+// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
+// Since atan function is odd, we can use the formula:
+// atan(-u) = -atan(u)
+// to adjust the above conditions a bit further:
+// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
+// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
+// Which can be simplified to:
+// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
+// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
+
+// * Range reduction 2: reciprocal
+// Now that the argument inside atan is positive, we can use the formula:
+// atan(1/x) = pi/2 - atan(x)
+// to make the argument inside atan <= 1 as follow:
+// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
+// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
+// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
+// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
+
+// * Range reduction 3: look up table.
+// After the previous two range reduction steps, we reduce the problem to
+// compute atan(u) with 0 <= u <= 1, or to be precise:
+// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
+// An accurate polynomial approximation for the whole [0, 1] input range will
+// require a very large degree. To make it more efficient, we reduce the input
+// range further by finding an integer idx such that:
+// | n/d - idx/16 | <= 1/32.
+// In particular,
+// idx := 2^-4 * round(2^4 * n/d)
+// Then for the fast pass, we find a polynomial approximation for:
+// atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
+// For the accurate pass, we use the addition formula:
+// atan( n/d ) - atan( idx/16 ) = atan( (n/d - idx/16)/(1 + (n*idx)/(16*d)) )
+// = atan( (n - d * idx/16)/(d + n * idx/16) )
+// And finally we use Taylor polynomial to compute the RHS in the accurate pass:
+// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9 - u^11/11 + u^13/13 -
+// - u^15/15 + u^17/17
+// It's error in double-double precision is estimated in Sollya to be:
+// > P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
+// + x^17/17;
+// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
+// 0x1.aec6f...p-100
+// which is about rounding errors of double-double (2^-104).
+
+LIBC_INLINE static constexpr float atan2f(float y, float x) {
+ using namespace atan2f_internal;
+ using namespace inv_trigf_utils_internal;
+ using FPBits = typename fputil::FPBits<float>;
+ constexpr double IS_NEG[2] = {1.0, -1.0};
+ constexpr double PI = 0x1.921fb54442d18p1;
+ constexpr double PI_LO = 0x1.1a62633145c07p-53;
+ constexpr double PI_OVER_4 = 0x1.921fb54442d18p-1;
+ constexpr double PI_OVER_2 = 0x1.921fb54442d18p0;
+ constexpr double THREE_PI_OVER_4 = 0x1.2d97c7f3321d2p+1;
+ // Adjustment for constant term:
+ // CONST_ADJ[x_sign][y_sign][recip]
+ constexpr fputil::DoubleDouble CONST_ADJ[2][2][2] = {
+ {{{0.0, 0.0}, {-PI_LO / 2, -PI_OVER_2}},
+ {{-0.0, -0.0}, {-PI_LO / 2, -PI_OVER_2}}},
+ {{{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}},
+ {{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}}}};
+
+ FPBits x_bits(x), y_bits(y);
+ bool x_sign = x_bits.sign().is_neg();
+ bool y_sign = y_bits.sign().is_neg();
+ x_bits.set_sign(Sign::POS);
+ y_bits.set_sign(Sign::POS);
+ uint32_t x_abs = x_bits.uintval();
+ uint32_t y_abs = y_bits.uintval();
+ uint32_t max_abs = x_abs > y_abs ? x_abs : y_abs;
+ uint32_t min_abs = x_abs <= y_abs ? x_abs : y_abs;
+ float num_f = FPBits(min_abs).get_val();
+ float den_f = FPBits(max_abs).get_val();
+ double num_d = static_cast<double>(num_f);
+ double den_d = static_cast<double>(den_f);
+
+ if (LIBC_UNLIKELY(max_abs >= 0x7f80'0000U || num_d == 0.0)) {
+ if (x_bits.is_nan() || y_bits.is_nan()) {
+ if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+ double x_d = static_cast<double>(x);
+ double y_d = static_cast<double>(y);
+ size_t x_except = (x_d == 0.0) ? 0 : (x_abs == 0x7f80'0000 ? 2 : 1);
+ size_t y_except = (y_d == 0.0) ? 0 : (y_abs == 0x7f80'0000 ? 2 : 1);
+
+ // Exceptional cases:
+ // EXCEPT[y_except][x_except][x_is_neg]
+ // with x_except & y_except:
+ // 0: zero
+ // 1: finite, non-zero
+ // 2: infinity
+ constexpr double EXCEPTS[3][3][2] = {
+ {{0.0, PI}, {0.0, PI}, {0.0, PI}},
+ {{PI_OVER_2, PI_OVER_2}, {0.0, 0.0}, {0.0, PI}},
+ {{PI_OVER_2, PI_OVER_2},
+ {PI_OVER_2, PI_OVER_2},
+ {PI_OVER_4, THREE_PI_OVER_4}},
+ };
+
+ double r = IS_NEG[y_sign] * EXCEPTS[y_except][x_except][x_sign];
+
+ return static_cast<float>(r);
+ }
+
+ bool recip = x_abs < y_abs;
+ double final_sign = IS_NEG[(x_sign != y_sign) != recip];
+ fputil::DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
+ double q_d = num_d / den_d;
+
+ double k_d = fputil::nearest_integer(q_d * 0x1.0p4);
+ int idx = static_cast<int>(k_d);
+ double r = 0.0;
+
+#ifdef LIBC_MATH_HAS_SMALL_TABLES
+ double p = atan_eval_no_table(num_d, den_d, k_d * 0x1.0p-4);
+ r = final_sign * (p + (const_term.hi + ATAN_K_OVER_16[idx]));
+#else
+ q_d = fputil::multiply_add(k_d, -0x1.0p-4, q_d);
+
+ double p = atan_eval(q_d, idx);
+ r = final_sign *
+ fputil::multiply_add(q_d, p, const_term.hi + ATAN_COEFFS[idx][0]);
+#endif // LIBC_MATH_HAS_SMALL_TABLES
+
+#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+ return static_cast<float>(r);
+#else
+ constexpr uint32_t LOWER_ERR = 4;
+ // Mask sticky bits in double precision before rounding to single precision.
+ constexpr uint32_t MASK =
+ mask_trailing_ones<uint32_t, fputil::FPBits<double>::SIG_LEN -
+ FPBits::SIG_LEN - 1>();
+ constexpr uint32_t UPPER_ERR = MASK - LOWER_ERR;
+
+ uint32_t r_bits = static_cast<uint32_t>(cpp::bit_cast<uint64_t>(r)) & MASK;
+
+ // Ziv's rounding test.
+ if (LIBC_LIKELY(r_bits > LOWER_ERR && r_bits < UPPER_ERR))
+ return static_cast<float>(r);
+
+ return atan2f_double_double(num_d, den_d, q_d, idx, k_d, final_sign,
+ const_term);
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F_H
diff --git a/libc/src/__support/math/atan2f128.h b/libc/src/__support/math/atan2f128.h
new file mode 100644
index 0000000..89efaf1
--- /dev/null
+++ b/libc/src/__support/math/atan2f128.h
@@ -0,0 +1,212 @@
+//===-- Implementation header for atan2f128 ---------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F128_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F128_H
+
+#include "include/llvm-libc-types/float128.h"
+
+#ifdef LIBC_TYPES_HAS_FLOAT128
+
+#include "atan_utils.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/nearest_integer.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+#include "src/__support/uint128.h"
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+// There are several range reduction steps we can take for atan2(y, x) as
+// follow:
+
+// * Range reduction 1: signness
+// atan2(y, x) will return a number between -PI and PI representing the angle
+// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
+// In particular, we have that:
+// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
+// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
+// Since atan function is odd, we can use the formula:
+// atan(-u) = -atan(u)
+// to adjust the above conditions a bit further:
+// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
+// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
+// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
+// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
+// Which can be simplified to:
+// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
+// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
+
+// * Range reduction 2: reciprocal
+// Now that the argument inside atan is positive, we can use the formula:
+// atan(1/x) = pi/2 - atan(x)
+// to make the argument inside atan <= 1 as follow:
+// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
+// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
+// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
+// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
+
+// * Range reduction 3: look up table.
+// After the previous two range reduction steps, we reduce the problem to
+// compute atan(u) with 0 <= u <= 1, or to be precise:
+// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
+// An accurate polynomial approximation for the whole [0, 1] input range will
+// require a very large degree. To make it more efficient, we reduce the input
+// range further by finding an integer idx such that:
+// | n/d - idx/64 | <= 1/128.
+// In particular,
+// idx := round(2^6 * n/d)
+// Then for the fast pass, we find a polynomial approximation for:
+// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
+// For the accurate pass, we use the addition formula:
+// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
+// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
+// And for the fast pass, we use degree-13 minimax polynomial to compute the
+// RHS:
+// atan(u) ~ P(u) = u - c_3 * u^3 + c_5 * u^5 - c_7 * u^7 + c_9 *u^9 -
+// - c_11 * u^11 + c_13 * u^13
+// with absolute errors bounded by:
+// |atan(u) - P(u)| < 2^-121
+// and relative errors bounded by:
+// |(atan(u) - P(u)) / P(u)| < 2^-114.
+
+LIBC_INLINE static constexpr float128 atan2f128(float128 y, float128 x) {
+ using Float128 = fputil::DyadicFloat<128>;
+
+ constexpr Float128 ZERO = {Sign::POS, 0, 0_u128};
+ constexpr Float128 MZERO = {Sign::NEG, 0, 0_u128};
+ constexpr Float128 PI = {Sign::POS, -126,
+ 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
+ constexpr Float128 MPI = {Sign::NEG, -126,
+ 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
+ constexpr Float128 PI_OVER_2 = {Sign::POS, -127,
+ 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
+ constexpr Float128 MPI_OVER_2 = {Sign::NEG, -127,
+ 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
+ constexpr Float128 PI_OVER_4 = {Sign::POS, -128,
+ 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
+ constexpr Float128 THREE_PI_OVER_4 = {
+ Sign::POS, -128, 0x96cbe3f9'990e91a7'9394c9e8'a0a5159d_u128};
+
+ // Adjustment for constant term:
+ // CONST_ADJ[x_sign][y_sign][recip]
+ constexpr Float128 CONST_ADJ[2][2][2] = {
+ {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
+ {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
+
+ using namespace atan_internal;
+ using FPBits = fputil::FPBits<float128>;
+ using Float128 = fputil::DyadicFloat<128>;
+
+ FPBits x_bits(x), y_bits(y);
+ bool x_sign = x_bits.sign().is_neg();
+ bool y_sign = y_bits.sign().is_neg();
+ x_bits = x_bits.abs();
+ y_bits = y_bits.abs();
+ UInt128 x_abs = x_bits.uintval();
+ UInt128 y_abs = y_bits.uintval();
+ bool recip = x_abs < y_abs;
+ UInt128 min_abs = recip ? x_abs : y_abs;
+ UInt128 max_abs = !recip ? x_abs : y_abs;
+ unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
+ unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
+
+ Float128 num(FPBits(min_abs).get_val());
+ Float128 den(FPBits(max_abs).get_val());
+
+ // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
+ // overflow, or close to underflow.
+ if (LIBC_UNLIKELY(max_exp >= 0x7fffU || min_exp == 0U)) {
+ if (x_bits.is_nan() || y_bits.is_nan())
+ return FPBits::quiet_nan().get_val();
+ unsigned x_except = x == 0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
+ unsigned y_except = y == 0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
+
+ // Exceptional cases:
+ // EXCEPT[y_except][x_except][x_is_neg]
+ // with x_except & y_except:
+ // 0: zero
+ // 1: finite, non-zero
+ // 2: infinity
+ constexpr Float128 EXCEPTS[3][3][2] = {
+ {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
+ {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
+ {{PI_OVER_2, PI_OVER_2},
+ {PI_OVER_2, PI_OVER_2},
+ {PI_OVER_4, THREE_PI_OVER_4}},
+ };
+
+ if ((x_except != 1) || (y_except != 1)) {
+ Float128 r = EXCEPTS[y_except][x_except][x_sign];
+ if (y_sign)
+ r.sign = r.sign.negate();
+ return static_cast<float128>(r);
+ }
+ }
+
+ bool final_sign = ((x_sign != y_sign) != recip);
+ Float128 const_term = CONST_ADJ[x_sign][y_sign][recip];
+ int exp_diff = den.exponent - num.exponent;
+ // We have the following bound for normalized n and d:
+ // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
+ if (LIBC_UNLIKELY(exp_diff > FPBits::FRACTION_LEN + 2)) {
+ if (final_sign)
+ const_term.sign = const_term.sign.negate();
+ return static_cast<float128>(const_term);
+ }
+
+ // Take 24 leading bits of num and den to convert to float for fast division.
+ // We also multiply the numerator by 64 using integer addition directly to the
+ // exponent field.
+ float num_f =
+ cpp::bit_cast<float>(static_cast<uint32_t>(num.mantissa >> 104) +
+ (6U << fputil::FPBits<float>::FRACTION_LEN));
+ float den_f = cpp::bit_cast<float>(
+ static_cast<uint32_t>(den.mantissa >> 104) +
+ (static_cast<uint32_t>(exp_diff) << fputil::FPBits<float>::FRACTION_LEN));
+
+ float k = fputil::nearest_integer(num_f / den_f);
+ unsigned idx = static_cast<unsigned>(k);
+
+ // k_f128 = idx / 64
+ Float128 k_f128(Sign::POS, -6, Float128::MantissaType(idx));
+
+ // Range reduction:
+ // atan(n/d) - atan(k) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
+ // = atan((n - d * k/64)) / (d + n * k/64))
+ // num_f128 = n - d * k/64
+ Float128 num_f128 = fputil::multiply_add(den, -k_f128, num);
+ // den_f128 = d + n * k/64
+ Float128 den_f128 = fputil::multiply_add(num, k_f128, den);
+
+ // q = (n - d * k) / (d + n * k)
+ Float128 q = fputil::quick_mul(num_f128, fputil::approx_reciprocal(den_f128));
+ // p ~ atan(q)
+ Float128 p = atan_eval(q);
+
+ Float128 r =
+ fputil::quick_add(const_term, fputil::quick_add(ATAN_I_F128[idx], p));
+ if (final_sign)
+ r.sign = r.sign.negate();
+
+ return static_cast<float128>(r);
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_TYPES_HAS_FLOAT128
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATAN2F128_H
diff --git a/libc/src/math/generic/atan2f_float.h b/libc/src/__support/math/atan2f_float.h
index 1fd853d..8bd7095 100644
--- a/libc/src/math/generic/atan2f_float.h
+++ b/libc/src/__support/math/atan2f_float.h
@@ -1,4 +1,4 @@
-//===-- Single-precision atan2f function ----------------------------------===//
+//===-- Single-precision atan2f float function ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@@ -6,18 +6,21 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LIBC_SRC___SUPPORT_MATH_ATAN2F_FLOAT_H
+#define LIBC_SRC___SUPPORT_MATH_ATAN2F_FLOAT_H
+
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/math/atan2f.h"
namespace LIBC_NAMESPACE_DECL {
-namespace {
+namespace math {
+
+namespace atan2f_internal {
using FloatFloat = fputil::FloatFloat;
@@ -27,7 +30,7 @@ using FloatFloat = fputil::FloatFloat;
// b = round(atan(i/16) - a, SG, RN);
// print("{", b, ",", a, "},");
// };
-constexpr FloatFloat ATAN_I[17] = {
+static constexpr FloatFloat ATAN_I[17] = {
{0.0f, 0.0f},
{-0x1.1a6042p-30f, 0x1.ff55bcp-5f},
{-0x1.54f424p-30f, 0x1.fd5baap-4f},
@@ -57,7 +60,7 @@ constexpr FloatFloat ATAN_I[17] = {
// For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than
// ulp(x_hi^3 / 3) gives us:
// P(x) ~ x_hi - x_hi^3/3 + x_lo * (1 - x_hi^2)
-FloatFloat atan_eval(const FloatFloat &x) {
+LIBC_INLINE static constexpr FloatFloat atan_eval(const FloatFloat &x) {
FloatFloat p;
p.hi = x.hi;
float x_hi_sq = x.hi * x.hi;
@@ -70,7 +73,7 @@ FloatFloat atan_eval(const FloatFloat &x) {
return p;
}
-} // anonymous namespace
+} // namespace atan2f_internal
// There are several range reduction steps we can take for atan2(y, x) as
// follow:
@@ -121,7 +124,8 @@ FloatFloat atan_eval(const FloatFloat &x) {
// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
// 0x1.995...p-28.
-LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
+LIBC_INLINE static constexpr float atan2f(float y, float x) {
+ using namespace atan2f_internal;
using FPBits = typename fputil::FPBits<float>;
constexpr float IS_NEG[2] = {1.0f, -1.0f};
constexpr FloatFloat ZERO = {0.0f, 0.0f};
@@ -234,4 +238,8 @@ LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
return final_sign * r.hi;
}
+} // namespace math
+
} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_SRC___SUPPORT_MATH_ATAN2F_FLOAT_H
diff --git a/libc/src/__support/math/atanhf.h b/libc/src/__support/math/atanhf.h
new file mode 100644
index 0000000..b3ee5bb
--- /dev/null
+++ b/libc/src/__support/math/atanhf.h
@@ -0,0 +1,76 @@
+//===-- Implementation header for atanhf ------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF_H
+
+#include "acoshf_utils.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+LIBC_INLINE static constexpr float atanhf(float x) {
+ using namespace acoshf_internal;
+ using FPBits = typename fputil::FPBits<float>;
+
+ FPBits xbits(x);
+ Sign sign = xbits.sign();
+ uint32_t x_abs = xbits.abs().uintval();
+
+ // |x| >= 1.0
+ if (LIBC_UNLIKELY(x_abs >= 0x3F80'0000U)) {
+ if (xbits.is_nan()) {
+ if (xbits.is_signaling_nan()) {
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+ return x;
+ }
+ // |x| == 1.0
+ if (x_abs == 0x3F80'0000U) {
+ fputil::set_errno_if_required(ERANGE);
+ fputil::raise_except_if_required(FE_DIVBYZERO);
+ return FPBits::inf(sign).get_val();
+ } else {
+ fputil::set_errno_if_required(EDOM);
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+ }
+
+ // |x| < ~0.10
+ if (LIBC_UNLIKELY(x_abs <= 0x3dcc'0000U)) {
+ // |x| <= 2^-26
+ if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) {
+ return static_cast<float>(LIBC_UNLIKELY(x_abs == 0)
+ ? x
+ : (x + 0x1.5555555555555p-2 * x * x * x));
+ }
+
+ double xdbl = x;
+ double x2 = xdbl * xdbl;
+ // Pure Taylor series.
+ double pe = fputil::polyeval(x2, 0.0, 0x1.5555555555555p-2,
+ 0x1.999999999999ap-3, 0x1.2492492492492p-3,
+ 0x1.c71c71c71c71cp-4, 0x1.745d1745d1746p-4);
+ return static_cast<float>(fputil::multiply_add(xdbl, pe, xdbl));
+ }
+ double xdbl = x;
+ return static_cast<float>(0.5 * log_eval((xdbl + 1.0) / (xdbl - 1.0)));
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF_H
diff --git a/libc/src/__support/math/atanhf16.h b/libc/src/__support/math/atanhf16.h
new file mode 100644
index 0000000..80929dd
--- /dev/null
+++ b/libc/src/__support/math/atanhf16.h
@@ -0,0 +1,234 @@
+//===-- Implementation header for atanhf16 ----------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H
+
+#include "include/llvm-libc-macros/float16-macros.h"
+
+#ifdef LIBC_TYPES_HAS_FLOAT16
+
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/cast.h"
+#include "src/__support/FPUtil/except_value_utils.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h"
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+namespace atanhf16_internal {
+
+// Lookup table for logf(f) = logf(1 + n*2^(-7)) where n = 0..127,
+// computed and stored as float precision constants.
+// Generated by Sollya with the following commands:
+// display = hexadecimal;
+// for n from 0 to 127 do { print(single(1 / (1 + n / 128.0))); };
+static constexpr float ONE_OVER_F_FLOAT[128] = {
+ 0x1p0f, 0x1.fc07fp-1f, 0x1.f81f82p-1f, 0x1.f4465ap-1f,
+ 0x1.f07c2p-1f, 0x1.ecc07cp-1f, 0x1.e9131ap-1f, 0x1.e573acp-1f,
+ 0x1.e1e1e2p-1f, 0x1.de5d6ep-1f, 0x1.dae608p-1f, 0x1.d77b66p-1f,
+ 0x1.d41d42p-1f, 0x1.d0cb58p-1f, 0x1.cd8568p-1f, 0x1.ca4b3p-1f,
+ 0x1.c71c72p-1f, 0x1.c3f8fp-1f, 0x1.c0e07p-1f, 0x1.bdd2b8p-1f,
+ 0x1.bacf92p-1f, 0x1.b7d6c4p-1f, 0x1.b4e81cp-1f, 0x1.b20364p-1f,
+ 0x1.af286cp-1f, 0x1.ac5702p-1f, 0x1.a98ef6p-1f, 0x1.a6d01ap-1f,
+ 0x1.a41a42p-1f, 0x1.a16d4p-1f, 0x1.9ec8eap-1f, 0x1.9c2d14p-1f,
+ 0x1.99999ap-1f, 0x1.970e5p-1f, 0x1.948b1p-1f, 0x1.920fb4p-1f,
+ 0x1.8f9c18p-1f, 0x1.8d3018p-1f, 0x1.8acb9p-1f, 0x1.886e6p-1f,
+ 0x1.861862p-1f, 0x1.83c978p-1f, 0x1.818182p-1f, 0x1.7f406p-1f,
+ 0x1.7d05f4p-1f, 0x1.7ad22p-1f, 0x1.78a4c8p-1f, 0x1.767dcep-1f,
+ 0x1.745d18p-1f, 0x1.724288p-1f, 0x1.702e06p-1f, 0x1.6e1f76p-1f,
+ 0x1.6c16c2p-1f, 0x1.6a13cep-1f, 0x1.681682p-1f, 0x1.661ec6p-1f,
+ 0x1.642c86p-1f, 0x1.623fa8p-1f, 0x1.605816p-1f, 0x1.5e75bcp-1f,
+ 0x1.5c9882p-1f, 0x1.5ac056p-1f, 0x1.58ed24p-1f, 0x1.571ed4p-1f,
+ 0x1.555556p-1f, 0x1.539094p-1f, 0x1.51d07ep-1f, 0x1.501502p-1f,
+ 0x1.4e5e0ap-1f, 0x1.4cab88p-1f, 0x1.4afd6ap-1f, 0x1.49539ep-1f,
+ 0x1.47ae14p-1f, 0x1.460cbcp-1f, 0x1.446f86p-1f, 0x1.42d662p-1f,
+ 0x1.414142p-1f, 0x1.3fb014p-1f, 0x1.3e22ccp-1f, 0x1.3c995ap-1f,
+ 0x1.3b13b2p-1f, 0x1.3991c2p-1f, 0x1.381382p-1f, 0x1.3698ep-1f,
+ 0x1.3521dp-1f, 0x1.33ae46p-1f, 0x1.323e34p-1f, 0x1.30d19p-1f,
+ 0x1.2f684cp-1f, 0x1.2e025cp-1f, 0x1.2c9fb4p-1f, 0x1.2b404ap-1f,
+ 0x1.29e412p-1f, 0x1.288b02p-1f, 0x1.27350cp-1f, 0x1.25e228p-1f,
+ 0x1.24924ap-1f, 0x1.234568p-1f, 0x1.21fb78p-1f, 0x1.20b47p-1f,
+ 0x1.1f7048p-1f, 0x1.1e2ef4p-1f, 0x1.1cf06ap-1f, 0x1.1bb4a4p-1f,
+ 0x1.1a7b96p-1f, 0x1.194538p-1f, 0x1.181182p-1f, 0x1.16e068p-1f,
+ 0x1.15b1e6p-1f, 0x1.1485fp-1f, 0x1.135c82p-1f, 0x1.12358ep-1f,
+ 0x1.111112p-1f, 0x1.0fef02p-1f, 0x1.0ecf56p-1f, 0x1.0db20ap-1f,
+ 0x1.0c9714p-1f, 0x1.0b7e6ep-1f, 0x1.0a681p-1f, 0x1.0953f4p-1f,
+ 0x1.08421p-1f, 0x1.07326p-1f, 0x1.0624dep-1f, 0x1.05198p-1f,
+ 0x1.041042p-1f, 0x1.03091cp-1f, 0x1.020408p-1f, 0x1.010102p-1f};
+
+// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127,
+// computed and stored as float precision constants.
+// Generated by Sollya with the following commands:
+// display = hexadecimal;
+// for n from 0 to 127 do { print(single(log(1 + n / 128.0))); };
+static constexpr float LOG_F_FLOAT[128] = {
+ 0.0f, 0x1.fe02a6p-8f, 0x1.fc0a8cp-7f, 0x1.7b91bp-6f,
+ 0x1.f829bp-6f, 0x1.39e87cp-5f, 0x1.77459p-5f, 0x1.b42dd8p-5f,
+ 0x1.f0a30cp-5f, 0x1.16536ep-4f, 0x1.341d7ap-4f, 0x1.51b074p-4f,
+ 0x1.6f0d28p-4f, 0x1.8c345ep-4f, 0x1.a926d4p-4f, 0x1.c5e548p-4f,
+ 0x1.e27076p-4f, 0x1.fec914p-4f, 0x1.0d77e8p-3f, 0x1.1b72aep-3f,
+ 0x1.29553p-3f, 0x1.371fc2p-3f, 0x1.44d2b6p-3f, 0x1.526e5ep-3f,
+ 0x1.5ff308p-3f, 0x1.6d60fep-3f, 0x1.7ab89p-3f, 0x1.87fa06p-3f,
+ 0x1.9525aap-3f, 0x1.a23bc2p-3f, 0x1.af3c94p-3f, 0x1.bc2868p-3f,
+ 0x1.c8ff7cp-3f, 0x1.d5c216p-3f, 0x1.e27076p-3f, 0x1.ef0adcp-3f,
+ 0x1.fb9186p-3f, 0x1.04025ap-2f, 0x1.0a324ep-2f, 0x1.1058cp-2f,
+ 0x1.1675cap-2f, 0x1.1c898cp-2f, 0x1.22942p-2f, 0x1.2895a2p-2f,
+ 0x1.2e8e2cp-2f, 0x1.347ddap-2f, 0x1.3a64c6p-2f, 0x1.404308p-2f,
+ 0x1.4618bcp-2f, 0x1.4be5fap-2f, 0x1.51aad8p-2f, 0x1.576772p-2f,
+ 0x1.5d1bdcp-2f, 0x1.62c83p-2f, 0x1.686c82p-2f, 0x1.6e08eap-2f,
+ 0x1.739d8p-2f, 0x1.792a56p-2f, 0x1.7eaf84p-2f, 0x1.842d1ep-2f,
+ 0x1.89a338p-2f, 0x1.8f11e8p-2f, 0x1.947942p-2f, 0x1.99d958p-2f,
+ 0x1.9f323ep-2f, 0x1.a4840ap-2f, 0x1.a9cecap-2f, 0x1.af1294p-2f,
+ 0x1.b44f78p-2f, 0x1.b9858ap-2f, 0x1.beb4dap-2f, 0x1.c3dd7ap-2f,
+ 0x1.c8ff7cp-2f, 0x1.ce1afp-2f, 0x1.d32fe8p-2f, 0x1.d83e72p-2f,
+ 0x1.dd46ap-2f, 0x1.e24882p-2f, 0x1.e74426p-2f, 0x1.ec399ep-2f,
+ 0x1.f128f6p-2f, 0x1.f6124p-2f, 0x1.faf588p-2f, 0x1.ffd2ep-2f,
+ 0x1.02552ap-1f, 0x1.04bdfap-1f, 0x1.0723e6p-1f, 0x1.0986f4p-1f,
+ 0x1.0be72ep-1f, 0x1.0e4498p-1f, 0x1.109f3ap-1f, 0x1.12f71ap-1f,
+ 0x1.154c3ep-1f, 0x1.179eacp-1f, 0x1.19ee6cp-1f, 0x1.1c3b82p-1f,
+ 0x1.1e85f6p-1f, 0x1.20cdcep-1f, 0x1.23130ep-1f, 0x1.2555bcp-1f,
+ 0x1.2795e2p-1f, 0x1.29d38p-1f, 0x1.2c0e9ep-1f, 0x1.2e4744p-1f,
+ 0x1.307d74p-1f, 0x1.32b134p-1f, 0x1.34e28ap-1f, 0x1.37117cp-1f,
+ 0x1.393e0ep-1f, 0x1.3b6844p-1f, 0x1.3d9026p-1f, 0x1.3fb5b8p-1f,
+ 0x1.41d8fep-1f, 0x1.43f9fep-1f, 0x1.4618bcp-1f, 0x1.48353ep-1f,
+ 0x1.4a4f86p-1f, 0x1.4c679ap-1f, 0x1.4e7d82p-1f, 0x1.50913cp-1f,
+ 0x1.52a2d2p-1f, 0x1.54b246p-1f, 0x1.56bf9ep-1f, 0x1.58cadcp-1f,
+ 0x1.5ad404p-1f, 0x1.5cdb1ep-1f, 0x1.5ee02ap-1f, 0x1.60e33p-1f};
+
+// x should be positive, normal finite value
+// TODO: Simplify range reduction and polynomial degree for float16.
+// See issue #137190.
+LIBC_INLINE static float log_eval_f(float x) {
+ // For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx).
+ using FPBits = fputil::FPBits<float>;
+ FPBits xbits(x);
+
+ float ex = static_cast<float>(xbits.get_exponent());
+ // p1 is the leading 7 bits of mx, i.e.
+ // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
+ int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7));
+
+ // Set bits to (1 + (mx - p1*2^(-7)))
+ xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7));
+ xbits.set_biased_exponent(FPBits::EXP_BIAS);
+ // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
+ float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1];
+
+ // Minimax polynomial for log(1 + dx), generated using Sollya:
+ // > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]);
+ // > Q = (P - 1) / x;
+ // > for i from 0 to degree(Q) do print(coeff(Q, i));
+ constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f,
+ 0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f};
+
+ float dx2 = dx * dx;
+
+ float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
+ float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
+ float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
+
+ float p = fputil::polyeval(dx2, dx, c1, c2, c3);
+
+ // Generated by Sollya with the following commands:
+ // > display = hexadecimal;
+ // > round(log(2), SG, RN);
+ constexpr float LOGF_2 = 0x1.62e43p-1f;
+
+ float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p);
+ return result;
+}
+
+} // namespace atanhf16_internal
+
+LIBC_INLINE static constexpr float16 atanhf16(float16 x) {
+ constexpr size_t N_EXCEPTS = 1;
+ constexpr fputil::ExceptValues<float16, N_EXCEPTS> ATANHF16_EXCEPTS{{
+ // (input, RZ output, RU offset, RD offset, RN offset)
+ // x = 0x1.a5cp-4, atanhf16(x) = 0x1.a74p-4 (RZ)
+ {0x2E97, 0x2E9D, 1, 0, 0},
+ }};
+
+ using namespace atanhf16_internal;
+ using FPBits = fputil::FPBits<float16>;
+
+ FPBits xbits(x);
+ Sign sign = xbits.sign();
+ uint16_t x_abs = xbits.abs().uintval();
+
+ // |x| >= 1
+ if (LIBC_UNLIKELY(x_abs >= 0x3c00U)) {
+ if (xbits.is_nan()) {
+ if (xbits.is_signaling_nan()) {
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+ return x;
+ }
+
+ // |x| == 1.0
+ if (x_abs == 0x3c00U) {
+ fputil::set_errno_if_required(ERANGE);
+ fputil::raise_except_if_required(FE_DIVBYZERO);
+ return FPBits::inf(sign).get_val();
+ }
+ // |x| > 1.0
+ fputil::set_errno_if_required(EDOM);
+ fputil::raise_except_if_required(FE_INVALID);
+ return FPBits::quiet_nan().get_val();
+ }
+
+ if (auto r = ATANHF16_EXCEPTS.lookup(xbits.uintval());
+ LIBC_UNLIKELY(r.has_value()))
+ return r.value();
+
+ // For |x| less than approximately 0.24
+ if (LIBC_UNLIKELY(x_abs <= 0x33f3U)) {
+ // atanh(+/-0) = +/-0
+ if (LIBC_UNLIKELY(x_abs == 0U))
+ return x;
+ // The Taylor expansion of atanh(x) is:
+ // atanh(x) = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + x^11/11
+ // = x * [1 + x^2/3 + x^4/5 + x^6/7 + x^8/9 + x^10/11]
+ // When |x| < 2^-5 (0x0800U), this can be approximated by:
+ // atanh(x) ≈ x + (1/3)*x^3
+ if (LIBC_UNLIKELY(x_abs < 0x0800U)) {
+ float xf = x;
+ return fputil::cast<float16>(xf + 0x1.555556p-2f * xf * xf * xf);
+ }
+
+ // For 2^-5 <= |x| <= 0x1.fccp-3 (~0.24):
+ // Let t = x^2.
+ // Define P(t) ≈ (1/3)*t + (1/5)*t^2 + (1/7)*t^3 + (1/9)*t^4 + (1/11)*t^5.
+ // Coefficients (from Sollya, RN, hexadecimal):
+ // 1/3 = 0x1.555556p-2, 1/5 = 0x1.99999ap-3, 1/7 = 0x1.24924ap-3,
+ // 1/9 = 0x1.c71c72p-4, 1/11 = 0x1.745d18p-4
+ // Thus, atanh(x) ≈ x * (1 + P(x^2)).
+ float xf = x;
+ float x2 = xf * xf;
+ float pe = fputil::polyeval(x2, 0.0f, 0x1.555556p-2f, 0x1.99999ap-3f,
+ 0x1.24924ap-3f, 0x1.c71c72p-4f, 0x1.745d18p-4f);
+ return fputil::cast<float16>(fputil::multiply_add(xf, pe, xf));
+ }
+
+ float xf = x;
+ return fputil::cast<float16>(0.5 * log_eval_f((xf + 1.0f) / (xf - 1.0f)));
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_TYPES_HAS_FLOAT16
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H
diff --git a/libc/src/__support/threads/CMakeLists.txt b/libc/src/__support/threads/CMakeLists.txt
index b084346..f8a4493 100644
--- a/libc/src/__support/threads/CMakeLists.txt
+++ b/libc/src/__support/threads/CMakeLists.txt
@@ -42,6 +42,14 @@ if(TARGET libc.src.__support.threads.${LIBC_TARGET_OS}.mutex)
.mutex
libc.src.__support.CPP.mutex
)
+elseif(NOT (LIBC_CONF_THREAD_MODE STREQUAL LIBC_THREAD_MODE_PLATFORM))
+ add_header_library(
+ mutex
+ HDRS
+ mutex.h
+ DEPENDS
+ .mutex_common
+ )
endif()
add_header_library(
diff --git a/libc/src/__support/threads/gpu/CMakeLists.txt b/libc/src/__support/threads/gpu/CMakeLists.txt
deleted file mode 100644
index ea89feb..0000000
--- a/libc/src/__support/threads/gpu/CMakeLists.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-add_header_library(
- mutex
- HDRS
- mutex.h
-)
diff --git a/libc/src/__support/threads/gpu/mutex.h b/libc/src/__support/threads/gpu/mutex.h
deleted file mode 100644
index c8c484e..0000000
--- a/libc/src/__support/threads/gpu/mutex.h
+++ /dev/null
@@ -1,32 +0,0 @@
-//===--- Implementation of a GPU mutex class --------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_LIBC_SRC___SUPPORT_THREADS_GPU_MUTEX_H
-#define LLVM_LIBC_SRC___SUPPORT_THREADS_GPU_MUTEX_H
-
-#include "src/__support/macros/attributes.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/threads/mutex_common.h"
-
-namespace LIBC_NAMESPACE_DECL {
-
-/// Implementation of a simple passthrough mutex which guards nothing. A
-/// complete Mutex locks in general cannot be implemented on the GPU. We simply
-/// define the Mutex interface and require that only a single thread executes
-/// code requiring a mutex lock.
-struct Mutex {
- LIBC_INLINE constexpr Mutex(bool, bool, bool, bool) {}
-
- LIBC_INLINE MutexError lock() { return MutexError::NONE; }
- LIBC_INLINE MutexError unlock() { return MutexError::NONE; }
- LIBC_INLINE MutexError reset() { return MutexError::NONE; }
-};
-
-} // namespace LIBC_NAMESPACE_DECL
-
-#endif // LLVM_LIBC_SRC___SUPPORT_THREADS_GPU_MUTEX_H
diff --git a/libc/src/__support/threads/mutex.h b/libc/src/__support/threads/mutex.h
index 392b389..cbef0d0 100644
--- a/libc/src/__support/threads/mutex.h
+++ b/libc/src/__support/threads/mutex.h
@@ -9,10 +9,35 @@
#ifndef LLVM_LIBC_SRC___SUPPORT_THREADS_MUTEX_H
#define LLVM_LIBC_SRC___SUPPORT_THREADS_MUTEX_H
-#include "src/__support/macros/properties/architectures.h"
+#include "src/__support/macros/attributes.h"
+#include "src/__support/macros/config.h"
+
+// Uses the platform specific specialization
+#define LIBC_THREAD_MODE_PLATFORM 0
+
+// Mutex guards nothing, used in single-threaded implementations
+#define LIBC_THREAD_MODE_SINGLE 1
+
+// Vendor provides implementation
+#define LIBC_THREAD_MODE_EXTERNAL 2
+
+#if !defined(LIBC_THREAD_MODE)
+#error LIBC_THREAD_MODE is undefined
+#endif // LIBC_THREAD_MODE
+
+#if LIBC_THREAD_MODE != LIBC_THREAD_MODE_PLATFORM && \
+ LIBC_THREAD_MODE != LIBC_THREAD_MODE_SINGLE && \
+ LIBC_THREAD_MODE != LIBC_THREAD_MODE_EXTERNAL
+#error LIBC_THREAD_MODE must be one of the following values: \
+LIBC_THREAD_MODE_PLATFORM, \
+LIBC_THREAD_MODE_SINGLE, \
+LIBC_THREAD_MODE_EXTERNAL.
+#endif
+
+#if LIBC_THREAD_MODE == LIBC_THREAD_MODE_PLATFORM
// Platform independent code will include this header file which pulls
-// the platfrom specific specializations using platform macros.
+// the platform specific specializations using platform macros.
//
// The platform specific specializations should define a class by name
// Mutex with non-static methods having the following signature:
@@ -39,8 +64,32 @@
#if defined(__linux__)
#include "src/__support/threads/linux/mutex.h"
-#elif defined(LIBC_TARGET_ARCH_IS_GPU)
-#include "src/__support/threads/gpu/mutex.h"
#endif // __linux__
+#elif LIBC_THREAD_MODE == LIBC_THREAD_MODE_SINGLE
+
+#include "src/__support/threads/mutex_common.h"
+
+namespace LIBC_NAMESPACE_DECL {
+
+/// Implementation of a simple passthrough mutex which guards nothing. A
+/// complete Mutex locks in general cannot be implemented on the GPU, or on some
+/// baremetal platforms. We simply define the Mutex interface and require that
+/// only a single thread executes code requiring a mutex lock.
+struct Mutex {
+ LIBC_INLINE constexpr Mutex(bool, bool, bool, bool) {}
+
+ LIBC_INLINE MutexError lock() { return MutexError::NONE; }
+ LIBC_INLINE MutexError unlock() { return MutexError::NONE; }
+ LIBC_INLINE MutexError reset() { return MutexError::NONE; }
+};
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#elif LIBC_THREAD_MODE == LIBC_THREAD_MODE_EXTERNAL
+
+// TODO: Implement the interfacing, if necessary, e.g. "extern struct Mutex;"
+
+#endif // LIBC_THREAD_MODE == LIBC_THREAD_MODE_PLATFORM
+
#endif // LLVM_LIBC_SRC___SUPPORT_THREADS_MUTEX_H
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index eae42a3..9df9973 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -3922,10 +3922,7 @@ add_entrypoint_object(
HDRS
../atanhf.h
DEPENDS
- .explogxf
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.macros.optimization
+ libc.src.__support.math.atanhf
)
add_entrypoint_object(
@@ -3935,17 +3932,7 @@ add_entrypoint_object(
HDRS
../atanhf16.h
DEPENDS
- .explogxf
- libc.hdr.errno_macros
- libc.hdr.fenv_macros
- libc.src.__support.FPUtil.cast
- libc.src.__support.FPUtil.except_value_utils
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.polyeval
- libc.src.__support.macros.optimization
- libc.src.__support.macros.properties.types
+ libc.src.__support.math.atanhf16
)
add_entrypoint_object(
@@ -4058,18 +4045,8 @@ add_entrypoint_object(
atan2f.cpp
HDRS
../atan2f.h
- atan2f_float.h
DEPENDS
- libc.hdr.fenv_macros
- libc.src.__support.FPUtil.double_double
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.nearest_integer
- libc.src.__support.FPUtil.polyeval
- libc.src.__support.FPUtil.rounding_mode
- libc.src.__support.macros.optimization
- libc.src.__support.math.inv_trigf_utils
+ libc.src.__support.math.atan2f
)
add_entrypoint_object(
@@ -4079,13 +4056,7 @@ add_entrypoint_object(
HDRS
../atan2.h
DEPENDS
- libc.src.__support.math.atan_utils
- libc.src.__support.FPUtil.double_double
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.nearest_integer
- libc.src.__support.macros.optimization
+ libc.src.__support.math.atan2
)
add_entrypoint_object(
@@ -4095,7 +4066,7 @@ add_entrypoint_object(
HDRS
../atan2l.h
DEPENDS
- .atan2
+ libc.src.__support.math.atan2
)
add_entrypoint_object(
@@ -4105,15 +4076,7 @@ add_entrypoint_object(
HDRS
../atan2f128.h
DEPENDS
- libc.src.__support.math.atan_utils
- libc.src.__support.integer_literals
- libc.src.__support.uint128
- libc.src.__support.FPUtil.dyadic_float
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.nearest_integer
- libc.src.__support.macros.optimization
- libc.src.__support.macros.properties.types
+ libc.src.__support.math.atan2f128
)
add_entrypoint_object(
diff --git a/libc/src/math/generic/atan2.cpp b/libc/src/math/generic/atan2.cpp
index 58042d3..4aaa63d 100644
--- a/libc/src/math/generic/atan2.cpp
+++ b/libc/src/math/generic/atan2.cpp
@@ -7,195 +7,12 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan2.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/__support/math/atan_utils.h"
+#include "src/__support/math/atan2.h"
namespace LIBC_NAMESPACE_DECL {
-// There are several range reduction steps we can take for atan2(y, x) as
-// follow:
-
-// * Range reduction 1: signness
-// atan2(y, x) will return a number between -PI and PI representing the angle
-// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
-// In particular, we have that:
-// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
-// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
-// Since atan function is odd, we can use the formula:
-// atan(-u) = -atan(u)
-// to adjust the above conditions a bit further:
-// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
-// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
-// Which can be simplified to:
-// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
-// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
-
-// * Range reduction 2: reciprocal
-// Now that the argument inside atan is positive, we can use the formula:
-// atan(1/x) = pi/2 - atan(x)
-// to make the argument inside atan <= 1 as follow:
-// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
-// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
-// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
-// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
-
-// * Range reduction 3: look up table.
-// After the previous two range reduction steps, we reduce the problem to
-// compute atan(u) with 0 <= u <= 1, or to be precise:
-// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
-// An accurate polynomial approximation for the whole [0, 1] input range will
-// require a very large degree. To make it more efficient, we reduce the input
-// range further by finding an integer idx such that:
-// | n/d - idx/64 | <= 1/128.
-// In particular,
-// idx := round(2^6 * n/d)
-// Then for the fast pass, we find a polynomial approximation for:
-// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
-// For the accurate pass, we use the addition formula:
-// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
-// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
-// And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
-// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
-// with absolute errors bounded by:
-// |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
-// and relative errors bounded by:
-// |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.
-
LLVM_LIBC_FUNCTION(double, atan2, (double y, double x)) {
- using namespace atan_internal;
- using FPBits = fputil::FPBits<double>;
-
- constexpr double IS_NEG[2] = {1.0, -1.0};
- constexpr DoubleDouble ZERO = {0.0, 0.0};
- constexpr DoubleDouble MZERO = {-0.0, -0.0};
- constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
- constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
- constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
- 0x1.921fb54442d18p0};
- constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
- -0x1.921fb54442d18p0};
- constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
- 0x1.921fb54442d18p-1};
- constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
- 0x1.2d97c7f3321d2p+1};
- // Adjustment for constant term:
- // CONST_ADJ[x_sign][y_sign][recip]
- constexpr DoubleDouble CONST_ADJ[2][2][2] = {
- {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
- {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
-
- FPBits x_bits(x), y_bits(y);
- bool x_sign = x_bits.sign().is_neg();
- bool y_sign = y_bits.sign().is_neg();
- x_bits = x_bits.abs();
- y_bits = y_bits.abs();
- uint64_t x_abs = x_bits.uintval();
- uint64_t y_abs = y_bits.uintval();
- bool recip = x_abs < y_abs;
- uint64_t min_abs = recip ? x_abs : y_abs;
- uint64_t max_abs = !recip ? x_abs : y_abs;
- unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
- unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
-
- double num = FPBits(min_abs).get_val();
- double den = FPBits(max_abs).get_val();
-
- // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
- // overflow, or close to underflow.
- if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
- if (x_bits.is_nan() || y_bits.is_nan()) {
- if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- unsigned x_except = x == 0.0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
- unsigned y_except = y == 0.0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
-
- // Exceptional cases:
- // EXCEPT[y_except][x_except][x_is_neg]
- // with x_except & y_except:
- // 0: zero
- // 1: finite, non-zero
- // 2: infinity
- constexpr DoubleDouble EXCEPTS[3][3][2] = {
- {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2},
- {PI_OVER_2, PI_OVER_2},
- {PI_OVER_4, THREE_PI_OVER_4}},
- };
-
- if ((x_except != 1) || (y_except != 1)) {
- DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
- return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
- }
- bool scale_up = min_exp < 128U;
- bool scale_down = max_exp > 0x7ffU - 128U;
- // At least one input is denormal, multiply both numerator and denominator
- // by some large enough power of 2 to normalize denormal inputs.
- if (scale_up) {
- num *= 0x1.0p64;
- if (!scale_down)
- den *= 0x1.0p64;
- } else if (scale_down) {
- den *= 0x1.0p-64;
- if (!scale_up)
- num *= 0x1.0p-64;
- }
-
- min_abs = FPBits(num).uintval();
- max_abs = FPBits(den).uintval();
- min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
- max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
- }
-
- double final_sign = IS_NEG[(x_sign != y_sign) != recip];
- DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
- unsigned exp_diff = max_exp - min_exp;
- // We have the following bound for normalized n and d:
- // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
- if (LIBC_UNLIKELY(exp_diff > 54)) {
- return fputil::multiply_add(final_sign, const_term.hi,
- final_sign * (const_term.lo + num / den));
- }
-
- double k = fputil::nearest_integer(64.0 * num / den);
- unsigned idx = static_cast<unsigned>(k);
- // k = idx / 64
- k *= 0x1.0p-6;
-
- // Range reduction:
- // atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
- // = atan((n - d * k/64)) / (d + n * k/64))
- DoubleDouble num_k = fputil::exact_mult(num, k);
- DoubleDouble den_k = fputil::exact_mult(den, k);
-
- // num_dd = n - d * k
- DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
- // den_dd = d + n * k
- DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
- den_dd.lo += num_k.lo;
-
- // q = (n - d * k) / (d + n * k)
- DoubleDouble q = fputil::div(num_dd, den_dd);
- // p ~ atan(q)
- DoubleDouble p = atan_eval(q);
-
- DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
- r.hi *= final_sign;
- r.lo *= final_sign;
-
- return r.hi + r.lo;
+ return math::atan2(y, x);
}
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/atan2f.cpp b/libc/src/math/generic/atan2f.cpp
index 32b977f..7c56788 100644
--- a/libc/src/math/generic/atan2f.cpp
+++ b/libc/src/math/generic/atan2f.cpp
@@ -7,336 +7,12 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan2f.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/FPUtil/rounding_mode.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/__support/math/inv_trigf_utils.h"
-
-#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) && \
- defined(LIBC_MATH_HAS_INTERMEDIATE_COMP_IN_FLOAT)
-
-// We use float-float implementation to reduce size.
-#include "src/math/generic/atan2f_float.h"
-
-#else
+#include "src/__support/math/atan2f.h"
namespace LIBC_NAMESPACE_DECL {
-namespace {
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-// Look up tables for accurate pass:
-
-// atan(i/16) with i = 0..16, generated by Sollya with:
-// > for i from 0 to 16 do {
-// a = round(atan(i/16), D, RN);
-// b = round(atan(i/16) - a, D, RN);
-// print("{", b, ",", a, "},");
-// };
-constexpr fputil::DoubleDouble ATAN_I[17] = {
- {0.0, 0.0},
- {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
- {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
- {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
- {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
- {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
- {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
- {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
- {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
- {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
- {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
- {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
- {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
- {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
- {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
- {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
- {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
-};
-
-// Taylor polynomial, generated by Sollya with:
-// > for i from 0 to 8 do {
-// j = (-1)^(i + 1)/(2*i + 1);
-// a = round(j, D, RN);
-// b = round(j - a, D, RN);
-// print("{", b, ",", a, "},");
-// };
-constexpr fputil::DoubleDouble COEFFS[9] = {
- {0.0, 1.0}, // 1
- {-0x1.5555555555555p-56, -0x1.5555555555555p-2}, // -1/3
- {-0x1.999999999999ap-57, 0x1.999999999999ap-3}, // 1/5
- {-0x1.2492492492492p-57, -0x1.2492492492492p-3}, // -1/7
- {0x1.c71c71c71c71cp-58, 0x1.c71c71c71c71cp-4}, // 1/9
- {0x1.745d1745d1746p-59, -0x1.745d1745d1746p-4}, // -1/11
- {-0x1.3b13b13b13b14p-58, 0x1.3b13b13b13b14p-4}, // 1/13
- {-0x1.1111111111111p-60, -0x1.1111111111111p-4}, // -1/15
- {0x1.e1e1e1e1e1e1ep-61, 0x1.e1e1e1e1e1e1ep-5}, // 1/17
-};
-
-// Veltkamp's splitting of a double precision into hi + lo, where the hi part is
-// slightly smaller than an even split, so that the product of
-// hi * (s1 * k + s2) is exact,
-// where:
-// s1, s2 are single precsion,
-// 1/16 <= s1/s2 <= 1
-// 1/16 <= k <= 1 is an integer.
-// So the maximal precision of (s1 * k + s2) is:
-// prec(s1 * k + s2) = 2 + log2(msb(s2)) - log2(lsb(k_d * s1))
-// = 2 + log2(msb(s1)) + 4 - log2(lsb(k_d)) - log2(lsb(s1))
-// = 2 + log2(lsb(s1)) + 23 + 4 - (-4) - log2(lsb(s1))
-// = 33.
-// Thus, the Veltkamp splitting constant is C = 2^33 + 1.
-// This is used when FMA instruction is not available.
-[[maybe_unused]] constexpr fputil::DoubleDouble split_d(double a) {
- fputil::DoubleDouble r{0.0, 0.0};
- constexpr double C = 0x1.0p33 + 1.0;
- double t1 = C * a;
- double t2 = a - t1;
- r.hi = t1 + t2;
- r.lo = a - r.hi;
- return r;
-}
-
-// Compute atan( num_d / den_d ) in double-double precision.
-// num_d = min(|x|, |y|)
-// den_d = max(|x|, |y|)
-// q_d = num_d / den_d
-// idx, k_d = round( 2^4 * num_d / den_d )
-// final_sign = sign of the final result
-// const_term = the constant term in the final expression.
-float atan2f_double_double(double num_d, double den_d, double q_d, int idx,
- double k_d, double final_sign,
- const fputil::DoubleDouble &const_term) {
- fputil::DoubleDouble q;
- double num_r, den_r;
-
- if (idx != 0) {
- // The following range reduction is accurate even without fma for
- // 1/16 <= n/d <= 1.
- // atan(n/d) - atan(idx/16) = atan((n/d - idx/16) / (1 + (n/d) * (idx/16)))
- // = atan((n - d*(idx/16)) / (d + n*idx/16))
- k_d *= 0x1.0p-4;
- num_r = fputil::multiply_add(k_d, -den_d, num_d); // Exact
- den_r = fputil::multiply_add(k_d, num_d, den_d); // Exact
- q.hi = num_r / den_r;
- } else {
- // For 0 < n/d < 1/16, we just need to calculate the lower part of their
- // quotient.
- q.hi = q_d;
- num_r = num_d;
- den_r = den_d;
- }
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
- q.lo = fputil::multiply_add(q.hi, -den_r, num_r) / den_r;
-#else
- // Compute `(num_r - q.hi * den_r) / den_r` accurately without FMA
- // instructions.
- fputil::DoubleDouble q_hi_dd = split_d(q.hi);
- double t1 = fputil::multiply_add(q_hi_dd.hi, -den_r, num_r); // Exact
- double t2 = fputil::multiply_add(q_hi_dd.lo, -den_r, t1);
- q.lo = t2 / den_r;
-#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-
- // Taylor polynomial, evaluating using Horner's scheme:
- // P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
- // + x^17/17
- // = x*(1 + x^2*(-1/3 + x^2*(1/5 + x^2*(-1/7 + x^2*(1/9 + x^2*
- // *(-1/11 + x^2*(1/13 + x^2*(-1/15 + x^2 * 1/17))))))))
- fputil::DoubleDouble q2 = fputil::quick_mult(q, q);
- fputil::DoubleDouble p_dd =
- fputil::polyeval(q2, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3],
- COEFFS[4], COEFFS[5], COEFFS[6], COEFFS[7], COEFFS[8]);
- fputil::DoubleDouble r_dd =
- fputil::add(const_term, fputil::multiply_add(q, p_dd, ATAN_I[idx]));
- r_dd.hi *= final_sign;
- r_dd.lo *= final_sign;
-
- // Make sure the sum is normalized:
- fputil::DoubleDouble rr = fputil::exact_add(r_dd.hi, r_dd.lo);
- // Round to odd.
- uint64_t rr_bits = cpp::bit_cast<uint64_t>(rr.hi);
- if (LIBC_UNLIKELY(((rr_bits & 0xfff'ffff) == 0) && (rr.lo != 0.0))) {
- Sign hi_sign = fputil::FPBits<double>(rr.hi).sign();
- Sign lo_sign = fputil::FPBits<double>(rr.lo).sign();
- if (hi_sign == lo_sign) {
- ++rr_bits;
- } else if ((rr_bits & fputil::FPBits<double>::FRACTION_MASK) > 0) {
- --rr_bits;
- }
- }
-
- return static_cast<float>(cpp::bit_cast<double>(rr_bits));
-}
-
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-} // anonymous namespace
-
-// There are several range reduction steps we can take for atan2(y, x) as
-// follow:
-
-// * Range reduction 1: signness
-// atan2(y, x) will return a number between -PI and PI representing the angle
-// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
-// In particular, we have that:
-// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
-// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
-// Since atan function is odd, we can use the formula:
-// atan(-u) = -atan(u)
-// to adjust the above conditions a bit further:
-// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
-// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
-// Which can be simplified to:
-// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
-// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
-
-// * Range reduction 2: reciprocal
-// Now that the argument inside atan is positive, we can use the formula:
-// atan(1/x) = pi/2 - atan(x)
-// to make the argument inside atan <= 1 as follow:
-// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
-// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
-// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
-// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
-
-// * Range reduction 3: look up table.
-// After the previous two range reduction steps, we reduce the problem to
-// compute atan(u) with 0 <= u <= 1, or to be precise:
-// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
-// An accurate polynomial approximation for the whole [0, 1] input range will
-// require a very large degree. To make it more efficient, we reduce the input
-// range further by finding an integer idx such that:
-// | n/d - idx/16 | <= 1/32.
-// In particular,
-// idx := 2^-4 * round(2^4 * n/d)
-// Then for the fast pass, we find a polynomial approximation for:
-// atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
-// For the accurate pass, we use the addition formula:
-// atan( n/d ) - atan( idx/16 ) = atan( (n/d - idx/16)/(1 + (n*idx)/(16*d)) )
-// = atan( (n - d * idx/16)/(d + n * idx/16) )
-// And finally we use Taylor polynomial to compute the RHS in the accurate pass:
-// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9 - u^11/11 + u^13/13 -
-// - u^15/15 + u^17/17
-// It's error in double-double precision is estimated in Sollya to be:
-// > P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
-// + x^17/17;
-// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
-// 0x1.aec6f...p-100
-// which is about rounding errors of double-double (2^-104).
-
LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
- using namespace inv_trigf_utils_internal;
- using FPBits = typename fputil::FPBits<float>;
- constexpr double IS_NEG[2] = {1.0, -1.0};
- constexpr double PI = 0x1.921fb54442d18p1;
- constexpr double PI_LO = 0x1.1a62633145c07p-53;
- constexpr double PI_OVER_4 = 0x1.921fb54442d18p-1;
- constexpr double PI_OVER_2 = 0x1.921fb54442d18p0;
- constexpr double THREE_PI_OVER_4 = 0x1.2d97c7f3321d2p+1;
- // Adjustment for constant term:
- // CONST_ADJ[x_sign][y_sign][recip]
- constexpr fputil::DoubleDouble CONST_ADJ[2][2][2] = {
- {{{0.0, 0.0}, {-PI_LO / 2, -PI_OVER_2}},
- {{-0.0, -0.0}, {-PI_LO / 2, -PI_OVER_2}}},
- {{{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}},
- {{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}}}};
-
- FPBits x_bits(x), y_bits(y);
- bool x_sign = x_bits.sign().is_neg();
- bool y_sign = y_bits.sign().is_neg();
- x_bits.set_sign(Sign::POS);
- y_bits.set_sign(Sign::POS);
- uint32_t x_abs = x_bits.uintval();
- uint32_t y_abs = y_bits.uintval();
- uint32_t max_abs = x_abs > y_abs ? x_abs : y_abs;
- uint32_t min_abs = x_abs <= y_abs ? x_abs : y_abs;
- float num_f = FPBits(min_abs).get_val();
- float den_f = FPBits(max_abs).get_val();
- double num_d = static_cast<double>(num_f);
- double den_d = static_cast<double>(den_f);
-
- if (LIBC_UNLIKELY(max_abs >= 0x7f80'0000U || num_d == 0.0)) {
- if (x_bits.is_nan() || y_bits.is_nan()) {
- if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- double x_d = static_cast<double>(x);
- double y_d = static_cast<double>(y);
- size_t x_except = (x_d == 0.0) ? 0 : (x_abs == 0x7f80'0000 ? 2 : 1);
- size_t y_except = (y_d == 0.0) ? 0 : (y_abs == 0x7f80'0000 ? 2 : 1);
-
- // Exceptional cases:
- // EXCEPT[y_except][x_except][x_is_neg]
- // with x_except & y_except:
- // 0: zero
- // 1: finite, non-zero
- // 2: infinity
- constexpr double EXCEPTS[3][3][2] = {
- {{0.0, PI}, {0.0, PI}, {0.0, PI}},
- {{PI_OVER_2, PI_OVER_2}, {0.0, 0.0}, {0.0, PI}},
- {{PI_OVER_2, PI_OVER_2},
- {PI_OVER_2, PI_OVER_2},
- {PI_OVER_4, THREE_PI_OVER_4}},
- };
-
- double r = IS_NEG[y_sign] * EXCEPTS[y_except][x_except][x_sign];
-
- return static_cast<float>(r);
- }
-
- bool recip = x_abs < y_abs;
- double final_sign = IS_NEG[(x_sign != y_sign) != recip];
- fputil::DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
- double q_d = num_d / den_d;
-
- double k_d = fputil::nearest_integer(q_d * 0x1.0p4);
- int idx = static_cast<int>(k_d);
- double r;
-
-#ifdef LIBC_MATH_HAS_SMALL_TABLES
- double p = atan_eval_no_table(num_d, den_d, k_d * 0x1.0p-4);
- r = final_sign * (p + (const_term.hi + ATAN_K_OVER_16[idx]));
-#else
- q_d = fputil::multiply_add(k_d, -0x1.0p-4, q_d);
-
- double p = atan_eval(q_d, idx);
- r = final_sign *
- fputil::multiply_add(q_d, p, const_term.hi + ATAN_COEFFS[idx][0]);
-#endif // LIBC_MATH_HAS_SMALL_TABLES
-
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- return static_cast<float>(r);
-#else
- constexpr uint32_t LOWER_ERR = 4;
- // Mask sticky bits in double precision before rounding to single precision.
- constexpr uint32_t MASK =
- mask_trailing_ones<uint32_t, fputil::FPBits<double>::SIG_LEN -
- FPBits::SIG_LEN - 1>();
- constexpr uint32_t UPPER_ERR = MASK - LOWER_ERR;
-
- uint32_t r_bits = static_cast<uint32_t>(cpp::bit_cast<uint64_t>(r)) & MASK;
-
- // Ziv's rounding test.
- if (LIBC_LIKELY(r_bits > LOWER_ERR && r_bits < UPPER_ERR))
- return static_cast<float>(r);
-
- return atan2f_double_double(num_d, den_d, q_d, idx, k_d, final_sign,
- const_term);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+ return math::atan2f(y, x);
}
} // namespace LIBC_NAMESPACE_DECL
-
-#endif
diff --git a/libc/src/math/generic/atan2f128.cpp b/libc/src/math/generic/atan2f128.cpp
index 8838d94..ec051dd 100644
--- a/libc/src/math/generic/atan2f128.cpp
+++ b/libc/src/math/generic/atan2f128.cpp
@@ -7,198 +7,12 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan2f128.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/integer_literals.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/__support/macros/properties/types.h"
-#include "src/__support/math/atan_utils.h"
-#include "src/__support/uint128.h"
+#include "src/__support/math/atan2f128.h"
namespace LIBC_NAMESPACE_DECL {
-namespace {
-
-using Float128 = fputil::DyadicFloat<128>;
-
-static constexpr Float128 ZERO = {Sign::POS, 0, 0_u128};
-static constexpr Float128 MZERO = {Sign::NEG, 0, 0_u128};
-static constexpr Float128 PI = {Sign::POS, -126,
- 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
-static constexpr Float128 MPI = {Sign::NEG, -126,
- 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
-static constexpr Float128 PI_OVER_2 = {
- Sign::POS, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
-static constexpr Float128 MPI_OVER_2 = {
- Sign::NEG, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
-static constexpr Float128 PI_OVER_4 = {
- Sign::POS, -128, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
-static constexpr Float128 THREE_PI_OVER_4 = {
- Sign::POS, -128, 0x96cbe3f9'990e91a7'9394c9e8'a0a5159d_u128};
-
-// Adjustment for constant term:
-// CONST_ADJ[x_sign][y_sign][recip]
-static constexpr Float128 CONST_ADJ[2][2][2] = {
- {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
- {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
-
-} // anonymous namespace
-
-// There are several range reduction steps we can take for atan2(y, x) as
-// follow:
-
-// * Range reduction 1: signness
-// atan2(y, x) will return a number between -PI and PI representing the angle
-// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
-// In particular, we have that:
-// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
-// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
-// Since atan function is odd, we can use the formula:
-// atan(-u) = -atan(u)
-// to adjust the above conditions a bit further:
-// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
-// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
-// Which can be simplified to:
-// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
-// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
-
-// * Range reduction 2: reciprocal
-// Now that the argument inside atan is positive, we can use the formula:
-// atan(1/x) = pi/2 - atan(x)
-// to make the argument inside atan <= 1 as follow:
-// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
-// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
-// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
-// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
-
-// * Range reduction 3: look up table.
-// After the previous two range reduction steps, we reduce the problem to
-// compute atan(u) with 0 <= u <= 1, or to be precise:
-// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
-// An accurate polynomial approximation for the whole [0, 1] input range will
-// require a very large degree. To make it more efficient, we reduce the input
-// range further by finding an integer idx such that:
-// | n/d - idx/64 | <= 1/128.
-// In particular,
-// idx := round(2^6 * n/d)
-// Then for the fast pass, we find a polynomial approximation for:
-// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
-// For the accurate pass, we use the addition formula:
-// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
-// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
-// And for the fast pass, we use degree-13 minimax polynomial to compute the
-// RHS:
-// atan(u) ~ P(u) = u - c_3 * u^3 + c_5 * u^5 - c_7 * u^7 + c_9 *u^9 -
-// - c_11 * u^11 + c_13 * u^13
-// with absolute errors bounded by:
-// |atan(u) - P(u)| < 2^-121
-// and relative errors bounded by:
-// |(atan(u) - P(u)) / P(u)| < 2^-114.
-
LLVM_LIBC_FUNCTION(float128, atan2f128, (float128 y, float128 x)) {
- using namespace atan_internal;
- using FPBits = fputil::FPBits<float128>;
- using Float128 = fputil::DyadicFloat<128>;
-
- FPBits x_bits(x), y_bits(y);
- bool x_sign = x_bits.sign().is_neg();
- bool y_sign = y_bits.sign().is_neg();
- x_bits = x_bits.abs();
- y_bits = y_bits.abs();
- UInt128 x_abs = x_bits.uintval();
- UInt128 y_abs = y_bits.uintval();
- bool recip = x_abs < y_abs;
- UInt128 min_abs = recip ? x_abs : y_abs;
- UInt128 max_abs = !recip ? x_abs : y_abs;
- unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
- unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
-
- Float128 num(FPBits(min_abs).get_val());
- Float128 den(FPBits(max_abs).get_val());
-
- // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
- // overflow, or close to underflow.
- if (LIBC_UNLIKELY(max_exp >= 0x7fffU || min_exp == 0U)) {
- if (x_bits.is_nan() || y_bits.is_nan())
- return FPBits::quiet_nan().get_val();
- unsigned x_except = x == 0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
- unsigned y_except = y == 0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
-
- // Exceptional cases:
- // EXCEPT[y_except][x_except][x_is_neg]
- // with x_except & y_except:
- // 0: zero
- // 1: finite, non-zero
- // 2: infinity
- constexpr Float128 EXCEPTS[3][3][2] = {
- {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2},
- {PI_OVER_2, PI_OVER_2},
- {PI_OVER_4, THREE_PI_OVER_4}},
- };
-
- if ((x_except != 1) || (y_except != 1)) {
- Float128 r = EXCEPTS[y_except][x_except][x_sign];
- if (y_sign)
- r.sign = r.sign.negate();
- return static_cast<float128>(r);
- }
- }
-
- bool final_sign = ((x_sign != y_sign) != recip);
- Float128 const_term = CONST_ADJ[x_sign][y_sign][recip];
- int exp_diff = den.exponent - num.exponent;
- // We have the following bound for normalized n and d:
- // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
- if (LIBC_UNLIKELY(exp_diff > FPBits::FRACTION_LEN + 2)) {
- if (final_sign)
- const_term.sign = const_term.sign.negate();
- return static_cast<float128>(const_term);
- }
-
- // Take 24 leading bits of num and den to convert to float for fast division.
- // We also multiply the numerator by 64 using integer addition directly to the
- // exponent field.
- float num_f =
- cpp::bit_cast<float>(static_cast<uint32_t>(num.mantissa >> 104) +
- (6U << fputil::FPBits<float>::FRACTION_LEN));
- float den_f = cpp::bit_cast<float>(
- static_cast<uint32_t>(den.mantissa >> 104) +
- (static_cast<uint32_t>(exp_diff) << fputil::FPBits<float>::FRACTION_LEN));
-
- float k = fputil::nearest_integer(num_f / den_f);
- unsigned idx = static_cast<unsigned>(k);
-
- // k_f128 = idx / 64
- Float128 k_f128(Sign::POS, -6, Float128::MantissaType(idx));
-
- // Range reduction:
- // atan(n/d) - atan(k) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
- // = atan((n - d * k/64)) / (d + n * k/64))
- // num_f128 = n - d * k/64
- Float128 num_f128 = fputil::multiply_add(den, -k_f128, num);
- // den_f128 = d + n * k/64
- Float128 den_f128 = fputil::multiply_add(num, k_f128, den);
-
- // q = (n - d * k) / (d + n * k)
- Float128 q = fputil::quick_mul(num_f128, fputil::approx_reciprocal(den_f128));
- // p ~ atan(q)
- Float128 p = atan_eval(q);
-
- Float128 r =
- fputil::quick_add(const_term, fputil::quick_add(ATAN_I_F128[idx], p));
- if (final_sign)
- r.sign = r.sign.negate();
-
- return static_cast<float128>(r);
+ return math::atan2f128(y, x);
}
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/atan2l.cpp b/libc/src/math/generic/atan2l.cpp
index 47a2e985..a7824c6 100644
--- a/libc/src/math/generic/atan2l.cpp
+++ b/libc/src/math/generic/atan2l.cpp
@@ -9,7 +9,7 @@
#include "src/math/atan2l.h"
#include "src/__support/common.h"
#include "src/__support/macros/properties/types.h"
-#include "src/math/atan2.h"
+#include "src/__support/math/atan2.h"
namespace LIBC_NAMESPACE_DECL {
@@ -17,7 +17,7 @@ namespace LIBC_NAMESPACE_DECL {
LLVM_LIBC_FUNCTION(long double, atan2l, (long double y, long double x)) {
#if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64)
return static_cast<long double>(
- atan2(static_cast<double>(y), static_cast<double>(x)));
+ math::atan2(static_cast<double>(y), static_cast<double>(x)));
#else
#error "Extended precision is not yet supported"
#endif
diff --git a/libc/src/math/generic/atanhf.cpp b/libc/src/math/generic/atanhf.cpp
index 602a8f0..81706190 100644
--- a/libc/src/math/generic/atanhf.cpp
+++ b/libc/src/math/generic/atanhf.cpp
@@ -7,62 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/atanhf.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/math/generic/explogxf.h"
+#include "src/__support/math/atanhf.h"
namespace LIBC_NAMESPACE_DECL {
-LLVM_LIBC_FUNCTION(float, atanhf, (float x)) {
- using namespace acoshf_internal;
- using FPBits = typename fputil::FPBits<float>;
-
- FPBits xbits(x);
- Sign sign = xbits.sign();
- uint32_t x_abs = xbits.abs().uintval();
-
- // |x| >= 1.0
- if (LIBC_UNLIKELY(x_abs >= 0x3F80'0000U)) {
- if (xbits.is_nan()) {
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- return x;
- }
- // |x| == 1.0
- if (x_abs == 0x3F80'0000U) {
- fputil::set_errno_if_required(ERANGE);
- fputil::raise_except_if_required(FE_DIVBYZERO);
- return FPBits::inf(sign).get_val();
- } else {
- fputil::set_errno_if_required(EDOM);
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- }
-
- // |x| < ~0.10
- if (LIBC_UNLIKELY(x_abs <= 0x3dcc'0000U)) {
- // |x| <= 2^-26
- if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) {
- return static_cast<float>(LIBC_UNLIKELY(x_abs == 0)
- ? x
- : (x + 0x1.5555555555555p-2 * x * x * x));
- }
-
- double xdbl = x;
- double x2 = xdbl * xdbl;
- // Pure Taylor series.
- double pe = fputil::polyeval(x2, 0.0, 0x1.5555555555555p-2,
- 0x1.999999999999ap-3, 0x1.2492492492492p-3,
- 0x1.c71c71c71c71cp-4, 0x1.745d1745d1746p-4);
- return static_cast<float>(fputil::multiply_add(xdbl, pe, xdbl));
- }
- double xdbl = x;
- return static_cast<float>(0.5 * log_eval((xdbl + 1.0) / (xdbl - 1.0)));
-}
+LLVM_LIBC_FUNCTION(float, atanhf, (float x)) { return math::atanhf(x); }
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/atanhf16.cpp b/libc/src/math/generic/atanhf16.cpp
index 57885ac..0539bac 100644
--- a/libc/src/math/generic/atanhf16.cpp
+++ b/libc/src/math/generic/atanhf16.cpp
@@ -7,92 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/atanhf16.h"
-#include "explogxf.h"
-#include "hdr/errno_macros.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/cast.h"
-#include "src/__support/FPUtil/except_value_utils.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/common.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h"
+#include "src/__support/math/atanhf16.h"
namespace LIBC_NAMESPACE_DECL {
-static constexpr size_t N_EXCEPTS = 1;
-static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ATANHF16_EXCEPTS{{
- // (input, RZ output, RU offset, RD offset, RN offset)
- // x = 0x1.a5cp-4, atanhf16(x) = 0x1.a74p-4 (RZ)
- {0x2E97, 0x2E9D, 1, 0, 0},
-}};
-
-LLVM_LIBC_FUNCTION(float16, atanhf16, (float16 x)) {
- using FPBits = fputil::FPBits<float16>;
-
- FPBits xbits(x);
- Sign sign = xbits.sign();
- uint16_t x_abs = xbits.abs().uintval();
-
- // |x| >= 1
- if (LIBC_UNLIKELY(x_abs >= 0x3c00U)) {
- if (xbits.is_nan()) {
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- return x;
- }
-
- // |x| == 1.0
- if (x_abs == 0x3c00U) {
- fputil::set_errno_if_required(ERANGE);
- fputil::raise_except_if_required(FE_DIVBYZERO);
- return FPBits::inf(sign).get_val();
- }
- // |x| > 1.0
- fputil::set_errno_if_required(EDOM);
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
-
- if (auto r = ATANHF16_EXCEPTS.lookup(xbits.uintval());
- LIBC_UNLIKELY(r.has_value()))
- return r.value();
-
- // For |x| less than approximately 0.24
- if (LIBC_UNLIKELY(x_abs <= 0x33f3U)) {
- // atanh(+/-0) = +/-0
- if (LIBC_UNLIKELY(x_abs == 0U))
- return x;
- // The Taylor expansion of atanh(x) is:
- // atanh(x) = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + x^11/11
- // = x * [1 + x^2/3 + x^4/5 + x^6/7 + x^8/9 + x^10/11]
- // When |x| < 2^-5 (0x0800U), this can be approximated by:
- // atanh(x) ≈ x + (1/3)*x^3
- if (LIBC_UNLIKELY(x_abs < 0x0800U)) {
- float xf = x;
- return fputil::cast<float16>(xf + 0x1.555556p-2f * xf * xf * xf);
- }
-
- // For 2^-5 <= |x| <= 0x1.fccp-3 (~0.24):
- // Let t = x^2.
- // Define P(t) ≈ (1/3)*t + (1/5)*t^2 + (1/7)*t^3 + (1/9)*t^4 + (1/11)*t^5.
- // Coefficients (from Sollya, RN, hexadecimal):
- // 1/3 = 0x1.555556p-2, 1/5 = 0x1.99999ap-3, 1/7 = 0x1.24924ap-3,
- // 1/9 = 0x1.c71c72p-4, 1/11 = 0x1.745d18p-4
- // Thus, atanh(x) ≈ x * (1 + P(x^2)).
- float xf = x;
- float x2 = xf * xf;
- float pe = fputil::polyeval(x2, 0.0f, 0x1.555556p-2f, 0x1.99999ap-3f,
- 0x1.24924ap-3f, 0x1.c71c72p-4f, 0x1.745d18p-4f);
- return fputil::cast<float16>(fputil::multiply_add(xf, pe, xf));
- }
-
- float xf = x;
- return fputil::cast<float16>(0.5 * log_eval_f((xf + 1.0f) / (xf - 1.0f)));
-}
+LLVM_LIBC_FUNCTION(float16, atanhf16, (float16 x)) { return math::atanhf16(x); }
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/common_constants.cpp b/libc/src/math/generic/common_constants.cpp
index 42e3ff0..2a15df2 100644
--- a/libc/src/math/generic/common_constants.cpp
+++ b/libc/src/math/generic/common_constants.cpp
@@ -12,84 +12,6 @@
namespace LIBC_NAMESPACE_DECL {
-// Lookup table for logf(f) = logf(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-// Generated by Sollya with the following commands:
-// display = hexadecimal;
-// for n from 0 to 127 do { print(single(1 / (1 + n / 128.0))); };
-const float ONE_OVER_F_FLOAT[128] = {
- 0x1p0f, 0x1.fc07fp-1f, 0x1.f81f82p-1f, 0x1.f4465ap-1f,
- 0x1.f07c2p-1f, 0x1.ecc07cp-1f, 0x1.e9131ap-1f, 0x1.e573acp-1f,
- 0x1.e1e1e2p-1f, 0x1.de5d6ep-1f, 0x1.dae608p-1f, 0x1.d77b66p-1f,
- 0x1.d41d42p-1f, 0x1.d0cb58p-1f, 0x1.cd8568p-1f, 0x1.ca4b3p-1f,
- 0x1.c71c72p-1f, 0x1.c3f8fp-1f, 0x1.c0e07p-1f, 0x1.bdd2b8p-1f,
- 0x1.bacf92p-1f, 0x1.b7d6c4p-1f, 0x1.b4e81cp-1f, 0x1.b20364p-1f,
- 0x1.af286cp-1f, 0x1.ac5702p-1f, 0x1.a98ef6p-1f, 0x1.a6d01ap-1f,
- 0x1.a41a42p-1f, 0x1.a16d4p-1f, 0x1.9ec8eap-1f, 0x1.9c2d14p-1f,
- 0x1.99999ap-1f, 0x1.970e5p-1f, 0x1.948b1p-1f, 0x1.920fb4p-1f,
- 0x1.8f9c18p-1f, 0x1.8d3018p-1f, 0x1.8acb9p-1f, 0x1.886e6p-1f,
- 0x1.861862p-1f, 0x1.83c978p-1f, 0x1.818182p-1f, 0x1.7f406p-1f,
- 0x1.7d05f4p-1f, 0x1.7ad22p-1f, 0x1.78a4c8p-1f, 0x1.767dcep-1f,
- 0x1.745d18p-1f, 0x1.724288p-1f, 0x1.702e06p-1f, 0x1.6e1f76p-1f,
- 0x1.6c16c2p-1f, 0x1.6a13cep-1f, 0x1.681682p-1f, 0x1.661ec6p-1f,
- 0x1.642c86p-1f, 0x1.623fa8p-1f, 0x1.605816p-1f, 0x1.5e75bcp-1f,
- 0x1.5c9882p-1f, 0x1.5ac056p-1f, 0x1.58ed24p-1f, 0x1.571ed4p-1f,
- 0x1.555556p-1f, 0x1.539094p-1f, 0x1.51d07ep-1f, 0x1.501502p-1f,
- 0x1.4e5e0ap-1f, 0x1.4cab88p-1f, 0x1.4afd6ap-1f, 0x1.49539ep-1f,
- 0x1.47ae14p-1f, 0x1.460cbcp-1f, 0x1.446f86p-1f, 0x1.42d662p-1f,
- 0x1.414142p-1f, 0x1.3fb014p-1f, 0x1.3e22ccp-1f, 0x1.3c995ap-1f,
- 0x1.3b13b2p-1f, 0x1.3991c2p-1f, 0x1.381382p-1f, 0x1.3698ep-1f,
- 0x1.3521dp-1f, 0x1.33ae46p-1f, 0x1.323e34p-1f, 0x1.30d19p-1f,
- 0x1.2f684cp-1f, 0x1.2e025cp-1f, 0x1.2c9fb4p-1f, 0x1.2b404ap-1f,
- 0x1.29e412p-1f, 0x1.288b02p-1f, 0x1.27350cp-1f, 0x1.25e228p-1f,
- 0x1.24924ap-1f, 0x1.234568p-1f, 0x1.21fb78p-1f, 0x1.20b47p-1f,
- 0x1.1f7048p-1f, 0x1.1e2ef4p-1f, 0x1.1cf06ap-1f, 0x1.1bb4a4p-1f,
- 0x1.1a7b96p-1f, 0x1.194538p-1f, 0x1.181182p-1f, 0x1.16e068p-1f,
- 0x1.15b1e6p-1f, 0x1.1485fp-1f, 0x1.135c82p-1f, 0x1.12358ep-1f,
- 0x1.111112p-1f, 0x1.0fef02p-1f, 0x1.0ecf56p-1f, 0x1.0db20ap-1f,
- 0x1.0c9714p-1f, 0x1.0b7e6ep-1f, 0x1.0a681p-1f, 0x1.0953f4p-1f,
- 0x1.08421p-1f, 0x1.07326p-1f, 0x1.0624dep-1f, 0x1.05198p-1f,
- 0x1.041042p-1f, 0x1.03091cp-1f, 0x1.020408p-1f, 0x1.010102p-1f};
-
-// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-// Generated by Sollya with the following commands:
-// display = hexadecimal;
-// for n from 0 to 127 do { print(single(log(1 + n / 128.0))); };
-const float LOG_F_FLOAT[128] = {
- 0.0f, 0x1.fe02a6p-8f, 0x1.fc0a8cp-7f, 0x1.7b91bp-6f,
- 0x1.f829bp-6f, 0x1.39e87cp-5f, 0x1.77459p-5f, 0x1.b42dd8p-5f,
- 0x1.f0a30cp-5f, 0x1.16536ep-4f, 0x1.341d7ap-4f, 0x1.51b074p-4f,
- 0x1.6f0d28p-4f, 0x1.8c345ep-4f, 0x1.a926d4p-4f, 0x1.c5e548p-4f,
- 0x1.e27076p-4f, 0x1.fec914p-4f, 0x1.0d77e8p-3f, 0x1.1b72aep-3f,
- 0x1.29553p-3f, 0x1.371fc2p-3f, 0x1.44d2b6p-3f, 0x1.526e5ep-3f,
- 0x1.5ff308p-3f, 0x1.6d60fep-3f, 0x1.7ab89p-3f, 0x1.87fa06p-3f,
- 0x1.9525aap-3f, 0x1.a23bc2p-3f, 0x1.af3c94p-3f, 0x1.bc2868p-3f,
- 0x1.c8ff7cp-3f, 0x1.d5c216p-3f, 0x1.e27076p-3f, 0x1.ef0adcp-3f,
- 0x1.fb9186p-3f, 0x1.04025ap-2f, 0x1.0a324ep-2f, 0x1.1058cp-2f,
- 0x1.1675cap-2f, 0x1.1c898cp-2f, 0x1.22942p-2f, 0x1.2895a2p-2f,
- 0x1.2e8e2cp-2f, 0x1.347ddap-2f, 0x1.3a64c6p-2f, 0x1.404308p-2f,
- 0x1.4618bcp-2f, 0x1.4be5fap-2f, 0x1.51aad8p-2f, 0x1.576772p-2f,
- 0x1.5d1bdcp-2f, 0x1.62c83p-2f, 0x1.686c82p-2f, 0x1.6e08eap-2f,
- 0x1.739d8p-2f, 0x1.792a56p-2f, 0x1.7eaf84p-2f, 0x1.842d1ep-2f,
- 0x1.89a338p-2f, 0x1.8f11e8p-2f, 0x1.947942p-2f, 0x1.99d958p-2f,
- 0x1.9f323ep-2f, 0x1.a4840ap-2f, 0x1.a9cecap-2f, 0x1.af1294p-2f,
- 0x1.b44f78p-2f, 0x1.b9858ap-2f, 0x1.beb4dap-2f, 0x1.c3dd7ap-2f,
- 0x1.c8ff7cp-2f, 0x1.ce1afp-2f, 0x1.d32fe8p-2f, 0x1.d83e72p-2f,
- 0x1.dd46ap-2f, 0x1.e24882p-2f, 0x1.e74426p-2f, 0x1.ec399ep-2f,
- 0x1.f128f6p-2f, 0x1.f6124p-2f, 0x1.faf588p-2f, 0x1.ffd2ep-2f,
- 0x1.02552ap-1f, 0x1.04bdfap-1f, 0x1.0723e6p-1f, 0x1.0986f4p-1f,
- 0x1.0be72ep-1f, 0x1.0e4498p-1f, 0x1.109f3ap-1f, 0x1.12f71ap-1f,
- 0x1.154c3ep-1f, 0x1.179eacp-1f, 0x1.19ee6cp-1f, 0x1.1c3b82p-1f,
- 0x1.1e85f6p-1f, 0x1.20cdcep-1f, 0x1.23130ep-1f, 0x1.2555bcp-1f,
- 0x1.2795e2p-1f, 0x1.29d38p-1f, 0x1.2c0e9ep-1f, 0x1.2e4744p-1f,
- 0x1.307d74p-1f, 0x1.32b134p-1f, 0x1.34e28ap-1f, 0x1.37117cp-1f,
- 0x1.393e0ep-1f, 0x1.3b6844p-1f, 0x1.3d9026p-1f, 0x1.3fb5b8p-1f,
- 0x1.41d8fep-1f, 0x1.43f9fep-1f, 0x1.4618bcp-1f, 0x1.48353ep-1f,
- 0x1.4a4f86p-1f, 0x1.4c679ap-1f, 0x1.4e7d82p-1f, 0x1.50913cp-1f,
- 0x1.52a2d2p-1f, 0x1.54b246p-1f, 0x1.56bf9ep-1f, 0x1.58cadcp-1f,
- 0x1.5ad404p-1f, 0x1.5cdb1ep-1f, 0x1.5ee02ap-1f, 0x1.60e33p-1f};
-
// Range reduction constants for logarithms.
// r(0) = 1, r(127) = 0.5
// r(k) = 2^-8 * ceil(2^8 * (1 - 2^-8) / (1 + k*2^-7))
diff --git a/libc/src/math/generic/common_constants.h b/libc/src/math/generic/common_constants.h
index 72b1d564..9ee31f0 100644
--- a/libc/src/math/generic/common_constants.h
+++ b/libc/src/math/generic/common_constants.h
@@ -17,14 +17,6 @@
namespace LIBC_NAMESPACE_DECL {
-// Lookup table for (1/f) where f = 1 + n*2^(-7), n = 0..127,
-// computed and stored as float precision constants.
-extern const float ONE_OVER_F_FLOAT[128];
-
-// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-extern const float LOG_F_FLOAT[128];
-
// Lookup table for range reduction constants r for logarithms.
extern const float R[128];
diff --git a/libc/src/math/generic/explogxf.h b/libc/src/math/generic/explogxf.h
index a2a6d60..72f8da8 100644
--- a/libc/src/math/generic/explogxf.h
+++ b/libc/src/math/generic/explogxf.h
@@ -121,49 +121,6 @@ template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
return r;
}
-// x should be positive, normal finite value
-// TODO: Simplify range reduction and polynomial degree for float16.
-// See issue #137190.
-LIBC_INLINE static float log_eval_f(float x) {
- // For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx).
- using FPBits = fputil::FPBits<float>;
- FPBits xbits(x);
-
- float ex = static_cast<float>(xbits.get_exponent());
- // p1 is the leading 7 bits of mx, i.e.
- // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
- int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7));
-
- // Set bits to (1 + (mx - p1*2^(-7)))
- xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7));
- xbits.set_biased_exponent(FPBits::EXP_BIAS);
- // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
- float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1];
-
- // Minimax polynomial for log(1 + dx), generated using Sollya:
- // > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]);
- // > Q = (P - 1) / x;
- // > for i from 0 to degree(Q) do print(coeff(Q, i));
- constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f,
- 0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f};
-
- float dx2 = dx * dx;
-
- float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
- float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
- float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
-
- float p = fputil::polyeval(dx2, dx, c1, c2, c3);
-
- // Generated by Sollya with the following commands:
- // > display = hexadecimal;
- // > round(log(2), SG, RN);
- constexpr float LOGF_2 = 0x1.62e43p-1f;
-
- float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p);
- return result;
-}
-
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
diff --git a/libc/src/sched/linux/CMakeLists.txt b/libc/src/sched/linux/CMakeLists.txt
index 66ebaea..ceb755f 100644
--- a/libc/src/sched/linux/CMakeLists.txt
+++ b/libc/src/sched/linux/CMakeLists.txt
@@ -5,7 +5,6 @@ add_entrypoint_object(
HDRS
../getcpu.h
DEPENDS
- libc.include.sched
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -18,7 +17,9 @@ add_entrypoint_object(
../sched_getaffinity.h
DEPENDS
libc.hdr.stdint_proxy
- libc.include.sched
+ libc.hdr.types.cpu_set_t
+ libc.hdr.types.pid_t
+ libc.hdr.types.size_t
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -30,7 +31,9 @@ add_entrypoint_object(
HDRS
../sched_setaffinity.h
DEPENDS
- libc.include.sched
+ libc.hdr.types.cpu_set_t
+ libc.hdr.types.pid_t
+ libc.hdr.types.size_t
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -42,7 +45,8 @@ add_entrypoint_object(
HDRS
../sched_getcpucount.h
DEPENDS
- libc.include.sched
+ libc.hdr.types.cpu_set_t
+ libc.hdr.types.size_t
)
add_entrypoint_object(
@@ -64,9 +68,10 @@ add_entrypoint_object(
HDRS
../sched_setparam.h
DEPENDS
+ libc.hdr.types.pid_t
+ libc.hdr.types.struct_sched_param
libc.include.sys_syscall
libc.include.time
- libc.include.sched
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -78,9 +83,10 @@ add_entrypoint_object(
HDRS
../sched_getparam.h
DEPENDS
+ libc.hdr.types.pid_t
+ libc.hdr.types.struct_sched_param
libc.include.sys_syscall
libc.include.time
- libc.include.sched
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -92,9 +98,10 @@ add_entrypoint_object(
HDRS
../sched_setscheduler.h
DEPENDS
+ libc.hdr.types.pid_t
+ libc.hdr.types.struct_sched_param
libc.include.sys_syscall
libc.include.time
- libc.include.sched
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
@@ -106,7 +113,7 @@ add_entrypoint_object(
HDRS
../sched_getscheduler.h
DEPENDS
- libc.include.sched
+ libc.hdr.types.pid_t
libc.include.sys_syscall
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
@@ -143,8 +150,9 @@ add_entrypoint_object(
HDRS
../sched_rr_get_interval.h
DEPENDS
+ libc.hdr.types.pid_t
+ libc.hdr.types.struct_timespec
libc.include.sys_syscall
- libc.include.sched
libc.src.__support.OSUtil.osutil
libc.src.errno.errno
)
diff --git a/libc/src/sched/linux/sched_getaffinity.cpp b/libc/src/sched/linux/sched_getaffinity.cpp
index 4a5e91a..d652f7f7 100644
--- a/libc/src/sched/linux/sched_getaffinity.cpp
+++ b/libc/src/sched/linux/sched_getaffinity.cpp
@@ -14,7 +14,9 @@
#include "src/__support/libc_errno.h"
#include "src/__support/macros/config.h"
-#include <sched.h>
+#include "hdr/types/cpu_set_t.h"
+#include "hdr/types/pid_t.h"
+#include "hdr/types/size_t.h"
#include <sys/syscall.h> // For syscall numbers.
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/linux/sched_getcpucount.cpp b/libc/src/sched/linux/sched_getcpucount.cpp
index 7ae166e..dcc2338 100644
--- a/libc/src/sched/linux/sched_getcpucount.cpp
+++ b/libc/src/sched/linux/sched_getcpucount.cpp
@@ -12,7 +12,8 @@
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
-#include <sched.h>
+#include "hdr/types/cpu_set_t.h"
+#include "hdr/types/size_t.h"
#include <stddef.h>
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/linux/sched_getscheduler.cpp b/libc/src/sched/linux/sched_getscheduler.cpp
index d8e0296..10625f2 100644
--- a/libc/src/sched/linux/sched_getscheduler.cpp
+++ b/libc/src/sched/linux/sched_getscheduler.cpp
@@ -13,6 +13,7 @@
#include "src/__support/libc_errno.h"
#include "src/__support/macros/config.h"
+#include "hdr/types/pid_t.h"
#include <sys/syscall.h> // For syscall numbers.
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/linux/sched_rr_get_interval.cpp b/libc/src/sched/linux/sched_rr_get_interval.cpp
index 5668d596b..eecbaa4 100644
--- a/libc/src/sched/linux/sched_rr_get_interval.cpp
+++ b/libc/src/sched/linux/sched_rr_get_interval.cpp
@@ -13,6 +13,8 @@
#include "src/__support/libc_errno.h"
#include "src/__support/macros/config.h"
+#include "hdr/types/pid_t.h"
+#include "hdr/types/struct_timespec.h"
#include <sys/syscall.h> // For syscall numbers.
#ifdef SYS_sched_rr_get_interval_time64
diff --git a/libc/src/sched/linux/sched_setaffinity.cpp b/libc/src/sched/linux/sched_setaffinity.cpp
index 93e930d..3c7ed91 100644
--- a/libc/src/sched/linux/sched_setaffinity.cpp
+++ b/libc/src/sched/linux/sched_setaffinity.cpp
@@ -13,7 +13,9 @@
#include "src/__support/libc_errno.h"
#include "src/__support/macros/config.h"
-#include <sched.h>
+#include "hdr/types/cpu_set_t.h"
+#include "hdr/types/pid_t.h"
+#include "hdr/types/size_t.h"
#include <sys/syscall.h> // For syscall numbers.
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_getaffinity.h b/libc/src/sched/sched_getaffinity.h
index 52ec5bc..8623089 100644
--- a/libc/src/sched/sched_getaffinity.h
+++ b/libc/src/sched/sched_getaffinity.h
@@ -10,7 +10,10 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_GETAFFINITY_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/cpu_set_t.h"
+#include "hdr/types/pid_t.h"
+#include "hdr/types/size_t.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_getcpucount.h b/libc/src/sched/sched_getcpucount.h
index 8f35301..0667d8c 100644
--- a/libc/src/sched/sched_getcpucount.h
+++ b/libc/src/sched/sched_getcpucount.h
@@ -10,7 +10,8 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_GETCPUCOUNT_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/cpu_set_t.h"
#include <stddef.h>
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_getparam.h b/libc/src/sched/sched_getparam.h
index e1b2365..00defdf 100644
--- a/libc/src/sched/sched_getparam.h
+++ b/libc/src/sched/sched_getparam.h
@@ -10,7 +10,9 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_GETPARAM_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/pid_t.h"
+#include "hdr/types/struct_sched_param.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_getscheduler.h b/libc/src/sched/sched_getscheduler.h
index d29e902..6407dbf 100644
--- a/libc/src/sched/sched_getscheduler.h
+++ b/libc/src/sched/sched_getscheduler.h
@@ -10,7 +10,8 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_GETSCHEDULER_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/pid_t.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_rr_get_interval.h b/libc/src/sched/sched_rr_get_interval.h
index ff09329..4195c14 100644
--- a/libc/src/sched/sched_rr_get_interval.h
+++ b/libc/src/sched/sched_rr_get_interval.h
@@ -10,7 +10,9 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_RR_GET_INTERVAL_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/pid_t.h"
+#include "hdr/types/struct_timespec.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_setaffinity.h b/libc/src/sched/sched_setaffinity.h
index cb2303d..f6739ab 100644
--- a/libc/src/sched/sched_setaffinity.h
+++ b/libc/src/sched/sched_setaffinity.h
@@ -10,7 +10,10 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_SETAFFINITY_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/cpu_set_t.h"
+#include "hdr/types/pid_t.h"
+#include "hdr/types/size_t.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_setparam.h b/libc/src/sched/sched_setparam.h
index e4691a7..5a69b09 100644
--- a/libc/src/sched/sched_setparam.h
+++ b/libc/src/sched/sched_setparam.h
@@ -10,7 +10,9 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_SETPARAM_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/pid_t.h"
+#include "hdr/types/struct_sched_param.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/sched/sched_setscheduler.h b/libc/src/sched/sched_setscheduler.h
index e745002..c5cb148 100644
--- a/libc/src/sched/sched_setscheduler.h
+++ b/libc/src/sched/sched_setscheduler.h
@@ -10,7 +10,9 @@
#define LLVM_LIBC_SRC_SCHED_SCHED_SETSCHEDULER_H
#include "src/__support/macros/config.h"
-#include <sched.h>
+
+#include "hdr/types/pid_t.h"
+#include "hdr/types/struct_sched_param.h"
namespace LIBC_NAMESPACE_DECL {
diff --git a/libc/src/wchar/wcstok.cpp b/libc/src/wchar/wcstok.cpp
index ed4f0aa..85513a6 100644
--- a/libc/src/wchar/wcstok.cpp
+++ b/libc/src/wchar/wcstok.cpp
@@ -27,17 +27,22 @@ LLVM_LIBC_FUNCTION(wchar_t *, wcstok,
wchar_t *tok_start = str;
while (*tok_start != L'\0' && internal::wcschr(delims, *tok_start))
++tok_start;
+ if (*tok_start == L'\0') {
+ *context = nullptr;
+ return nullptr;
+ }
wchar_t *tok_end = tok_start;
while (*tok_end != L'\0' && !internal::wcschr(delims, *tok_end))
++tok_end;
- if (*tok_end != L'\0') {
+ if (*tok_end == L'\0') {
+ *context = nullptr;
+ } else {
*tok_end = L'\0';
- ++tok_end;
+ *context = tok_end + 1;
}
- *context = tok_end;
- return *tok_start == L'\0' ? nullptr : tok_start;
+ return tok_start;
}
} // namespace LIBC_NAMESPACE_DECL