aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/asinpif16.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic/asinpif16.cpp')
-rw-r--r--libc/src/math/generic/asinpif16.cpp127
1 files changed, 0 insertions, 127 deletions
diff --git a/libc/src/math/generic/asinpif16.cpp b/libc/src/math/generic/asinpif16.cpp
deleted file mode 100644
index aabc086..0000000
--- a/libc/src/math/generic/asinpif16.cpp
+++ /dev/null
@@ -1,127 +0,0 @@
-//===-- Half-precision asinpif16(x) function ------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception.
-//
-//===----------------------------------------------------------------------===//
-
-#include "src/math/asinpif16.h"
-#include "hdr/errno_macros.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/cast.h"
-#include "src/__support/FPUtil/except_value_utils.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/sqrt.h"
-#include "src/__support/macros/optimization.h"
-
-namespace LIBC_NAMESPACE_DECL {
-
-LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) {
- using FPBits = fputil::FPBits<float16>;
-
- FPBits xbits(x);
- bool is_neg = xbits.is_neg();
- double x_abs = fputil::cast<double>(xbits.abs().get_val());
-
- auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; };
-
- if (LIBC_UNLIKELY(x_abs > 1.0)) {
- // aspinf16(NaN) = NaN
- if (xbits.is_nan()) {
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- return x;
- }
-
- // 1 < |x| <= +/-inf
- fputil::raise_except_if_required(FE_INVALID);
- fputil::set_errno_if_required(EDOM);
-
- return FPBits::quiet_nan().get_val();
- }
-
- // the coefficients for the polynomial approximation of asin(x)/pi in the
- // range [0, 0.5] extracted using python-sympy
- //
- // Python code to generate the coefficients:
- // > from sympy import *
- // > import math
- // > x = symbols('x')
- // > print(series(asin(x)/math.pi, x, 0, 21))
- //
- // OUTPUT:
- //
- // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 +
- // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 +
- // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 +
- // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 +
- // 0.00310721681820837*x**19 + O(x**21)
- //
- // it's very accurate in the range [0, 0.5] and has a maximum error of
- // 0.0000000000000001 in the range [0, 0.5].
- constexpr double POLY_COEFFS[] = {
- 0x1.45f306dc9c889p-2, // x^1
- 0x1.b2995e7b7b5fdp-5, // x^3
- 0x1.8723a1d588a36p-6, // x^5
- 0x1.d1a452f20430dp-7, // x^7
- 0x1.3ce52a3a09f61p-7, // x^9
- 0x1.d2b33e303d375p-8, // x^11
- 0x1.69fde663c674fp-8, // x^13
- 0x1.235134885f19bp-8, // x^15
- };
- // polynomial evaluation using horner's method
- // work only for |x| in [0, 0.5]
- auto asinpi_polyeval = [](double x) -> double {
- return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1],
- POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4],
- POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]);
- };
-
- // if |x| <= 0.5:
- if (LIBC_UNLIKELY(x_abs <= 0.5)) {
- // Use polynomial approximation of asin(x)/pi in the range [0, 0.5]
- double result = asinpi_polyeval(fputil::cast<double>(x));
- return fputil::cast<float16>(result);
- }
-
- // If |x| > 0.5, we need to use the range reduction method:
- // y = asin(x) => x = sin(y)
- // because: sin(a) = cos(pi/2 - a)
- // therefore:
- // x = cos(pi/2 - y)
- // let z = pi/2 - y,
- // x = cos(z)
- // because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2
- // therefore:
- // cos(z) = 1 - 2 * sin^2(z/2)
- // sin(z/2) = sqrt((1 - cos(z))/2)
- // sin(z/2) = sqrt((1 - x)/2)
- // let u = (1 - x)/2
- // then:
- // sin(z/2) = sqrt(u)
- // z/2 = asin(sqrt(u))
- // z = 2 * asin(sqrt(u))
- // pi/2 - y = 2 * asin(sqrt(u))
- // y = pi/2 - 2 * asin(sqrt(u))
- // y/pi = 1/2 - 2 * asin(sqrt(u))/pi
- //
- // Finally, we can write:
- // asinpi(x) = 1/2 - 2 * asinpi(sqrt(u))
- // where u = (1 - x) /2
- // = 0.5 - 0.5 * x
- // = multiply_add(-0.5, x, 0.5)
-
- double u = fputil::multiply_add(-0.5, x_abs, 0.5);
- double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt<double>(u));
- double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5);
-
- return fputil::cast<float16>(signed_result(result));
-}
-
-} // namespace LIBC_NAMESPACE_DECL