diff options
Diffstat (limited to 'libc/src/math/generic/acosf.cpp')
-rw-r--r-- | libc/src/math/generic/acosf.cpp | 121 |
1 files changed, 2 insertions, 119 deletions
diff --git a/libc/src/math/generic/acosf.cpp b/libc/src/math/generic/acosf.cpp index 8dd6de2..7afc7d6 100644 --- a/libc/src/math/generic/acosf.cpp +++ b/libc/src/math/generic/acosf.cpp @@ -7,127 +7,10 @@ //===----------------------------------------------------------------------===// #include "src/math/acosf.h" -#include "src/__support/FPUtil/FEnvImpl.h" -#include "src/__support/FPUtil/FPBits.h" -#include "src/__support/FPUtil/PolyEval.h" -#include "src/__support/FPUtil/except_value_utils.h" -#include "src/__support/FPUtil/multiply_add.h" -#include "src/__support/FPUtil/sqrt.h" -#include "src/__support/macros/config.h" -#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY - -#include "inv_trigf_utils.h" +#include "src/__support/math/acosf.h" namespace LIBC_NAMESPACE_DECL { -#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS -static constexpr size_t N_EXCEPTS = 4; - -// Exceptional values when |x| <= 0.5 -static constexpr fputil::ExceptValues<float, N_EXCEPTS> ACOSF_EXCEPTS = {{ - // (inputs, RZ output, RU offset, RD offset, RN offset) - // x = 0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ) - {0x328885a3, 0x3fc90fda, 1, 0, 1}, - // x = -0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ) - {0xb28885a3, 0x3fc90fda, 1, 0, 1}, - // x = 0x1.04c444p-12, acosf(x) = 0x1.920f68p0 (RZ) - {0x39826222, 0x3fc907b4, 1, 0, 1}, - // x = -0x1.04c444p-12, acosf(x) = 0x1.923p0 (RZ) - {0xb9826222, 0x3fc91800, 1, 0, 1}, -}}; -#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS - -LLVM_LIBC_FUNCTION(float, acosf, (float x)) { - using FPBits = typename fputil::FPBits<float>; - - FPBits xbits(x); - uint32_t x_uint = xbits.uintval(); - uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; - uint32_t x_sign = x_uint >> 31; - - // |x| <= 0.5 - if (LIBC_UNLIKELY(x_abs <= 0x3f00'0000U)) { - // |x| < 0x1p-10 - if (LIBC_UNLIKELY(x_abs < 0x3a80'0000U)) { - // When |x| < 2^-10, we use the following approximation: - // acos(x) = pi/2 - asin(x) - // ~ pi/2 - x - x^3 / 6 - -#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS - // Check for exceptional values - if (auto r = ACOSF_EXCEPTS.lookup(x_uint); LIBC_UNLIKELY(r.has_value())) - return r.value(); -#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS - - double xd = static_cast<double>(x); - return static_cast<float>(fputil::multiply_add( - -0x1.5555555555555p-3 * xd, xd * xd, M_MATH_PI_2 - xd)); - } - - // For |x| <= 0.5, we approximate acosf(x) by: - // acos(x) = pi/2 - asin(x) = pi/2 - x * P(x^2) - // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating - // asin(x)/x on [0, 0.5] generated by Sollya with: - // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], - // [|1, D...|], [0, 0.5]); - double xd = static_cast<double>(x); - double xsq = xd * xd; - double x3 = xd * xsq; - double r = asin_eval(xsq); - return static_cast<float>(fputil::multiply_add(-x3, r, M_MATH_PI_2 - xd)); - } - - // |x| >= 1, return 0, 2pi, or NaNs. - if (LIBC_UNLIKELY(x_abs >= 0x3f80'0000U)) { - if (x_abs == 0x3f80'0000U) - return x_sign ? /* x == -1.0f */ fputil::round_result_slightly_down( - 0x1.921fb6p+1f) - : /* x == 1.0f */ 0.0f; - - if (xbits.is_signaling_nan()) { - fputil::raise_except_if_required(FE_INVALID); - return FPBits::quiet_nan().get_val(); - } - - // |x| <= +/-inf - if (x_abs <= 0x7f80'0000U) { - fputil::set_errno_if_required(EDOM); - fputil::raise_except_if_required(FE_INVALID); - } - - return x + FPBits::quiet_nan().get_val(); - } - - // When 0.5 < |x| < 1, we perform range reduction as follow: - // - // Assume further that 0.5 < x <= 1, and let: - // y = acos(x) - // We use the double angle formula: - // x = cos(y) = 1 - 2 sin^2(y/2) - // So: - // sin(y/2) = sqrt( (1 - x)/2 ) - // And hence: - // y = 2 * asin( sqrt( (1 - x)/2 ) ) - // Let u = (1 - x)/2, then - // acos(x) = 2 * asin( sqrt(u) ) - // Moreover, since 0.5 < x <= 1, - // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, - // And hence we can reuse the same polynomial approximation of asin(x) when - // |x| <= 0.5: - // acos(x) ~ 2 * sqrt(u) * P(u). - // - // When -1 < x <= -0.5, we use the identity: - // acos(x) = pi - acos(-x) - // which is reduced to the postive case. - - xbits.set_sign(Sign::POS); - double xd = static_cast<double>(xbits.get_val()); - double u = fputil::multiply_add(-0.5, xd, 0.5); - double cv = 2 * fputil::sqrt<double>(u); - - double r3 = asin_eval(u); - double r = fputil::multiply_add(cv * u, r3, cv); - return static_cast<float>(x_sign ? M_MATH_PI - r : r); -} +LLVM_LIBC_FUNCTION(float, acosf, (float x)) { return math::acosf(x); } } // namespace LIBC_NAMESPACE_DECL |