diff options
Diffstat (limited to 'libc/src/math/generic/acos.cpp')
-rw-r--r-- | libc/src/math/generic/acos.cpp | 266 |
1 files changed, 2 insertions, 264 deletions
diff --git a/libc/src/math/generic/acos.cpp b/libc/src/math/generic/acos.cpp index c14721f..3a59642 100644 --- a/libc/src/math/generic/acos.cpp +++ b/libc/src/math/generic/acos.cpp @@ -7,272 +7,10 @@ //===----------------------------------------------------------------------===// #include "src/math/acos.h" -#include "asin_utils.h" -#include "src/__support/FPUtil/FEnvImpl.h" -#include "src/__support/FPUtil/FPBits.h" -#include "src/__support/FPUtil/PolyEval.h" -#include "src/__support/FPUtil/double_double.h" -#include "src/__support/FPUtil/dyadic_float.h" -#include "src/__support/FPUtil/multiply_add.h" -#include "src/__support/FPUtil/sqrt.h" -#include "src/__support/macros/config.h" -#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY -#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA +#include "src/__support/math/acos.h" namespace LIBC_NAMESPACE_DECL { -using DoubleDouble = fputil::DoubleDouble; -using Float128 = fputil::DyadicFloat<128>; - -LLVM_LIBC_FUNCTION(double, acos, (double x)) { - using FPBits = fputil::FPBits<double>; - - FPBits xbits(x); - int x_exp = xbits.get_biased_exponent(); - - // |x| < 0.5. - if (x_exp < FPBits::EXP_BIAS - 1) { - // |x| < 2^-55. - if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) { - // When |x| < 2^-55, acos(x) = pi/2 -#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) - return PI_OVER_TWO.hi; -#else - // Force the evaluation and prevent constant propagation so that it - // is rounded correctly for FE_UPWARD rounding mode. - return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi; -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS - } - -#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS - // acos(x) = pi/2 - asin(x) - // = pi/2 - x * P(x^2) - double p = asin_eval(x * x); - return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo); -#else - unsigned idx; - DoubleDouble x_sq = fputil::exact_mult(x, x); - double err = xbits.abs().get_val() * 0x1.0p-51; - // Polynomial approximation: - // p ~ asin(x)/x - DoubleDouble p = asin_eval(x_sq, idx, err); - // asin(x) ~ x * p - DoubleDouble r0 = fputil::exact_mult(x, p.hi); - // acos(x) = pi/2 - asin(x) - // ~ pi/2 - x * p - // = pi/2 - x * (p.hi + p.lo) - double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi); - // Use Dekker's 2SUM algorithm to compute the lower part. - double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo; - r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo); - - // Ziv's accuracy test. - - double r_upper = r_hi + (r_lo + err); - double r_lower = r_hi + (r_lo - err); - - if (LIBC_LIKELY(r_upper == r_lower)) - return r_upper; - - // Ziv's accuracy test failed, perform 128-bit calculation. - - // Recalculate mod 1/64. - idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6)); - - // Get x^2 - idx/64 exactly. When FMA is available, double-double - // multiplication will be correct for all rounding modes. Otherwise we use - // Float128 directly. - Float128 x_f128(x); - -#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE - // u = x^2 - idx/64 - Float128 u_hi( - fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi)); - Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo)); -#else - Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128); - Float128 u = fputil::quick_add( - x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6))); -#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE - - Float128 p_f128 = asin_eval(u, idx); - // Flip the sign of x_f128 to perform subtraction. - x_f128.sign = x_f128.sign.negate(); - Float128 r = - fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128)); - - return static_cast<double>(r); -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS - } - // |x| >= 0.5 - - double x_abs = xbits.abs().get_val(); - - // Maintaining the sign: - constexpr double SIGN[2] = {1.0, -1.0}; - double x_sign = SIGN[xbits.is_neg()]; - // |x| >= 1 - if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) { - // x = +-1, asin(x) = +- pi/2 - if (x_abs == 1.0) { - // x = 1, acos(x) = 0, - // x = -1, acos(x) = pi - return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo); - } - // |x| > 1, return NaN. - if (xbits.is_quiet_nan()) - return x; - - // Set domain error for non-NaN input. - if (!xbits.is_nan()) - fputil::set_errno_if_required(EDOM); - - fputil::raise_except_if_required(FE_INVALID); - return FPBits::quiet_nan().get_val(); - } - - // When |x| >= 0.5, we perform range reduction as follow: - // - // When 0.5 <= x < 1, let: - // y = acos(x) - // We will use the double angle formula: - // cos(2y) = 1 - 2 sin^2(y) - // and the complement angle identity: - // x = cos(y) = 1 - 2 sin^2 (y/2) - // So: - // sin(y/2) = sqrt( (1 - x)/2 ) - // And hence: - // y/2 = asin( sqrt( (1 - x)/2 ) ) - // Equivalently: - // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) ) - // Let u = (1 - x)/2, then: - // acos(x) = 2 * asin( sqrt(u) ) - // Moreover, since 0.5 <= x < 1: - // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, - // And hence we can reuse the same polynomial approximation of asin(x) when - // |x| <= 0.5: - // acos(x) ~ 2 * sqrt(u) * P(u). - // - // When -1 < x <= -0.5, we reduce to the previous case using the formula: - // acos(x) = pi - acos(-x) - // = pi - 2 * asin ( sqrt( (1 + x)/2 ) ) - // ~ pi - 2 * sqrt(u) * P(u), - // where u = (1 - |x|)/2. - - // u = (1 - |x|)/2 - double u = fputil::multiply_add(x_abs, -0.5, 0.5); - // v_hi + v_lo ~ sqrt(u). - // Let: - // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) - // Then: - // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) - // ~ v_hi + h / (2 * v_hi) - // So we can use: - // v_lo = h / (2 * v_hi). - double v_hi = fputil::sqrt<double>(u); - -#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS - constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI}; - DoubleDouble const_term = CONST_TERM[xbits.is_neg()]; - - double p = asin_eval(u); - double scale = x_sign * 2.0 * v_hi; - double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo); - return r; -#else - -#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE - double h = fputil::multiply_add(v_hi, -v_hi, u); -#else - DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi); - double h = (u - v_hi_sq.hi) - v_hi_sq.lo; -#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE - - // Scale v_lo and v_hi by 2 from the formula: - // vh = v_hi * 2 - // vl = 2*v_lo = h / v_hi. - double vh = v_hi * 2.0; - double vl = h / v_hi; - - // Polynomial approximation: - // p ~ asin(sqrt(u))/sqrt(u) - unsigned idx; - double err = vh * 0x1.0p-51; - - DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err); - - // Perform computations in double-double arithmetic: - // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) - DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p); - - double r_hi, r_lo; - if (xbits.is_pos()) { - r_hi = r0.hi; - r_lo = r0.lo; - } else { - DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi); - r_hi = r.hi; - r_lo = (PI.lo - r0.lo) + r.lo; - } - - // Ziv's accuracy test. - - double r_upper = r_hi + (r_lo + err); - double r_lower = r_hi + (r_lo - err); - - if (LIBC_LIKELY(r_upper == r_lower)) - return r_upper; - - // Ziv's accuracy test failed, we redo the computations in Float128. - // Recalculate mod 1/64. - idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6)); - - // After the first step of Newton-Raphson approximating v = sqrt(u), we have - // that: - // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) - // v_lo = h / (2 * v_hi) - // With error: - // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) - // = -h^2 / (2*v * (sqrt(u) + v)^2). - // Since: - // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, - // we can add another correction term to (v_hi + v_lo) that is: - // v_ll = -h^2 / (2*v_hi * 4u) - // = -v_lo * (h / 4u) - // = -vl * (h / 8u), - // making the errors: - // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) - // well beyond 128-bit precision needed. - - // Get the rounding error of vl = 2 * v_lo ~ h / vh - // Get full product of vh * vl -#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE - double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi; -#else - DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl); - double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; -#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE - // vll = 2*v_ll = -vl * (h / (4u)). - double t = h * (-0.25) / u; - double vll = fputil::multiply_add(vl, t, vl_lo); - // m_v = -(v_hi + v_lo + v_ll). - Float128 m_v = fputil::quick_add( - Float128(vh), fputil::quick_add(Float128(vl), Float128(vll))); - m_v.sign = xbits.sign(); - - // Perform computations in Float128: - // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1, - // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5. - Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u)); - - Float128 p_f128 = asin_eval(y_f128, idx); - Float128 r_f128 = fputil::quick_mul(m_v, p_f128); - - if (xbits.is_neg()) - r_f128 = fputil::quick_add(PI_F128, r_f128); - - return static_cast<double>(r_f128); -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS -} +LLVM_LIBC_FUNCTION(double, acos, (double x)) { return math::acos(x); } } // namespace LIBC_NAMESPACE_DECL |