diff options
Diffstat (limited to 'clang/lib/Analysis')
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/Arena.cpp | 46 | ||||
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/CMakeLists.txt | 1 | ||||
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp | 23 | ||||
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/DebugSupport.cpp | 193 | ||||
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/Formula.cpp | 82 | ||||
-rw-r--r-- | clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp | 312 |
6 files changed, 291 insertions, 366 deletions
diff --git a/clang/lib/Analysis/FlowSensitive/Arena.cpp b/clang/lib/Analysis/FlowSensitive/Arena.cpp index cff6c45..e576aff 100644 --- a/clang/lib/Analysis/FlowSensitive/Arena.cpp +++ b/clang/lib/Analysis/FlowSensitive/Arena.cpp @@ -76,4 +76,50 @@ IntegerValue &Arena::makeIntLiteral(llvm::APInt Value) { return *It->second; } +const Formula &Arena::getFormula(const BoolValue &B) { + auto It = ValToFormula.find(&B); + if (It != ValToFormula.end()) + return *It->second; + Formula &F = [&]() -> Formula & { + switch (B.getKind()) { + case Value::Kind::Integer: + case Value::Kind::Reference: + case Value::Kind::Pointer: + case Value::Kind::Struct: + llvm_unreachable("not a boolean"); + case Value::Kind::TopBool: + case Value::Kind::AtomicBool: + // TODO: assign atom numbers on creation rather than in getFormula(), so + // they will be deterministic and maybe even meaningful. + return Formula::create(Alloc, Formula::AtomRef, {}, + static_cast<unsigned>(makeAtom())); + case Value::Kind::Conjunction: + return Formula::create( + Alloc, Formula::And, + {&getFormula(cast<ConjunctionValue>(B).getLeftSubValue()), + &getFormula(cast<ConjunctionValue>(B).getRightSubValue())}); + case Value::Kind::Disjunction: + return Formula::create( + Alloc, Formula::Or, + {&getFormula(cast<DisjunctionValue>(B).getLeftSubValue()), + &getFormula(cast<DisjunctionValue>(B).getRightSubValue())}); + case Value::Kind::Negation: + return Formula::create(Alloc, Formula::Not, + {&getFormula(cast<NegationValue>(B).getSubVal())}); + case Value::Kind::Implication: + return Formula::create( + Alloc, Formula::Implies, + {&getFormula(cast<ImplicationValue>(B).getLeftSubValue()), + &getFormula(cast<ImplicationValue>(B).getRightSubValue())}); + case Value::Kind::Biconditional: + return Formula::create( + Alloc, Formula::Equal, + {&getFormula(cast<BiconditionalValue>(B).getLeftSubValue()), + &getFormula(cast<BiconditionalValue>(B).getRightSubValue())}); + } + }(); + ValToFormula.try_emplace(&B, &F); + return F; +} + } // namespace clang::dataflow diff --git a/clang/lib/Analysis/FlowSensitive/CMakeLists.txt b/clang/lib/Analysis/FlowSensitive/CMakeLists.txt index d59bebf..171884a 100644 --- a/clang/lib/Analysis/FlowSensitive/CMakeLists.txt +++ b/clang/lib/Analysis/FlowSensitive/CMakeLists.txt @@ -3,6 +3,7 @@ add_clang_library(clangAnalysisFlowSensitive ControlFlowContext.cpp DataflowAnalysisContext.cpp DataflowEnvironment.cpp + Formula.cpp HTMLLogger.cpp Logger.cpp RecordOps.cpp diff --git a/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp b/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp index 37bcc8b..42cc6d4 100644 --- a/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp +++ b/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp @@ -15,6 +15,7 @@ #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" #include "clang/AST/ExprCXX.h" #include "clang/Analysis/FlowSensitive/DebugSupport.h" +#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Logger.h" #include "clang/Analysis/FlowSensitive/Value.h" #include "llvm/ADT/SetOperations.h" @@ -23,9 +24,12 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" +#include "llvm/Support/raw_ostream.h" #include <cassert> #include <memory> +#include <string> #include <utility> +#include <vector> static llvm::cl::opt<std::string> DataflowLog( "dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional, @@ -129,7 +133,10 @@ Solver::Result DataflowAnalysisContext::querySolver(llvm::SetVector<BoolValue *> Constraints) { Constraints.insert(&arena().makeLiteral(true)); Constraints.insert(&arena().makeNot(arena().makeLiteral(false))); - return S->solve(Constraints.getArrayRef()); + std::vector<const Formula *> Formulas; + for (const BoolValue *Constraint : Constraints) + Formulas.push_back(&arena().getFormula(*Constraint)); + return S->solve(Formulas); } bool DataflowAnalysisContext::flowConditionImplies(AtomicBoolValue &Token, @@ -191,15 +198,21 @@ void DataflowAnalysisContext::addTransitiveFlowConditionConstraints( void DataflowAnalysisContext::dumpFlowCondition(AtomicBoolValue &Token, llvm::raw_ostream &OS) { + // TODO: accumulate formulas directly instead llvm::SetVector<BoolValue *> Constraints; Constraints.insert(&Token); llvm::DenseSet<AtomicBoolValue *> VisitedTokens; addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens); - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames = { - {&arena().makeLiteral(false), "False"}, - {&arena().makeLiteral(true), "True"}}; - OS << debugString(Constraints.getArrayRef(), AtomNames); + // TODO: have formulas know about true/false directly instead + Atom True = arena().getFormula(arena().makeLiteral(true)).getAtom(); + Atom False = arena().getFormula(arena().makeLiteral(false)).getAtom(); + Formula::AtomNames Names = {{False, "false"}, {True, "true"}}; + + for (const auto *Constraint : Constraints) { + arena().getFormula(*Constraint).print(OS, &Names); + OS << "\n"; + } } const ControlFlowContext * diff --git a/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp b/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp index 25225ed..34e53249 100644 --- a/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp +++ b/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp @@ -16,22 +16,12 @@ #include "clang/Analysis/FlowSensitive/DebugSupport.h" #include "clang/Analysis/FlowSensitive/Solver.h" #include "clang/Analysis/FlowSensitive/Value.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" -#include "llvm/ADT/StringSet.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/FormatAdapters.h" -#include "llvm/Support/FormatCommon.h" -#include "llvm/Support/FormatVariadic.h" namespace clang { namespace dataflow { -using llvm::AlignStyle; -using llvm::fmt_pad; -using llvm::formatv; - llvm::StringRef debugString(Value::Kind Kind) { switch (Kind) { case Value::Kind::Integer: @@ -60,12 +50,13 @@ llvm::StringRef debugString(Value::Kind Kind) { llvm_unreachable("Unhandled value kind"); } -llvm::StringRef debugString(Solver::Result::Assignment Assignment) { +llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, + Solver::Result::Assignment Assignment) { switch (Assignment) { case Solver::Result::Assignment::AssignedFalse: - return "False"; + return OS << "False"; case Solver::Result::Assignment::AssignedTrue: - return "True"; + return OS << "True"; } llvm_unreachable("Booleans can only be assigned true/false"); } @@ -82,174 +73,16 @@ llvm::StringRef debugString(Solver::Result::Status Status) { llvm_unreachable("Unhandled SAT check result status"); } -namespace { - -class DebugStringGenerator { -public: - explicit DebugStringGenerator( - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNamesArg) - : Counter(0), AtomNames(std::move(AtomNamesArg)) { -#ifndef NDEBUG - llvm::StringSet<> Names; - for (auto &N : AtomNames) { - assert(Names.insert(N.second).second && - "The same name must not assigned to different atoms"); - } -#endif - } - - /// Returns a string representation of a boolean value `B`. - std::string debugString(const BoolValue &B, size_t Depth = 0) { - std::string S; - switch (B.getKind()) { - case Value::Kind::AtomicBool: { - S = getAtomName(&cast<AtomicBoolValue>(B)); - break; - } - case Value::Kind::TopBool: { - S = "top"; - break; - } - case Value::Kind::Conjunction: { - auto &C = cast<ConjunctionValue>(B); - auto L = debugString(C.getLeftSubValue(), Depth + 1); - auto R = debugString(C.getRightSubValue(), Depth + 1); - S = formatv("(and\n{0}\n{1})", L, R); - break; - } - case Value::Kind::Disjunction: { - auto &D = cast<DisjunctionValue>(B); - auto L = debugString(D.getLeftSubValue(), Depth + 1); - auto R = debugString(D.getRightSubValue(), Depth + 1); - S = formatv("(or\n{0}\n{1})", L, R); - break; - } - case Value::Kind::Negation: { - auto &N = cast<NegationValue>(B); - S = formatv("(not\n{0})", debugString(N.getSubVal(), Depth + 1)); - break; - } - case Value::Kind::Implication: { - auto &IV = cast<ImplicationValue>(B); - auto L = debugString(IV.getLeftSubValue(), Depth + 1); - auto R = debugString(IV.getRightSubValue(), Depth + 1); - S = formatv("(=>\n{0}\n{1})", L, R); - break; - } - case Value::Kind::Biconditional: { - auto &BV = cast<BiconditionalValue>(B); - auto L = debugString(BV.getLeftSubValue(), Depth + 1); - auto R = debugString(BV.getRightSubValue(), Depth + 1); - S = formatv("(=\n{0}\n{1})", L, R); - break; - } - default: - llvm_unreachable("Unhandled value kind"); - } - auto Indent = Depth * 4; - return formatv("{0}", fmt_pad(S, Indent, 0)); - } - - std::string debugString(const llvm::ArrayRef<BoolValue *> &Constraints) { - std::string Result; - for (const BoolValue *S : Constraints) { - Result += debugString(*S); - Result += '\n'; - } - return Result; - } - - /// Returns a string representation of a set of boolean `Constraints` and the - /// `Result` of satisfiability checking on the `Constraints`. - std::string debugString(ArrayRef<BoolValue *> &Constraints, - const Solver::Result &Result) { - auto Template = R"( -Constraints ------------- -{0:$[ - -]} ------------- -{1}. -{2} -)"; - - std::vector<std::string> ConstraintsStrings; - ConstraintsStrings.reserve(Constraints.size()); - for (auto &Constraint : Constraints) { - ConstraintsStrings.push_back(debugString(*Constraint)); - } - - auto StatusString = clang::dataflow::debugString(Result.getStatus()); - auto Solution = Result.getSolution(); - auto SolutionString = Solution ? "\n" + debugString(*Solution) : ""; - - return formatv( - Template, - llvm::make_range(ConstraintsStrings.begin(), ConstraintsStrings.end()), - StatusString, SolutionString); - } - -private: - /// Returns a string representation of a truth assignment to atom booleans. - std::string debugString( - const llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> - &AtomAssignments) { - size_t MaxNameLength = 0; - for (auto &AtomName : AtomNames) { - MaxNameLength = std::max(MaxNameLength, AtomName.second.size()); - } - - std::vector<std::string> Lines; - for (auto &AtomAssignment : AtomAssignments) { - auto Line = formatv("{0} = {1}", - fmt_align(getAtomName(AtomAssignment.first), - AlignStyle::Left, MaxNameLength), - clang::dataflow::debugString(AtomAssignment.second)); - Lines.push_back(Line); - } - llvm::sort(Lines); - - return formatv("{0:$[\n]}", llvm::make_range(Lines.begin(), Lines.end())); +llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Solver::Result &R) { + OS << debugString(R.getStatus()) << "\n"; + if (auto Solution = R.getSolution()) { + std::vector<std::pair<Atom, Solver::Result::Assignment>> Sorted = { + Solution->begin(), Solution->end()}; + llvm::sort(Sorted); + for (const auto &Entry : Sorted) + OS << Entry.first << " = " << Entry.second << "\n"; } - - /// Returns the name assigned to `Atom`, either user-specified or created by - /// default rules (B0, B1, ...). - std::string getAtomName(const AtomicBoolValue *Atom) { - auto Entry = AtomNames.try_emplace(Atom, formatv("B{0}", Counter)); - if (Entry.second) { - Counter++; - } - return Entry.first->second; - } - - // Keep track of number of atoms without a user-specified name, used to assign - // non-repeating default names to such atoms. - size_t Counter; - - // Keep track of names assigned to atoms. - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames; -}; - -} // namespace - -std::string -debugString(const BoolValue &B, - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames) { - return DebugStringGenerator(std::move(AtomNames)).debugString(B); -} - -std::string -debugString(llvm::ArrayRef<BoolValue *> Constraints, - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames) { - return DebugStringGenerator(std::move(AtomNames)).debugString(Constraints); -} - -std::string -debugString(ArrayRef<BoolValue *> Constraints, const Solver::Result &Result, - llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames) { - return DebugStringGenerator(std::move(AtomNames)) - .debugString(Constraints, Result); + return OS; } } // namespace dataflow diff --git a/clang/lib/Analysis/FlowSensitive/Formula.cpp b/clang/lib/Analysis/FlowSensitive/Formula.cpp new file mode 100644 index 0000000..504ad2f --- /dev/null +++ b/clang/lib/Analysis/FlowSensitive/Formula.cpp @@ -0,0 +1,82 @@ +//===- Formula.cpp ----------------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/FlowSensitive/Formula.h" +#include "clang/Basic/LLVM.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> + +namespace clang::dataflow { + +Formula &Formula::create(llvm::BumpPtrAllocator &Alloc, Kind K, + ArrayRef<const Formula *> Operands, unsigned Value) { + assert(Operands.size() == numOperands(K)); + if (Value != 0) // Currently, formulas have values or operands, not both. + assert(numOperands(K) == 0); + void *Mem = Alloc.Allocate(sizeof(Formula) + + Operands.size() * sizeof(Operands.front()), + alignof(Formula)); + Formula *Result = new (Mem) Formula(); + Result->FormulaKind = K; + Result->Value = Value; + // Operands are stored as `const Formula *`s after the formula itself. + // We don't need to construct an object as pointers are trivial types. + // Formula is alignas(const Formula *), so alignment is satisfied. + llvm::copy(Operands, reinterpret_cast<const Formula **>(Result + 1)); + return *Result; +} + +static llvm::StringLiteral sigil(Formula::Kind K) { + switch (K) { + case Formula::AtomRef: + return ""; + case Formula::Not: + return "!"; + case Formula::And: + return " & "; + case Formula::Or: + return " | "; + case Formula::Implies: + return " => "; + case Formula::Equal: + return " = "; + } + llvm_unreachable("unhandled formula kind"); +} + +void Formula::print(llvm::raw_ostream &OS, const AtomNames *Names) const { + if (Names && kind() == AtomRef) + if (auto It = Names->find(getAtom()); It != Names->end()) { + OS << It->second; + return; + } + + switch (numOperands(kind())) { + case 0: + OS << getAtom(); + break; + case 1: + OS << sigil(kind()); + operands()[0]->print(OS, Names); + break; + case 2: + OS << '('; + operands()[0]->print(OS, Names); + OS << sigil(kind()); + operands()[1]->print(OS, Names); + OS << ')'; + break; + default: + llvm_unreachable("unhandled formula arity"); + } +} + +} // namespace clang::dataflow
\ No newline at end of file diff --git a/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp b/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp index db2e1d6..037886d 100644 --- a/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp +++ b/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp @@ -17,8 +17,8 @@ #include <queue> #include <vector> +#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" -#include "clang/Analysis/FlowSensitive/Value.h" #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" @@ -79,7 +79,7 @@ using ClauseID = uint32_t; static constexpr ClauseID NullClause = 0; /// A boolean formula in conjunctive normal form. -struct BooleanFormula { +struct CNFFormula { /// `LargestVar` is equal to the largest positive integer that represents a /// variable in the formula. const Variable LargestVar; @@ -121,12 +121,12 @@ struct BooleanFormula { /// clauses in the formula start from the element at index 1. std::vector<ClauseID> NextWatched; - /// Stores the variable identifier and value location for atomic booleans in - /// the formula. - llvm::DenseMap<Variable, AtomicBoolValue *> Atomics; + /// Stores the variable identifier and Atom for atomic booleans in the + /// formula. + llvm::DenseMap<Variable, Atom> Atomics; - explicit BooleanFormula(Variable LargestVar, - llvm::DenseMap<Variable, AtomicBoolValue *> Atomics) + explicit CNFFormula(Variable LargestVar, + llvm::DenseMap<Variable, Atom> Atomics) : LargestVar(LargestVar), Atomics(std::move(Atomics)) { Clauses.push_back(0); ClauseStarts.push_back(0); @@ -144,8 +144,8 @@ struct BooleanFormula { /// /// All literals in the input that are not `NullLit` must be distinct. void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) { - // The literals are guaranteed to be distinct from properties of BoolValue - // and the construction in `buildBooleanFormula`. + // The literals are guaranteed to be distinct from properties of Formula + // and the construction in `buildCNF`. assert(L1 != NullLit && L1 != L2 && L1 != L3 && (L2 != L3 || L2 == NullLit)); @@ -178,98 +178,59 @@ struct BooleanFormula { /// Converts the conjunction of `Vals` into a formula in conjunctive normal /// form where each clause has at least one and at most three literals. -BooleanFormula buildBooleanFormula(const llvm::ArrayRef<BoolValue *> &Vals) { +CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Vals) { // The general strategy of the algorithm implemented below is to map each // of the sub-values in `Vals` to a unique variable and use these variables in // the resulting CNF expression to avoid exponential blow up. The number of // literals in the resulting formula is guaranteed to be linear in the number - // of sub-values in `Vals`. + // of sub-formulas in `Vals`. - // Map each sub-value in `Vals` to a unique variable. - llvm::DenseMap<BoolValue *, Variable> SubValsToVar; - // Store variable identifiers and value location of atomic booleans. - llvm::DenseMap<Variable, AtomicBoolValue *> Atomics; + // Map each sub-formula in `Vals` to a unique variable. + llvm::DenseMap<const Formula *, Variable> SubValsToVar; + // Store variable identifiers and Atom of atomic booleans. + llvm::DenseMap<Variable, Atom> Atomics; Variable NextVar = 1; { - std::queue<BoolValue *> UnprocessedSubVals; - for (BoolValue *Val : Vals) + std::queue<const Formula *> UnprocessedSubVals; + for (const Formula *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { Variable Var = NextVar; - BoolValue *Val = UnprocessedSubVals.front(); + const Formula *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); if (!SubValsToVar.try_emplace(Val, Var).second) continue; ++NextVar; - // Visit the sub-values of `Val`. - switch (Val->getKind()) { - case Value::Kind::Conjunction: { - auto *C = cast<ConjunctionValue>(Val); - UnprocessedSubVals.push(&C->getLeftSubValue()); - UnprocessedSubVals.push(&C->getRightSubValue()); - break; - } - case Value::Kind::Disjunction: { - auto *D = cast<DisjunctionValue>(Val); - UnprocessedSubVals.push(&D->getLeftSubValue()); - UnprocessedSubVals.push(&D->getRightSubValue()); - break; - } - case Value::Kind::Negation: { - auto *N = cast<NegationValue>(Val); - UnprocessedSubVals.push(&N->getSubVal()); - break; - } - case Value::Kind::Implication: { - auto *I = cast<ImplicationValue>(Val); - UnprocessedSubVals.push(&I->getLeftSubValue()); - UnprocessedSubVals.push(&I->getRightSubValue()); - break; - } - case Value::Kind::Biconditional: { - auto *B = cast<BiconditionalValue>(Val); - UnprocessedSubVals.push(&B->getLeftSubValue()); - UnprocessedSubVals.push(&B->getRightSubValue()); - break; - } - case Value::Kind::TopBool: - // Nothing more to do. This `TopBool` instance has already been mapped - // to a fresh solver variable (`NextVar`, above) and is thereafter - // anonymous. The solver never sees `Top`. - break; - case Value::Kind::AtomicBool: { - Atomics[Var] = cast<AtomicBoolValue>(Val); - break; - } - default: - llvm_unreachable("buildBooleanFormula: unhandled value kind"); - } + for (const Formula *F : Val->operands()) + UnprocessedSubVals.push(F); + if (Val->kind() == Formula::AtomRef) + Atomics[Var] = Val->getAtom(); } } - auto GetVar = [&SubValsToVar](const BoolValue *Val) { + auto GetVar = [&SubValsToVar](const Formula *Val) { auto ValIt = SubValsToVar.find(Val); assert(ValIt != SubValsToVar.end()); return ValIt->second; }; - BooleanFormula Formula(NextVar - 1, std::move(Atomics)); + CNFFormula CNF(NextVar - 1, std::move(Atomics)); std::vector<bool> ProcessedSubVals(NextVar, false); - // Add a conjunct for each variable that represents a top-level conjunction - // value in `Vals`. - for (BoolValue *Val : Vals) - Formula.addClause(posLit(GetVar(Val))); + // Add a conjunct for each variable that represents a top-level formula in + // `Vals`. + for (const Formula *Val : Vals) + CNF.addClause(posLit(GetVar(Val))); // Add conjuncts that represent the mapping between newly-created variables - // and their corresponding sub-values. - std::queue<BoolValue *> UnprocessedSubVals; - for (BoolValue *Val : Vals) + // and their corresponding sub-formulas. + std::queue<const Formula *> UnprocessedSubVals; + for (const Formula *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { - const BoolValue *Val = UnprocessedSubVals.front(); + const Formula *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); const Variable Var = GetVar(Val); @@ -277,117 +238,107 @@ BooleanFormula buildBooleanFormula(const llvm::ArrayRef<BoolValue *> &Vals) { continue; ProcessedSubVals[Var] = true; - if (auto *C = dyn_cast<ConjunctionValue>(Val)) { - const Variable LeftSubVar = GetVar(&C->getLeftSubValue()); - const Variable RightSubVar = GetVar(&C->getRightSubValue()); + switch (Val->kind()) { + case Formula::AtomRef: + break; + case Formula::And: { + const Variable LHS = GetVar(Val->operands()[0]); + const Variable RHS = GetVar(Val->operands()[1]); - if (LeftSubVar == RightSubVar) { + if (LHS == RHS) { // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - Formula.addClause(negLit(Var), posLit(LeftSubVar)); - Formula.addClause(posLit(Var), negLit(LeftSubVar)); - - // Visit a sub-value of `Val` (pick any, they are identical). - UnprocessedSubVals.push(&C->getLeftSubValue()); + CNF.addClause(negLit(Var), posLit(LHS)); + CNF.addClause(posLit(Var), negLit(LHS)); } else { // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)` // which is already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - Formula.addClause(negLit(Var), posLit(LeftSubVar)); - Formula.addClause(negLit(Var), posLit(RightSubVar)); - Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); - - // Visit the sub-values of `Val`. - UnprocessedSubVals.push(&C->getLeftSubValue()); - UnprocessedSubVals.push(&C->getRightSubValue()); + CNF.addClause(negLit(Var), posLit(LHS)); + CNF.addClause(negLit(Var), posLit(RHS)); + CNF.addClause(posLit(Var), negLit(LHS), negLit(RHS)); } - } else if (auto *D = dyn_cast<DisjunctionValue>(Val)) { - const Variable LeftSubVar = GetVar(&D->getLeftSubValue()); - const Variable RightSubVar = GetVar(&D->getRightSubValue()); + break; + } + case Formula::Or: { + const Variable LHS = GetVar(Val->operands()[0]); + const Variable RHS = GetVar(Val->operands()[1]); - if (LeftSubVar == RightSubVar) { + if (LHS == RHS) { // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - Formula.addClause(negLit(Var), posLit(LeftSubVar)); - Formula.addClause(posLit(Var), negLit(LeftSubVar)); - - // Visit a sub-value of `Val` (pick any, they are identical). - UnprocessedSubVals.push(&D->getLeftSubValue()); + CNF.addClause(negLit(Var), posLit(LHS)); + CNF.addClause(posLit(Var), negLit(LHS)); } else { - // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)` - // which is already in conjunctive normal form. Below we add each of the - // conjuncts of the latter expression to the result. - Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); - Formula.addClause(posLit(Var), negLit(LeftSubVar)); - Formula.addClause(posLit(Var), negLit(RightSubVar)); - - // Visit the sub-values of `Val`. - UnprocessedSubVals.push(&D->getLeftSubValue()); - UnprocessedSubVals.push(&D->getRightSubValue()); + // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v + // !B)` which is already in conjunctive normal form. Below we add each + // of the conjuncts of the latter expression to the result. + CNF.addClause(negLit(Var), posLit(LHS), posLit(RHS)); + CNF.addClause(posLit(Var), negLit(LHS)); + CNF.addClause(posLit(Var), negLit(RHS)); } - } else if (auto *N = dyn_cast<NegationValue>(Val)) { - const Variable SubVar = GetVar(&N->getSubVal()); - - // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in - // conjunctive normal form. Below we add each of the conjuncts of the - // latter expression to the result. - Formula.addClause(negLit(Var), negLit(SubVar)); - Formula.addClause(posLit(Var), posLit(SubVar)); - - // Visit the sub-values of `Val`. - UnprocessedSubVals.push(&N->getSubVal()); - } else if (auto *I = dyn_cast<ImplicationValue>(Val)) { - const Variable LeftSubVar = GetVar(&I->getLeftSubValue()); - const Variable RightSubVar = GetVar(&I->getRightSubValue()); + break; + } + case Formula::Not: { + const Variable Operand = GetVar(Val->operands()[0]); + + // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is + // already in conjunctive normal form. Below we add each of the + // conjuncts of the latter expression to the result. + CNF.addClause(negLit(Var), negLit(Operand)); + CNF.addClause(posLit(Var), posLit(Operand)); + break; + } + case Formula::Implies: { + const Variable LHS = GetVar(Val->operands()[0]); + const Variable RHS = GetVar(Val->operands()[1]); // `X <=> (A => B)` is equivalent to // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in - // conjunctive normal form. Below we add each of the conjuncts of the - // latter expression to the result. - Formula.addClause(posLit(Var), posLit(LeftSubVar)); - Formula.addClause(posLit(Var), negLit(RightSubVar)); - Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); - - // Visit the sub-values of `Val`. - UnprocessedSubVals.push(&I->getLeftSubValue()); - UnprocessedSubVals.push(&I->getRightSubValue()); - } else if (auto *B = dyn_cast<BiconditionalValue>(Val)) { - const Variable LeftSubVar = GetVar(&B->getLeftSubValue()); - const Variable RightSubVar = GetVar(&B->getRightSubValue()); - - if (LeftSubVar == RightSubVar) { + // conjunctive normal form. Below we add each of the conjuncts of + // the latter expression to the result. + CNF.addClause(posLit(Var), posLit(LHS)); + CNF.addClause(posLit(Var), negLit(RHS)); + CNF.addClause(negLit(Var), negLit(LHS), posLit(RHS)); + break; + } + case Formula::Equal: { + const Variable LHS = GetVar(Val->operands()[0]); + const Variable RHS = GetVar(Val->operands()[1]); + + if (LHS == RHS) { // `X <=> (A <=> A)` is equvalent to `X` which is already in // conjunctive normal form. Below we add each of the conjuncts of the // latter expression to the result. - Formula.addClause(posLit(Var)); + CNF.addClause(posLit(Var)); // No need to visit the sub-values of `Val`. - } else { - // `X <=> (A <=> B)` is equivalent to - // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is - // already in conjunctive normal form. Below we add each of the conjuncts - // of the latter expression to the result. - Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); - Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); - Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar)); - Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); - - // Visit the sub-values of `Val`. - UnprocessedSubVals.push(&B->getLeftSubValue()); - UnprocessedSubVals.push(&B->getRightSubValue()); + continue; } + // `X <=> (A <=> B)` is equivalent to + // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which + // is already in conjunctive normal form. Below we add each of the + // conjuncts of the latter expression to the result. + CNF.addClause(posLit(Var), posLit(LHS), posLit(RHS)); + CNF.addClause(posLit(Var), negLit(LHS), negLit(RHS)); + CNF.addClause(negLit(Var), posLit(LHS), negLit(RHS)); + CNF.addClause(negLit(Var), negLit(LHS), posLit(RHS)); + break; + } } + for (const Formula *Child : Val->operands()) + UnprocessedSubVals.push(Child); } - return Formula; + return CNF; } class WatchedLiteralsSolverImpl { /// A boolean formula in conjunctive normal form that the solver will attempt /// to prove satisfiable. The formula will be modified in the process. - BooleanFormula Formula; + CNFFormula CNF; /// The search for a satisfying assignment of the variables in `Formula` will /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` @@ -439,9 +390,10 @@ class WatchedLiteralsSolverImpl { std::vector<Variable> ActiveVars; public: - explicit WatchedLiteralsSolverImpl(const llvm::ArrayRef<BoolValue *> &Vals) - : Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1), - LevelStates(Formula.LargestVar + 1) { + explicit WatchedLiteralsSolverImpl( + const llvm::ArrayRef<const Formula *> &Vals) + : CNF(buildCNF(Vals)), LevelVars(CNF.LargestVar + 1), + LevelStates(CNF.LargestVar + 1) { assert(!Vals.empty()); // Initialize the state at the root level to a decision so that in @@ -450,10 +402,10 @@ public: LevelStates[0] = State::Decision; // Initialize all variables as unassigned. - VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned); + VarAssignments.resize(CNF.LargestVar + 1, Assignment::Unassigned); // Initialize the active variables. - for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) { + for (Variable Var = CNF.LargestVar; Var != NullVar; --Var) { if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } @@ -474,7 +426,7 @@ public: // 3. Unassigned variables that form watched literals are active. // FIXME: Consider replacing these with test cases that fail if the any // of the invariants is broken. That might not be easy due to the - // transformations performed by `buildBooleanFormula`. + // transformations performed by `buildCNF`. assert(activeVarsAreUnassigned()); assert(activeVarsFormWatchedLiterals()); assert(unassignedVarsFormingWatchedLiteralsAreActive()); @@ -555,12 +507,10 @@ public: } private: - /// Returns a satisfying truth assignment to the atomic values in the boolean - /// formula. - llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> - buildSolution() { - llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> Solution; - for (auto &Atomic : Formula.Atomics) { + /// Returns a satisfying truth assignment to the atoms in the boolean formula. + llvm::DenseMap<Atom, Solver::Result::Assignment> buildSolution() { + llvm::DenseMap<Atom, Solver::Result::Assignment> Solution; + for (auto &Atomic : CNF.Atomics) { // A variable may have a definite true/false assignment, or it may be // unassigned indicating its truth value does not affect the result of // the formula. Unassigned variables are assigned to true as a default. @@ -596,24 +546,24 @@ private: const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue ? negLit(Var) : posLit(Var); - ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit]; - Formula.WatchedHead[FalseLit] = NullClause; + ClauseID FalseLitWatcher = CNF.WatchedHead[FalseLit]; + CNF.WatchedHead[FalseLit] = NullClause; while (FalseLitWatcher != NullClause) { - const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher]; + const ClauseID NextFalseLitWatcher = CNF.NextWatched[FalseLitWatcher]; // Pick the first non-false literal as the new watched literal. - const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher]; + const size_t FalseLitWatcherStart = CNF.ClauseStarts[FalseLitWatcher]; size_t NewWatchedLitIdx = FalseLitWatcherStart + 1; - while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx])) + while (isCurrentlyFalse(CNF.Clauses[NewWatchedLitIdx])) ++NewWatchedLitIdx; - const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx]; + const Literal NewWatchedLit = CNF.Clauses[NewWatchedLitIdx]; const Variable NewWatchedLitVar = var(NewWatchedLit); // Swap the old watched literal for the new one in `FalseLitWatcher` to // maintain the invariant that the watched literal is at the beginning of // the clause. - Formula.Clauses[NewWatchedLitIdx] = FalseLit; - Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit; + CNF.Clauses[NewWatchedLitIdx] = FalseLit; + CNF.Clauses[FalseLitWatcherStart] = NewWatchedLit; // If the new watched literal isn't watched by any other clause and its // variable isn't assigned we need to add it to the active variables. @@ -621,8 +571,8 @@ private: VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) ActiveVars.push_back(NewWatchedLitVar); - Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit]; - Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher; + CNF.NextWatched[FalseLitWatcher] = CNF.WatchedHead[NewWatchedLit]; + CNF.WatchedHead[NewWatchedLit] = FalseLitWatcher; // Go to the next clause that watches `FalseLit`. FalseLitWatcher = NextFalseLitWatcher; @@ -632,16 +582,15 @@ private: /// Returns true if and only if one of the clauses that watch `Lit` is a unit /// clause. bool watchedByUnitClause(Literal Lit) const { - for (ClauseID LitWatcher = Formula.WatchedHead[Lit]; - LitWatcher != NullClause; - LitWatcher = Formula.NextWatched[LitWatcher]) { - llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher); + for (ClauseID LitWatcher = CNF.WatchedHead[Lit]; LitWatcher != NullClause; + LitWatcher = CNF.NextWatched[LitWatcher]) { + llvm::ArrayRef<Literal> Clause = CNF.clauseLiterals(LitWatcher); // Assert the invariant that the watched literal is always the first one // in the clause. // FIXME: Consider replacing this with a test case that fails if the // invariant is broken by `updateWatchedLiterals`. That might not be easy - // due to the transformations performed by `buildBooleanFormula`. + // due to the transformations performed by `buildCNF`. assert(Clause.front() == Lit); if (isUnit(Clause)) @@ -665,7 +614,7 @@ private: /// Returns true if and only if `Lit` is watched by a clause in `Formula`. bool isWatched(Literal Lit) const { - return Formula.WatchedHead[Lit] != NullClause; + return CNF.WatchedHead[Lit] != NullClause; } /// Returns an assignment for an unassigned variable. @@ -678,8 +627,8 @@ private: /// Returns a set of all watched literals. llvm::DenseSet<Literal> watchedLiterals() const { llvm::DenseSet<Literal> WatchedLiterals; - for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) { - if (Formula.WatchedHead[Lit] == NullClause) + for (Literal Lit = 2; Lit < CNF.WatchedHead.size(); Lit++) { + if (CNF.WatchedHead[Lit] == NullClause) continue; WatchedLiterals.insert(Lit); } @@ -719,7 +668,8 @@ private: } }; -Solver::Result WatchedLiteralsSolver::solve(llvm::ArrayRef<BoolValue *> Vals) { +Solver::Result +WatchedLiteralsSolver::solve(llvm::ArrayRef<const Formula *> Vals) { if (Vals.empty()) return Solver::Result::Satisfiable({{}}); auto [Res, Iterations] = |