diff options
Diffstat (limited to 'libc/src/math/generic/asinpif16.cpp')
-rw-r--r-- | libc/src/math/generic/asinpif16.cpp | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/libc/src/math/generic/asinpif16.cpp b/libc/src/math/generic/asinpif16.cpp deleted file mode 100644 index aabc086..0000000 --- a/libc/src/math/generic/asinpif16.cpp +++ /dev/null @@ -1,127 +0,0 @@ -//===-- Half-precision asinpif16(x) function ------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. -// -//===----------------------------------------------------------------------===// - -#include "src/math/asinpif16.h" -#include "hdr/errno_macros.h" -#include "hdr/fenv_macros.h" -#include "src/__support/FPUtil/FEnvImpl.h" -#include "src/__support/FPUtil/FPBits.h" -#include "src/__support/FPUtil/PolyEval.h" -#include "src/__support/FPUtil/cast.h" -#include "src/__support/FPUtil/except_value_utils.h" -#include "src/__support/FPUtil/multiply_add.h" -#include "src/__support/FPUtil/sqrt.h" -#include "src/__support/macros/optimization.h" - -namespace LIBC_NAMESPACE_DECL { - -LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) { - using FPBits = fputil::FPBits<float16>; - - FPBits xbits(x); - bool is_neg = xbits.is_neg(); - double x_abs = fputil::cast<double>(xbits.abs().get_val()); - - auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; }; - - if (LIBC_UNLIKELY(x_abs > 1.0)) { - // aspinf16(NaN) = NaN - if (xbits.is_nan()) { - if (xbits.is_signaling_nan()) { - fputil::raise_except_if_required(FE_INVALID); - return FPBits::quiet_nan().get_val(); - } - return x; - } - - // 1 < |x| <= +/-inf - fputil::raise_except_if_required(FE_INVALID); - fputil::set_errno_if_required(EDOM); - - return FPBits::quiet_nan().get_val(); - } - - // the coefficients for the polynomial approximation of asin(x)/pi in the - // range [0, 0.5] extracted using python-sympy - // - // Python code to generate the coefficients: - // > from sympy import * - // > import math - // > x = symbols('x') - // > print(series(asin(x)/math.pi, x, 0, 21)) - // - // OUTPUT: - // - // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 + - // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 + - // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 + - // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 + - // 0.00310721681820837*x**19 + O(x**21) - // - // it's very accurate in the range [0, 0.5] and has a maximum error of - // 0.0000000000000001 in the range [0, 0.5]. - constexpr double POLY_COEFFS[] = { - 0x1.45f306dc9c889p-2, // x^1 - 0x1.b2995e7b7b5fdp-5, // x^3 - 0x1.8723a1d588a36p-6, // x^5 - 0x1.d1a452f20430dp-7, // x^7 - 0x1.3ce52a3a09f61p-7, // x^9 - 0x1.d2b33e303d375p-8, // x^11 - 0x1.69fde663c674fp-8, // x^13 - 0x1.235134885f19bp-8, // x^15 - }; - // polynomial evaluation using horner's method - // work only for |x| in [0, 0.5] - auto asinpi_polyeval = [](double x) -> double { - return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1], - POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4], - POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]); - }; - - // if |x| <= 0.5: - if (LIBC_UNLIKELY(x_abs <= 0.5)) { - // Use polynomial approximation of asin(x)/pi in the range [0, 0.5] - double result = asinpi_polyeval(fputil::cast<double>(x)); - return fputil::cast<float16>(result); - } - - // If |x| > 0.5, we need to use the range reduction method: - // y = asin(x) => x = sin(y) - // because: sin(a) = cos(pi/2 - a) - // therefore: - // x = cos(pi/2 - y) - // let z = pi/2 - y, - // x = cos(z) - // because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2 - // therefore: - // cos(z) = 1 - 2 * sin^2(z/2) - // sin(z/2) = sqrt((1 - cos(z))/2) - // sin(z/2) = sqrt((1 - x)/2) - // let u = (1 - x)/2 - // then: - // sin(z/2) = sqrt(u) - // z/2 = asin(sqrt(u)) - // z = 2 * asin(sqrt(u)) - // pi/2 - y = 2 * asin(sqrt(u)) - // y = pi/2 - 2 * asin(sqrt(u)) - // y/pi = 1/2 - 2 * asin(sqrt(u))/pi - // - // Finally, we can write: - // asinpi(x) = 1/2 - 2 * asinpi(sqrt(u)) - // where u = (1 - x) /2 - // = 0.5 - 0.5 * x - // = multiply_add(-0.5, x, 0.5) - - double u = fputil::multiply_add(-0.5, x_abs, 0.5); - double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt<double>(u)); - double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5); - - return fputil::cast<float16>(signed_result(result)); -} - -} // namespace LIBC_NAMESPACE_DECL |