diff options
author | Aart Bik <39774503+aartbik@users.noreply.github.com> | 2023-11-28 17:46:02 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-11-28 17:46:02 -0800 |
commit | 98f8b1afb408e488274e77533dbb8041c9513ca7 (patch) | |
tree | 4589dadb143efb3a4767d34ff99eacee436d3b22 | |
parent | 83305faeb54cf254d133e39ddac7f2fee36972cc (diff) | |
download | llvm-98f8b1afb408e488274e77533dbb8041c9513ca7.zip llvm-98f8b1afb408e488274e77533dbb8041c9513ca7.tar.gz llvm-98f8b1afb408e488274e77533dbb8041c9513ca7.tar.bz2 |
[mlir][sparse] remove COO test from trait and encoding (#73733)
This is a minor step towards moving ALL COO related tests into the
SparseTensorType class rather than
having it all over the place (with risk of becoming inconsistent). Next
revision will move ALL COO related methods into this class.
3 files changed, 13 insertions, 29 deletions
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td index 1e62d99..12c1068 100644 --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td @@ -382,9 +382,6 @@ def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding", /// the null encoding (since dense-tensors are always all-dense). bool isAllDense() const; - /// Returns true if it is a sparse tensor encoding in COO format. - bool isCOO() const; - /// Returns true if every level is ordered. Also returns true for /// the null encoding (since dense-tensors are always all-ordered). bool isAllOrdered() const; @@ -467,10 +464,6 @@ def SparseTensorStorageSpecifierKindAttr def IsSparseTensorPred : CPred<"!!::mlir::sparse_tensor::getSparseTensorEncoding($_self)">; -def IsCOOPred - : CPred<"!!::mlir::sparse_tensor::getSparseTensorEncoding($_self) && " - " ::mlir::sparse_tensor::getSparseTensorEncoding($_self).isCOO()">; - def IsSparseTensorSlicePred : CPred<"!!::mlir::sparse_tensor::getSparseTensorEncoding($_self) && " " ::mlir::sparse_tensor::getSparseTensorEncoding($_self).isSlice()">; @@ -478,22 +471,14 @@ def IsSparseTensorSlicePred class SparseTensorOf<list<Type> allowedTypes> : TensorOf<allowedTypes, [IsSparseTensorPred], "sparse tensor">; -class COOSparseTensorOf<list<Type> allowedTypes> - : TensorOf<allowedTypes, [IsCOOPred], "COO sparse tensor">; - class SparseTensorSliceOf<list<Type> allowedTypes> : TensorOf<allowedTypes, [IsSparseTensorSlicePred], "sparse tensor slice">; -class RankedSparseTensorOf<list<Type> allowedTypes> - : RankedTensorOf<allowedTypes, [IsSparseTensorPred], "ranked sparse tensor">; - class ScalarLikeOf<list<Type> allowedTypes> : AnyTypeOf<[0DTensorOf<allowedTypes>, AnyTypeOf<allowedTypes>], "scalar like">; def AnySparseTensor : SparseTensorOf<[AnyType]>; -def AnyCOOSparseTensor : COOSparseTensorOf<[AnyType]>; def AnySparseTensorSlice : SparseTensorSliceOf<[AnyType]>; -def AnyRankedSparseTensor : RankedSparseTensorOf<[AnyType]>; def AnyIndexingScalarLike : ScalarLikeOf<[AnySignlessIntegerOrIndex]>; //===----------------------------------------------------------------------===// diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td index 78031f2..3127cf1 100644 --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td @@ -921,10 +921,9 @@ def SparseTensor_SortOp : SparseTensor_Op<"sort">, let summary = "Sorts the arrays in xs and ys lexicographically on the " "integral values found in the xs list"; let description = [{ - Sparse_tensor.sort sort the `xs` values along with some `ys` values - that are put in a single linear buffer `xy`. - The affine map attribute `perm_map` specifies the permutation to be applied on - the `xs` before comparison, the rank of the permutation map + Sorts the `xs` values along with some `ys` values that are put in a single linear + buffer `xy`. The affine map attribute `perm_map` specifies the permutation to be + applied on the `xs` before comparison, the rank of the permutation map also specifies the number of `xs` values in `xy`. The optional index attribute `ny` provides the number of `ys` values in `xy`. When `ny` is not explicitly specified, its value is 0. @@ -950,14 +949,14 @@ def SparseTensor_SortOp : SparseTensor_Op<"sort">, } def SparseTensor_ReorderCOOOp : SparseTensor_Op<"reorder_coo", [Pure]>, - Arguments<(ins AnyCOOSparseTensor: $input_coo, + Arguments<(ins AnySparseTensor: $input_coo, SparseTensorSortKindAttr:$algorithm)>, - Results<(outs AnyCOOSparseTensor: $result_coo)> { + Results<(outs AnySparseTensor: $result_coo)> { let summary = "Reorder the input COO such that it has the the same order as " "the output COO"; let description = [{ - sparse_tensor.reorder_coo reorder input COO to the same order as specified by - the output format. E.g., reorder an unordered COO into an ordered one. + Reorders the input COO to the same order as specified by the output format. + E.g., reorder an unordered COO into an ordered one. The input and result COO tensor must have the same element type, position type and coordinate type. At the moment, the operation also only supports ordering diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp index 74d2fd5..d4f8afd 100644 --- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp +++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp @@ -316,10 +316,6 @@ bool SparseTensorEncodingAttr::isAllDense() const { return !getImpl() || llvm::all_of(getLvlTypes(), isDenseLT); } -bool SparseTensorEncodingAttr::isCOO() const { - return getImpl() && isCOOType(*this, 0, true); -} - bool SparseTensorEncodingAttr::isAllOrdered() const { return !getImpl() || llvm::all_of(getLvlTypes(), isOrderedLT); } @@ -1664,14 +1660,18 @@ LogicalResult ReorderCOOOp::verify() { SparseTensorType srcStt = getSparseTensorType(getInputCoo()); SparseTensorType dstStt = getSparseTensorType(getResultCoo()); + if (!isCOOType(srcStt.getEncoding(), 0, /*isUnique=*/true) || + !isCOOType(dstStt.getEncoding(), 0, /*isUnique=*/true)) + emitError("Unexpected non-COO sparse tensors"); + if (!srcStt.hasSameDimToLvl(dstStt)) emitError("Unmatched dim2lvl map between input and result COO"); if (srcStt.getPosType() != dstStt.getPosType() || srcStt.getCrdType() != dstStt.getCrdType() || - srcStt.getElementType() != dstStt.getElementType()) { + srcStt.getElementType() != dstStt.getElementType()) emitError("Unmatched storage format between input and result COO"); - } + return success(); } |