aboutsummaryrefslogtreecommitdiff
path: root/lldb/unittests/ScriptInterpreter/Python/PythonDataObjectsTests.cpp
diff options
context:
space:
mode:
authorS. VenkataKeerthy <31350914+svkeerthy@users.noreply.github.com>2025-07-29 11:56:52 -0700
committerGitHub <noreply@github.com>2025-07-29 11:56:52 -0700
commit130f24b28d38ca3679a76ab7a6a4f7ff7e9f4c81 (patch)
tree7eed217790695fc8c2049092114ea9879aa626fd /lldb/unittests/ScriptInterpreter/Python/PythonDataObjectsTests.cpp
parent052b836d2384c8a583ae5f945dcdcfba2004bbb0 (diff)
downloadllvm-130f24b28d38ca3679a76ab7a6a4f7ff7e9f4c81.zip
llvm-130f24b28d38ca3679a76ab7a6a4f7ff7e9f4c81.tar.gz
llvm-130f24b28d38ca3679a76ab7a6a4f7ff7e9f4c81.tar.bz2
[IR2Vec][llvm-ir2vec] Revamp triplet generation and add entity mapping mode (#149214)
Add entity mapping mode to llvm-ir2vec and improve triplet generation format for knowledge graph embedding training. This change streamlines the workflow for training the vocabulary embeddings with IR2Vec by: 1. Directly generating numeric IDs instead of requiring string-to-ID preprocessing 2. Providing entity mappings in standard knowledge graph embedding format 3. Structuring triplet output in train2id format compatible with knowledge graph embedding frameworks 4. Adding metadata headers to simplify post-processing and training setup These improvements make IR2Vec more compatible with standard knowledge graph embedding training pipelines and reduce the preprocessing steps needed before training. See #149215 for more details on how it is used. (Tracking issues - #141817, #141834)
Diffstat (limited to 'lldb/unittests/ScriptInterpreter/Python/PythonDataObjectsTests.cpp')
0 files changed, 0 insertions, 0 deletions