aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/acosf.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic/acosf.cpp')
-rw-r--r--libc/src/math/generic/acosf.cpp121
1 files changed, 2 insertions, 119 deletions
diff --git a/libc/src/math/generic/acosf.cpp b/libc/src/math/generic/acosf.cpp
index 8dd6de2..7afc7d6 100644
--- a/libc/src/math/generic/acosf.cpp
+++ b/libc/src/math/generic/acosf.cpp
@@ -7,127 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/acosf.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/except_value_utils.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/sqrt.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-
-#include "inv_trigf_utils.h"
+#include "src/__support/math/acosf.h"
namespace LIBC_NAMESPACE_DECL {
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-static constexpr size_t N_EXCEPTS = 4;
-
-// Exceptional values when |x| <= 0.5
-static constexpr fputil::ExceptValues<float, N_EXCEPTS> ACOSF_EXCEPTS = {{
- // (inputs, RZ output, RU offset, RD offset, RN offset)
- // x = 0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ)
- {0x328885a3, 0x3fc90fda, 1, 0, 1},
- // x = -0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ)
- {0xb28885a3, 0x3fc90fda, 1, 0, 1},
- // x = 0x1.04c444p-12, acosf(x) = 0x1.920f68p0 (RZ)
- {0x39826222, 0x3fc907b4, 1, 0, 1},
- // x = -0x1.04c444p-12, acosf(x) = 0x1.923p0 (RZ)
- {0xb9826222, 0x3fc91800, 1, 0, 1},
-}};
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-LLVM_LIBC_FUNCTION(float, acosf, (float x)) {
- using FPBits = typename fputil::FPBits<float>;
-
- FPBits xbits(x);
- uint32_t x_uint = xbits.uintval();
- uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
- uint32_t x_sign = x_uint >> 31;
-
- // |x| <= 0.5
- if (LIBC_UNLIKELY(x_abs <= 0x3f00'0000U)) {
- // |x| < 0x1p-10
- if (LIBC_UNLIKELY(x_abs < 0x3a80'0000U)) {
- // When |x| < 2^-10, we use the following approximation:
- // acos(x) = pi/2 - asin(x)
- // ~ pi/2 - x - x^3 / 6
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
- // Check for exceptional values
- if (auto r = ACOSF_EXCEPTS.lookup(x_uint); LIBC_UNLIKELY(r.has_value()))
- return r.value();
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
- double xd = static_cast<double>(x);
- return static_cast<float>(fputil::multiply_add(
- -0x1.5555555555555p-3 * xd, xd * xd, M_MATH_PI_2 - xd));
- }
-
- // For |x| <= 0.5, we approximate acosf(x) by:
- // acos(x) = pi/2 - asin(x) = pi/2 - x * P(x^2)
- // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating
- // asin(x)/x on [0, 0.5] generated by Sollya with:
- // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
- // [|1, D...|], [0, 0.5]);
- double xd = static_cast<double>(x);
- double xsq = xd * xd;
- double x3 = xd * xsq;
- double r = asin_eval(xsq);
- return static_cast<float>(fputil::multiply_add(-x3, r, M_MATH_PI_2 - xd));
- }
-
- // |x| >= 1, return 0, 2pi, or NaNs.
- if (LIBC_UNLIKELY(x_abs >= 0x3f80'0000U)) {
- if (x_abs == 0x3f80'0000U)
- return x_sign ? /* x == -1.0f */ fputil::round_result_slightly_down(
- 0x1.921fb6p+1f)
- : /* x == 1.0f */ 0.0f;
-
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
-
- // |x| <= +/-inf
- if (x_abs <= 0x7f80'0000U) {
- fputil::set_errno_if_required(EDOM);
- fputil::raise_except_if_required(FE_INVALID);
- }
-
- return x + FPBits::quiet_nan().get_val();
- }
-
- // When 0.5 < |x| < 1, we perform range reduction as follow:
- //
- // Assume further that 0.5 < x <= 1, and let:
- // y = acos(x)
- // We use the double angle formula:
- // x = cos(y) = 1 - 2 sin^2(y/2)
- // So:
- // sin(y/2) = sqrt( (1 - x)/2 )
- // And hence:
- // y = 2 * asin( sqrt( (1 - x)/2 ) )
- // Let u = (1 - x)/2, then
- // acos(x) = 2 * asin( sqrt(u) )
- // Moreover, since 0.5 < x <= 1,
- // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
- // And hence we can reuse the same polynomial approximation of asin(x) when
- // |x| <= 0.5:
- // acos(x) ~ 2 * sqrt(u) * P(u).
- //
- // When -1 < x <= -0.5, we use the identity:
- // acos(x) = pi - acos(-x)
- // which is reduced to the postive case.
-
- xbits.set_sign(Sign::POS);
- double xd = static_cast<double>(xbits.get_val());
- double u = fputil::multiply_add(-0.5, xd, 0.5);
- double cv = 2 * fputil::sqrt<double>(u);
-
- double r3 = asin_eval(u);
- double r = fputil::multiply_add(cv * u, r3, cv);
- return static_cast<float>(x_sign ? M_MATH_PI - r : r);
-}
+LLVM_LIBC_FUNCTION(float, acosf, (float x)) { return math::acosf(x); }
} // namespace LIBC_NAMESPACE_DECL