aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Frontend/CompilerInvocation.cpp
diff options
context:
space:
mode:
authorHanhan Wang <hanchung@google.com>2020-03-31 21:21:33 -0700
committerHanhan Wang <hanchung@google.com>2020-03-31 21:21:54 -0700
commit69ddee1d2aadaa0b9ac4549f366d1bf5701a65f0 (patch)
treedc5f6e9f58556a7d54cf8358ed25d0ed62220c79 /clang/lib/Frontend/CompilerInvocation.cpp
parentbb3111cbaf7b181bcda94415456a69b2a6b767ad (diff)
downloadllvm-69ddee1d2aadaa0b9ac4549f366d1bf5701a65f0.zip
llvm-69ddee1d2aadaa0b9ac4549f366d1bf5701a65f0.tar.gz
llvm-69ddee1d2aadaa0b9ac4549f366d1bf5701a65f0.tar.bz2
[mlir][Linalg] Introduce linalg.pooling_min/max/sum op.
Summary: Performs an N-D pooling operation similarly to the description in the TF documentation: https://www.tensorflow.org/api_docs/python/tf/nn/pool Different from the description, this operation doesn't perform on batch and channel. It only takes tensors of rank `N`. ``` output[x[0], ..., x[N-1]] = REDUCE_{z[0], ..., z[N-1]} input[ x[0] * strides[0] - pad_before[0] + dilation_rate[0]*z[0], ... x[N-1]*strides[N-1] - pad_before[N-1] + dilation_rate[N-1]*z[N-1] ], ``` The required optional arguments are: - strides: an i64 array specifying the stride (i.e. step) for window loops. - dilations: an i64 array specifying the filter upsampling/input downsampling rate - padding: an i64 array of pairs (low, high) specifying the number of elements to pad along a dimension. If strides or dilations attributes are missing then the default value is one for each of the input dimensions. Similarly, padding values are zero for both low and high in each of the dimensions, if not specified. Differential Revision: https://reviews.llvm.org/D76414
Diffstat (limited to 'clang/lib/Frontend/CompilerInvocation.cpp')
0 files changed, 0 insertions, 0 deletions