aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/atan.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic/atan.cpp')
-rw-r--r--libc/src/math/generic/atan.cpp167
1 files changed, 2 insertions, 165 deletions
diff --git a/libc/src/math/generic/atan.cpp b/libc/src/math/generic/atan.cpp
index cbca605..93bf2e1 100644
--- a/libc/src/math/generic/atan.cpp
+++ b/libc/src/math/generic/atan.cpp
@@ -7,173 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan.h"
-#include "atan_utils.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+#include "src/__support/math/atan.h"
namespace LIBC_NAMESPACE_DECL {
-// To compute atan(x), we divided it into the following cases:
-// * |x| < 2^-26:
-// Since |x| > atan(|x|) > |x| - |x|^3/3, and |x|^3/3 < ulp(x)/2, we simply
-// return atan(x) = x - sign(x) * epsilon.
-// * 2^-26 <= |x| < 1:
-// We perform range reduction mod 2^-6 = 1/64 as follow:
-// Let k = 2^(-6) * round(|x| * 2^6), then
-// atan(x) = sign(x) * atan(|x|)
-// = sign(x) * (atan(k) + atan((|x| - k) / (1 + |x|*k)).
-// We store atan(k) in a look up table, and perform intermediate steps in
-// double-double.
-// * 1 < |x| < 2^53:
-// First we perform the transformation y = 1/|x|:
-// atan(x) = sign(x) * (pi/2 - atan(1/|x|))
-// = sign(x) * (pi/2 - atan(y)).
-// Then we compute atan(y) using range reduction mod 2^-6 = 1/64 as the
-// previous case:
-// Let k = 2^(-6) * round(y * 2^6), then
-// atan(y) = atan(k) + atan((y - k) / (1 + y*k))
-// = atan(k) + atan((1/|x| - k) / (1 + k/|x|)
-// = atan(k) + atan((1 - k*|x|) / (|x| + k)).
-// * |x| >= 2^53:
-// Using the reciprocal transformation:
-// atan(x) = sign(x) * (pi/2 - atan(1/|x|)).
-// We have that:
-// atan(1/|x|) <= 1/|x| <= 2^-53,
-// which is smaller than ulp(pi/2) / 2.
-// So we can return:
-// atan(x) = sign(x) * (pi/2 - epsilon)
-
-LLVM_LIBC_FUNCTION(double, atan, (double x)) {
- using FPBits = fputil::FPBits<double>;
-
- constexpr double IS_NEG[2] = {1.0, -1.0};
- constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
- 0x1.921fb54442d18p0};
- constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
- -0x1.921fb54442d18p0};
-
- FPBits xbits(x);
- bool x_sign = xbits.is_neg();
- xbits = xbits.abs();
- uint64_t x_abs = xbits.uintval();
- int x_exp =
- static_cast<int>(x_abs >> FPBits::FRACTION_LEN) - FPBits::EXP_BIAS;
-
- // |x| < 1.
- if (x_exp < 0) {
- if (LIBC_UNLIKELY(x_exp < -26)) {
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- return x;
-#else
- if (x == 0.0)
- return x;
- // |x| < 2^-26
- return fputil::multiply_add(-0x1.0p-54, x, x);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- }
-
- double x_d = xbits.get_val();
- // k = 2^-6 * round(2^6 * |x|)
- double k = fputil::nearest_integer(0x1.0p6 * x_d);
- unsigned idx = static_cast<unsigned>(k);
- k *= 0x1.0p-6;
-
- // numerator = |x| - k
- DoubleDouble num, den;
- num.lo = 0.0;
- num.hi = x_d - k;
-
- // denominator = 1 - k * |x|
- den.hi = fputil::multiply_add(x_d, k, 1.0);
- DoubleDouble prod = fputil::exact_mult(x_d, k);
- // Using Dekker's 2SUM algorithm to compute the lower part.
- den.lo = ((1.0 - den.hi) + prod.hi) + prod.lo;
-
- // x_r = (|x| - k) / (1 + k * |x|)
- DoubleDouble x_r = fputil::div(num, den);
-
- // Approximating atan(x_r) using Taylor polynomial.
- DoubleDouble p = atan_eval(x_r);
-
- // atan(x) = sign(x) * (atan(k) + atan(x_r))
- // = sign(x) * (atan(k) + atan( (|x| - k) / (1 + k * |x|) ))
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- return IS_NEG[x_sign] * (ATAN_I[idx].hi + (p.hi + (p.lo + ATAN_I[idx].lo)));
-#else
-
- DoubleDouble c0 = fputil::exact_add(ATAN_I[idx].hi, p.hi);
- double c1 = c0.lo + (ATAN_I[idx].lo + p.lo);
- double r = IS_NEG[x_sign] * (c0.hi + c1);
-
- return r;
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- }
-
- // |x| >= 2^53 or x is NaN.
- if (LIBC_UNLIKELY(x_exp >= 53)) {
- // x is nan
- if (xbits.is_nan()) {
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- return x;
- }
- // |x| >= 2^53
- // atan(x) ~ sign(x) * pi/2.
- if (x_exp >= 53)
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- return IS_NEG[x_sign] * PI_OVER_2.hi;
-#else
- return fputil::multiply_add(IS_NEG[x_sign], PI_OVER_2.hi,
- IS_NEG[x_sign] * PI_OVER_2.lo);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- }
-
- double x_d = xbits.get_val();
- double y = 1.0 / x_d;
-
- // k = 2^-6 * round(2^6 / |x|)
- double k = fputil::nearest_integer(0x1.0p6 * y);
- unsigned idx = static_cast<unsigned>(k);
- k *= 0x1.0p-6;
-
- // denominator = |x| + k
- DoubleDouble den = fputil::exact_add(x_d, k);
- // numerator = 1 - k * |x|
- DoubleDouble num;
- num.hi = fputil::multiply_add(-x_d, k, 1.0);
- DoubleDouble prod = fputil::exact_mult(x_d, k);
- // Using Dekker's 2SUM algorithm to compute the lower part.
- num.lo = ((1.0 - num.hi) - prod.hi) - prod.lo;
-
- // x_r = (1/|x| - k) / (1 - k/|x|)
- // = (1 - k * |x|) / (|x| - k)
- DoubleDouble x_r = fputil::div(num, den);
-
- // Approximating atan(x_r) using Taylor polynomial.
- DoubleDouble p = atan_eval(x_r);
-
- // atan(x) = sign(x) * (pi/2 - atan(1/|x|))
- // = sign(x) * (pi/2 - atan(k) - atan(x_r))
- // = (-sign(x)) * (-pi/2 + atan(k) + atan((1 - k*|x|)/(|x| - k)))
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- double lo_part = p.lo + ATAN_I[idx].lo + MPI_OVER_2.lo;
- return IS_NEG[!x_sign] * (MPI_OVER_2.hi + ATAN_I[idx].hi + (p.hi + lo_part));
-#else
- DoubleDouble c0 = fputil::exact_add(MPI_OVER_2.hi, ATAN_I[idx].hi);
- DoubleDouble c1 = fputil::exact_add(c0.hi, p.hi);
- double c2 = c1.lo + (c0.lo + p.lo) + (ATAN_I[idx].lo + MPI_OVER_2.lo);
-
- double r = IS_NEG[!x_sign] * (c1.hi + c2);
-
- return r;
-#endif
-}
+LLVM_LIBC_FUNCTION(double, atan, (double x)) { return math::atan(x); }
} // namespace LIBC_NAMESPACE_DECL