aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/atan2f.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic/atan2f.cpp')
-rw-r--r--libc/src/math/generic/atan2f.cpp328
1 files changed, 2 insertions, 326 deletions
diff --git a/libc/src/math/generic/atan2f.cpp b/libc/src/math/generic/atan2f.cpp
index 32b977f..7c56788 100644
--- a/libc/src/math/generic/atan2f.cpp
+++ b/libc/src/math/generic/atan2f.cpp
@@ -7,336 +7,12 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan2f.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/FPUtil/rounding_mode.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-#include "src/__support/math/inv_trigf_utils.h"
-
-#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) && \
- defined(LIBC_MATH_HAS_INTERMEDIATE_COMP_IN_FLOAT)
-
-// We use float-float implementation to reduce size.
-#include "src/math/generic/atan2f_float.h"
-
-#else
+#include "src/__support/math/atan2f.h"
namespace LIBC_NAMESPACE_DECL {
-namespace {
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-// Look up tables for accurate pass:
-
-// atan(i/16) with i = 0..16, generated by Sollya with:
-// > for i from 0 to 16 do {
-// a = round(atan(i/16), D, RN);
-// b = round(atan(i/16) - a, D, RN);
-// print("{", b, ",", a, "},");
-// };
-constexpr fputil::DoubleDouble ATAN_I[17] = {
- {0.0, 0.0},
- {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
- {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
- {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
- {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
- {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
- {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
- {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
- {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
- {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
- {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
- {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
- {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
- {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
- {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
- {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
- {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
-};
-
-// Taylor polynomial, generated by Sollya with:
-// > for i from 0 to 8 do {
-// j = (-1)^(i + 1)/(2*i + 1);
-// a = round(j, D, RN);
-// b = round(j - a, D, RN);
-// print("{", b, ",", a, "},");
-// };
-constexpr fputil::DoubleDouble COEFFS[9] = {
- {0.0, 1.0}, // 1
- {-0x1.5555555555555p-56, -0x1.5555555555555p-2}, // -1/3
- {-0x1.999999999999ap-57, 0x1.999999999999ap-3}, // 1/5
- {-0x1.2492492492492p-57, -0x1.2492492492492p-3}, // -1/7
- {0x1.c71c71c71c71cp-58, 0x1.c71c71c71c71cp-4}, // 1/9
- {0x1.745d1745d1746p-59, -0x1.745d1745d1746p-4}, // -1/11
- {-0x1.3b13b13b13b14p-58, 0x1.3b13b13b13b14p-4}, // 1/13
- {-0x1.1111111111111p-60, -0x1.1111111111111p-4}, // -1/15
- {0x1.e1e1e1e1e1e1ep-61, 0x1.e1e1e1e1e1e1ep-5}, // 1/17
-};
-
-// Veltkamp's splitting of a double precision into hi + lo, where the hi part is
-// slightly smaller than an even split, so that the product of
-// hi * (s1 * k + s2) is exact,
-// where:
-// s1, s2 are single precsion,
-// 1/16 <= s1/s2 <= 1
-// 1/16 <= k <= 1 is an integer.
-// So the maximal precision of (s1 * k + s2) is:
-// prec(s1 * k + s2) = 2 + log2(msb(s2)) - log2(lsb(k_d * s1))
-// = 2 + log2(msb(s1)) + 4 - log2(lsb(k_d)) - log2(lsb(s1))
-// = 2 + log2(lsb(s1)) + 23 + 4 - (-4) - log2(lsb(s1))
-// = 33.
-// Thus, the Veltkamp splitting constant is C = 2^33 + 1.
-// This is used when FMA instruction is not available.
-[[maybe_unused]] constexpr fputil::DoubleDouble split_d(double a) {
- fputil::DoubleDouble r{0.0, 0.0};
- constexpr double C = 0x1.0p33 + 1.0;
- double t1 = C * a;
- double t2 = a - t1;
- r.hi = t1 + t2;
- r.lo = a - r.hi;
- return r;
-}
-
-// Compute atan( num_d / den_d ) in double-double precision.
-// num_d = min(|x|, |y|)
-// den_d = max(|x|, |y|)
-// q_d = num_d / den_d
-// idx, k_d = round( 2^4 * num_d / den_d )
-// final_sign = sign of the final result
-// const_term = the constant term in the final expression.
-float atan2f_double_double(double num_d, double den_d, double q_d, int idx,
- double k_d, double final_sign,
- const fputil::DoubleDouble &const_term) {
- fputil::DoubleDouble q;
- double num_r, den_r;
-
- if (idx != 0) {
- // The following range reduction is accurate even without fma for
- // 1/16 <= n/d <= 1.
- // atan(n/d) - atan(idx/16) = atan((n/d - idx/16) / (1 + (n/d) * (idx/16)))
- // = atan((n - d*(idx/16)) / (d + n*idx/16))
- k_d *= 0x1.0p-4;
- num_r = fputil::multiply_add(k_d, -den_d, num_d); // Exact
- den_r = fputil::multiply_add(k_d, num_d, den_d); // Exact
- q.hi = num_r / den_r;
- } else {
- // For 0 < n/d < 1/16, we just need to calculate the lower part of their
- // quotient.
- q.hi = q_d;
- num_r = num_d;
- den_r = den_d;
- }
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
- q.lo = fputil::multiply_add(q.hi, -den_r, num_r) / den_r;
-#else
- // Compute `(num_r - q.hi * den_r) / den_r` accurately without FMA
- // instructions.
- fputil::DoubleDouble q_hi_dd = split_d(q.hi);
- double t1 = fputil::multiply_add(q_hi_dd.hi, -den_r, num_r); // Exact
- double t2 = fputil::multiply_add(q_hi_dd.lo, -den_r, t1);
- q.lo = t2 / den_r;
-#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-
- // Taylor polynomial, evaluating using Horner's scheme:
- // P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
- // + x^17/17
- // = x*(1 + x^2*(-1/3 + x^2*(1/5 + x^2*(-1/7 + x^2*(1/9 + x^2*
- // *(-1/11 + x^2*(1/13 + x^2*(-1/15 + x^2 * 1/17))))))))
- fputil::DoubleDouble q2 = fputil::quick_mult(q, q);
- fputil::DoubleDouble p_dd =
- fputil::polyeval(q2, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3],
- COEFFS[4], COEFFS[5], COEFFS[6], COEFFS[7], COEFFS[8]);
- fputil::DoubleDouble r_dd =
- fputil::add(const_term, fputil::multiply_add(q, p_dd, ATAN_I[idx]));
- r_dd.hi *= final_sign;
- r_dd.lo *= final_sign;
-
- // Make sure the sum is normalized:
- fputil::DoubleDouble rr = fputil::exact_add(r_dd.hi, r_dd.lo);
- // Round to odd.
- uint64_t rr_bits = cpp::bit_cast<uint64_t>(rr.hi);
- if (LIBC_UNLIKELY(((rr_bits & 0xfff'ffff) == 0) && (rr.lo != 0.0))) {
- Sign hi_sign = fputil::FPBits<double>(rr.hi).sign();
- Sign lo_sign = fputil::FPBits<double>(rr.lo).sign();
- if (hi_sign == lo_sign) {
- ++rr_bits;
- } else if ((rr_bits & fputil::FPBits<double>::FRACTION_MASK) > 0) {
- --rr_bits;
- }
- }
-
- return static_cast<float>(cpp::bit_cast<double>(rr_bits));
-}
-
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-} // anonymous namespace
-
-// There are several range reduction steps we can take for atan2(y, x) as
-// follow:
-
-// * Range reduction 1: signness
-// atan2(y, x) will return a number between -PI and PI representing the angle
-// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
-// In particular, we have that:
-// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
-// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
-// Since atan function is odd, we can use the formula:
-// atan(-u) = -atan(u)
-// to adjust the above conditions a bit further:
-// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
-// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
-// Which can be simplified to:
-// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
-// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
-
-// * Range reduction 2: reciprocal
-// Now that the argument inside atan is positive, we can use the formula:
-// atan(1/x) = pi/2 - atan(x)
-// to make the argument inside atan <= 1 as follow:
-// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
-// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
-// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
-// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
-
-// * Range reduction 3: look up table.
-// After the previous two range reduction steps, we reduce the problem to
-// compute atan(u) with 0 <= u <= 1, or to be precise:
-// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
-// An accurate polynomial approximation for the whole [0, 1] input range will
-// require a very large degree. To make it more efficient, we reduce the input
-// range further by finding an integer idx such that:
-// | n/d - idx/16 | <= 1/32.
-// In particular,
-// idx := 2^-4 * round(2^4 * n/d)
-// Then for the fast pass, we find a polynomial approximation for:
-// atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
-// For the accurate pass, we use the addition formula:
-// atan( n/d ) - atan( idx/16 ) = atan( (n/d - idx/16)/(1 + (n*idx)/(16*d)) )
-// = atan( (n - d * idx/16)/(d + n * idx/16) )
-// And finally we use Taylor polynomial to compute the RHS in the accurate pass:
-// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9 - u^11/11 + u^13/13 -
-// - u^15/15 + u^17/17
-// It's error in double-double precision is estimated in Sollya to be:
-// > P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
-// + x^17/17;
-// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
-// 0x1.aec6f...p-100
-// which is about rounding errors of double-double (2^-104).
-
LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
- using namespace inv_trigf_utils_internal;
- using FPBits = typename fputil::FPBits<float>;
- constexpr double IS_NEG[2] = {1.0, -1.0};
- constexpr double PI = 0x1.921fb54442d18p1;
- constexpr double PI_LO = 0x1.1a62633145c07p-53;
- constexpr double PI_OVER_4 = 0x1.921fb54442d18p-1;
- constexpr double PI_OVER_2 = 0x1.921fb54442d18p0;
- constexpr double THREE_PI_OVER_4 = 0x1.2d97c7f3321d2p+1;
- // Adjustment for constant term:
- // CONST_ADJ[x_sign][y_sign][recip]
- constexpr fputil::DoubleDouble CONST_ADJ[2][2][2] = {
- {{{0.0, 0.0}, {-PI_LO / 2, -PI_OVER_2}},
- {{-0.0, -0.0}, {-PI_LO / 2, -PI_OVER_2}}},
- {{{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}},
- {{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}}}};
-
- FPBits x_bits(x), y_bits(y);
- bool x_sign = x_bits.sign().is_neg();
- bool y_sign = y_bits.sign().is_neg();
- x_bits.set_sign(Sign::POS);
- y_bits.set_sign(Sign::POS);
- uint32_t x_abs = x_bits.uintval();
- uint32_t y_abs = y_bits.uintval();
- uint32_t max_abs = x_abs > y_abs ? x_abs : y_abs;
- uint32_t min_abs = x_abs <= y_abs ? x_abs : y_abs;
- float num_f = FPBits(min_abs).get_val();
- float den_f = FPBits(max_abs).get_val();
- double num_d = static_cast<double>(num_f);
- double den_d = static_cast<double>(den_f);
-
- if (LIBC_UNLIKELY(max_abs >= 0x7f80'0000U || num_d == 0.0)) {
- if (x_bits.is_nan() || y_bits.is_nan()) {
- if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- double x_d = static_cast<double>(x);
- double y_d = static_cast<double>(y);
- size_t x_except = (x_d == 0.0) ? 0 : (x_abs == 0x7f80'0000 ? 2 : 1);
- size_t y_except = (y_d == 0.0) ? 0 : (y_abs == 0x7f80'0000 ? 2 : 1);
-
- // Exceptional cases:
- // EXCEPT[y_except][x_except][x_is_neg]
- // with x_except & y_except:
- // 0: zero
- // 1: finite, non-zero
- // 2: infinity
- constexpr double EXCEPTS[3][3][2] = {
- {{0.0, PI}, {0.0, PI}, {0.0, PI}},
- {{PI_OVER_2, PI_OVER_2}, {0.0, 0.0}, {0.0, PI}},
- {{PI_OVER_2, PI_OVER_2},
- {PI_OVER_2, PI_OVER_2},
- {PI_OVER_4, THREE_PI_OVER_4}},
- };
-
- double r = IS_NEG[y_sign] * EXCEPTS[y_except][x_except][x_sign];
-
- return static_cast<float>(r);
- }
-
- bool recip = x_abs < y_abs;
- double final_sign = IS_NEG[(x_sign != y_sign) != recip];
- fputil::DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
- double q_d = num_d / den_d;
-
- double k_d = fputil::nearest_integer(q_d * 0x1.0p4);
- int idx = static_cast<int>(k_d);
- double r;
-
-#ifdef LIBC_MATH_HAS_SMALL_TABLES
- double p = atan_eval_no_table(num_d, den_d, k_d * 0x1.0p-4);
- r = final_sign * (p + (const_term.hi + ATAN_K_OVER_16[idx]));
-#else
- q_d = fputil::multiply_add(k_d, -0x1.0p-4, q_d);
-
- double p = atan_eval(q_d, idx);
- r = final_sign *
- fputil::multiply_add(q_d, p, const_term.hi + ATAN_COEFFS[idx][0]);
-#endif // LIBC_MATH_HAS_SMALL_TABLES
-
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- return static_cast<float>(r);
-#else
- constexpr uint32_t LOWER_ERR = 4;
- // Mask sticky bits in double precision before rounding to single precision.
- constexpr uint32_t MASK =
- mask_trailing_ones<uint32_t, fputil::FPBits<double>::SIG_LEN -
- FPBits::SIG_LEN - 1>();
- constexpr uint32_t UPPER_ERR = MASK - LOWER_ERR;
-
- uint32_t r_bits = static_cast<uint32_t>(cpp::bit_cast<uint64_t>(r)) & MASK;
-
- // Ziv's rounding test.
- if (LIBC_LIKELY(r_bits > LOWER_ERR && r_bits < UPPER_ERR))
- return static_cast<float>(r);
-
- return atan2f_double_double(num_d, den_d, q_d, idx, k_d, final_sign,
- const_term);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+ return math::atan2f(y, x);
}
} // namespace LIBC_NAMESPACE_DECL
-
-#endif