aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/x86/dl-cacheinfo.h
blob: 5ddb35c9d9ff467037d38e39c35f315bf7961adf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
/* Initialize x86 cache info.
   Copyright (C) 2020-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

static const struct intel_02_cache_info
{
  unsigned char idx;
  unsigned char assoc;
  unsigned char linesize;
  unsigned char rel_name;
  unsigned int size;
} intel_02_known [] =
  {
#define M(sc) ((sc) - _SC_LEVEL1_ICACHE_SIZE)
    { 0x06,  4, 32, M(_SC_LEVEL1_ICACHE_SIZE),    8192 },
    { 0x08,  4, 32, M(_SC_LEVEL1_ICACHE_SIZE),   16384 },
    { 0x09,  4, 32, M(_SC_LEVEL1_ICACHE_SIZE),   32768 },
    { 0x0a,  2, 32, M(_SC_LEVEL1_DCACHE_SIZE),    8192 },
    { 0x0c,  4, 32, M(_SC_LEVEL1_DCACHE_SIZE),   16384 },
    { 0x0d,  4, 64, M(_SC_LEVEL1_DCACHE_SIZE),   16384 },
    { 0x0e,  6, 64, M(_SC_LEVEL1_DCACHE_SIZE),   24576 },
    { 0x21,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x22,  4, 64, M(_SC_LEVEL3_CACHE_SIZE),   524288 },
    { 0x23,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  1048576 },
    { 0x25,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  2097152 },
    { 0x29,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  4194304 },
    { 0x2c,  8, 64, M(_SC_LEVEL1_DCACHE_SIZE),   32768 },
    { 0x30,  8, 64, M(_SC_LEVEL1_ICACHE_SIZE),   32768 },
    { 0x39,  4, 64, M(_SC_LEVEL2_CACHE_SIZE),   131072 },
    { 0x3a,  6, 64, M(_SC_LEVEL2_CACHE_SIZE),   196608 },
    { 0x3b,  2, 64, M(_SC_LEVEL2_CACHE_SIZE),   131072 },
    { 0x3c,  4, 64, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x3d,  6, 64, M(_SC_LEVEL2_CACHE_SIZE),   393216 },
    { 0x3e,  4, 64, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x3f,  2, 64, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x41,  4, 32, M(_SC_LEVEL2_CACHE_SIZE),   131072 },
    { 0x42,  4, 32, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x43,  4, 32, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x44,  4, 32, M(_SC_LEVEL2_CACHE_SIZE),  1048576 },
    { 0x45,  4, 32, M(_SC_LEVEL2_CACHE_SIZE),  2097152 },
    { 0x46,  4, 64, M(_SC_LEVEL3_CACHE_SIZE),  4194304 },
    { 0x47,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  8388608 },
    { 0x48, 12, 64, M(_SC_LEVEL2_CACHE_SIZE),  3145728 },
    { 0x49, 16, 64, M(_SC_LEVEL2_CACHE_SIZE),  4194304 },
    { 0x4a, 12, 64, M(_SC_LEVEL3_CACHE_SIZE),  6291456 },
    { 0x4b, 16, 64, M(_SC_LEVEL3_CACHE_SIZE),  8388608 },
    { 0x4c, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 },
    { 0x4d, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 16777216 },
    { 0x4e, 24, 64, M(_SC_LEVEL2_CACHE_SIZE),  6291456 },
    { 0x60,  8, 64, M(_SC_LEVEL1_DCACHE_SIZE),   16384 },
    { 0x66,  4, 64, M(_SC_LEVEL1_DCACHE_SIZE),    8192 },
    { 0x67,  4, 64, M(_SC_LEVEL1_DCACHE_SIZE),   16384 },
    { 0x68,  4, 64, M(_SC_LEVEL1_DCACHE_SIZE),   32768 },
    { 0x78,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),  1048576 },
    { 0x79,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),   131072 },
    { 0x7a,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x7b,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x7c,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),  1048576 },
    { 0x7d,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),  2097152 },
    { 0x7f,  2, 64, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x80,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x82,  8, 32, M(_SC_LEVEL2_CACHE_SIZE),   262144 },
    { 0x83,  8, 32, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x84,  8, 32, M(_SC_LEVEL2_CACHE_SIZE),  1048576 },
    { 0x85,  8, 32, M(_SC_LEVEL2_CACHE_SIZE),  2097152 },
    { 0x86,  4, 64, M(_SC_LEVEL2_CACHE_SIZE),   524288 },
    { 0x87,  8, 64, M(_SC_LEVEL2_CACHE_SIZE),  1048576 },
    { 0xd0,  4, 64, M(_SC_LEVEL3_CACHE_SIZE),   524288 },
    { 0xd1,  4, 64, M(_SC_LEVEL3_CACHE_SIZE),  1048576 },
    { 0xd2,  4, 64, M(_SC_LEVEL3_CACHE_SIZE),  2097152 },
    { 0xd6,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  1048576 },
    { 0xd7,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  2097152 },
    { 0xd8,  8, 64, M(_SC_LEVEL3_CACHE_SIZE),  4194304 },
    { 0xdc, 12, 64, M(_SC_LEVEL3_CACHE_SIZE),  2097152 },
    { 0xdd, 12, 64, M(_SC_LEVEL3_CACHE_SIZE),  4194304 },
    { 0xde, 12, 64, M(_SC_LEVEL3_CACHE_SIZE),  8388608 },
    { 0xe2, 16, 64, M(_SC_LEVEL3_CACHE_SIZE),  2097152 },
    { 0xe3, 16, 64, M(_SC_LEVEL3_CACHE_SIZE),  4194304 },
    { 0xe4, 16, 64, M(_SC_LEVEL3_CACHE_SIZE),  8388608 },
    { 0xea, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 },
    { 0xeb, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 18874368 },
    { 0xec, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 25165824 },
  };

#define nintel_02_known (sizeof (intel_02_known) / sizeof (intel_02_known [0]))

static int
intel_02_known_compare (const void *p1, const void *p2)
{
  const struct intel_02_cache_info *i1;
  const struct intel_02_cache_info *i2;

  i1 = (const struct intel_02_cache_info *) p1;
  i2 = (const struct intel_02_cache_info *) p2;

  if (i1->idx == i2->idx)
    return 0;

  return i1->idx < i2->idx ? -1 : 1;
}


static long int
__attribute__ ((noinline))
intel_check_word (int name, unsigned int value, bool *has_level_2,
		  bool *no_level_2_or_3,
		  const struct cpu_features *cpu_features)
{
  if ((value & 0x80000000) != 0)
    /* The register value is reserved.  */
    return 0;

  /* Fold the name.  The _SC_ constants are always in the order SIZE,
     ASSOC, LINESIZE.  */
  int folded_rel_name = (M(name) / 3) * 3;

  while (value != 0)
    {
      unsigned int byte = value & 0xff;

      if (byte == 0x40)
	{
	  *no_level_2_or_3 = true;

	  if (folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))
	    /* No need to look further.  */
	    break;
	}
      else if (byte == 0xff)
	{
	  /* CPUID leaf 0x4 contains all the information.  We need to
	     iterate over it.  */
	  unsigned int eax;
	  unsigned int ebx;
	  unsigned int ecx;
	  unsigned int edx;

	  unsigned int round = 0;
	  while (1)
	    {
	      __cpuid_count (4, round, eax, ebx, ecx, edx);

	      enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f;
	      if (type == null)
		/* That was the end.  */
		break;

	      unsigned int level = (eax >> 5) & 0x7;

	      if ((level == 1 && type == data
		   && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE))
		  || (level == 1 && type == inst
		      && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE))
		  || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE))
		  || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))
		  || (level == 4 && folded_rel_name == M(_SC_LEVEL4_CACHE_SIZE)))
		{
		  unsigned int offset = M(name) - folded_rel_name;

		  if (offset == 0)
		    /* Cache size.  */
		    return (((ebx >> 22) + 1)
			    * (((ebx >> 12) & 0x3ff) + 1)
			    * ((ebx & 0xfff) + 1)
			    * (ecx + 1));
		  if (offset == 1)
		    return (ebx >> 22) + 1;

		  assert (offset == 2);
		  return (ebx & 0xfff) + 1;
		}

	      ++round;
	    }
	  /* There is no other cache information anywhere else.  */
	  break;
	}
      else
	{
	  if (byte == 0x49 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))
	    {
	      /* Intel reused this value.  For family 15, model 6 it
		 specifies the 3rd level cache.  Otherwise the 2nd
		 level cache.  */
	      unsigned int family = cpu_features->basic.family;
	      unsigned int model = cpu_features->basic.model;

	      if (family == 15 && model == 6)
		{
		  /* The level 3 cache is encoded for this model like
		     the level 2 cache is for other models.  Pretend
		     the caller asked for the level 2 cache.  */
		  name = (_SC_LEVEL2_CACHE_SIZE
			  + (name - _SC_LEVEL3_CACHE_SIZE));
		  folded_rel_name = M(_SC_LEVEL2_CACHE_SIZE);
		}
	    }

	  struct intel_02_cache_info *found;
	  struct intel_02_cache_info search;

	  search.idx = byte;
	  found = bsearch (&search, intel_02_known, nintel_02_known,
			   sizeof (intel_02_known[0]), intel_02_known_compare);
	  if (found != NULL)
	    {
	      if (found->rel_name == folded_rel_name)
		{
		  unsigned int offset = M(name) - folded_rel_name;

		  if (offset == 0)
		    /* Cache size.  */
		    return found->size;
		  if (offset == 1)
		    return found->assoc;

		  assert (offset == 2);
		  return found->linesize;
		}

	      if (found->rel_name == M(_SC_LEVEL2_CACHE_SIZE))
		*has_level_2 = true;
	    }
	}

      /* Next byte for the next round.  */
      value >>= 8;
    }

  /* Nothing found.  */
  return 0;
}


static long int __attribute__ ((noinline))
handle_intel (int name, const struct cpu_features *cpu_features)
{
  unsigned int maxidx = cpu_features->basic.max_cpuid;

  /* Return -1 for older CPUs.  */
  if (maxidx < 2)
    return -1;

  /* OK, we can use the CPUID instruction to get all info about the
     caches.  */
  unsigned int cnt = 0;
  unsigned int max = 1;
  long int result = 0;
  bool no_level_2_or_3 = false;
  bool has_level_2 = false;

  while (cnt++ < max)
    {
      unsigned int eax;
      unsigned int ebx;
      unsigned int ecx;
      unsigned int edx;
      __cpuid (2, eax, ebx, ecx, edx);

      /* The low byte of EAX in the first round contain the number of
	 rounds we have to make.  At least one, the one we are already
	 doing.  */
      if (cnt == 1)
	{
	  max = eax & 0xff;
	  eax &= 0xffffff00;
	}

      /* Process the individual registers' value.  */
      result = intel_check_word (name, eax, &has_level_2,
				 &no_level_2_or_3, cpu_features);
      if (result != 0)
	return result;

      result = intel_check_word (name, ebx, &has_level_2,
				 &no_level_2_or_3, cpu_features);
      if (result != 0)
	return result;

      result = intel_check_word (name, ecx, &has_level_2,
				 &no_level_2_or_3, cpu_features);
      if (result != 0)
	return result;

      result = intel_check_word (name, edx, &has_level_2,
				 &no_level_2_or_3, cpu_features);
      if (result != 0)
	return result;
    }

  if (name >= _SC_LEVEL2_CACHE_SIZE && name <= _SC_LEVEL3_CACHE_LINESIZE
      && no_level_2_or_3)
    return -1;

  return 0;
}


static long int __attribute__ ((noinline))
handle_amd (int name)
{
  unsigned int eax;
  unsigned int ebx;
  unsigned int ecx = 0;
  unsigned int edx;
  unsigned int max_cpuid = 0;
  unsigned int fn = 0;

  /* No level 4 cache (yet).  */
  if (name > _SC_LEVEL3_CACHE_LINESIZE)
    return 0;

  __cpuid (0x80000000, max_cpuid, ebx, ecx, edx);

  if (max_cpuid >= 0x8000001D)
    /* Use __cpuid__ '0x8000_001D' to compute cache details.  */
    {
      unsigned int count = 0x1;

      if (name >= _SC_LEVEL3_CACHE_SIZE)
        count = 0x3;
      else if (name >= _SC_LEVEL2_CACHE_SIZE)
        count = 0x2;
      else if (name >= _SC_LEVEL1_DCACHE_SIZE)
        count = 0x0;

      __cpuid_count (0x8000001D, count, eax, ebx, ecx, edx);

      if (ecx != 0)
        {
          switch (name)
            {
            case _SC_LEVEL1_ICACHE_ASSOC:
            case _SC_LEVEL1_DCACHE_ASSOC:
            case _SC_LEVEL2_CACHE_ASSOC:
            case _SC_LEVEL3_CACHE_ASSOC:
              return ((ebx >> 22) & 0x3ff) + 1;
            case _SC_LEVEL1_ICACHE_LINESIZE:
            case _SC_LEVEL1_DCACHE_LINESIZE:
            case _SC_LEVEL2_CACHE_LINESIZE:
            case _SC_LEVEL3_CACHE_LINESIZE:
              return (ebx & 0xfff) + 1;
            case _SC_LEVEL1_ICACHE_SIZE:
            case _SC_LEVEL1_DCACHE_SIZE:
            case _SC_LEVEL2_CACHE_SIZE:
            case _SC_LEVEL3_CACHE_SIZE:
              return (((ebx >> 22) & 0x3ff) + 1) * ((ebx & 0xfff) + 1) * (ecx + 1);
            default:
              __builtin_unreachable ();
            }
          return -1;
        }
    }

  /* Legacy cache computation for CPUs prior to Bulldozer family.
     This is also a fail-safe mechanism for some hypervisors that
     accidentally configure __cpuid__ '0x8000_001D' to Zero.  */

  fn = 0x80000005 + (name >= _SC_LEVEL2_CACHE_SIZE);

  if (max_cpuid < fn)
    return 0;

  __cpuid (fn, eax, ebx, ecx, edx);

  if (name < _SC_LEVEL1_DCACHE_SIZE)
    {
      name += _SC_LEVEL1_DCACHE_SIZE - _SC_LEVEL1_ICACHE_SIZE;
      ecx = edx;
    }

  switch (name)
    {
      case _SC_LEVEL1_DCACHE_SIZE:
        return (ecx >> 14) & 0x3fc00;

      case _SC_LEVEL1_DCACHE_ASSOC:
        ecx >>= 16;
        if ((ecx & 0xff) == 0xff)
        {
          /* Fully associative.  */
          return (ecx << 2) & 0x3fc00;
        }
        return ecx & 0xff;

      case _SC_LEVEL1_DCACHE_LINESIZE:
        return ecx & 0xff;

      case _SC_LEVEL2_CACHE_SIZE:
        return (ecx & 0xf000) == 0 ? 0 : (ecx >> 6) & 0x3fffc00;

      case _SC_LEVEL2_CACHE_ASSOC:
        switch ((ecx >> 12) & 0xf)
          {
            case 0:
            case 1:
            case 2:
            case 4:
              return (ecx >> 12) & 0xf;
            case 6:
              return 8;
            case 8:
              return 16;
            case 10:
              return 32;
            case 11:
              return 48;
            case 12:
              return 64;
            case 13:
              return 96;
            case 14:
              return 128;
            case 15:
              return ((ecx >> 6) & 0x3fffc00) / (ecx & 0xff);
            default:
              return 0;
          }

      case _SC_LEVEL2_CACHE_LINESIZE:
        return (ecx & 0xf000) == 0 ? 0 : ecx & 0xff;

      case _SC_LEVEL3_CACHE_SIZE:
        {
        long int total_l3_cache = 0, l3_cache_per_thread = 0;
        unsigned int threads = 0;
        const struct cpu_features *cpu_features;

        if ((edx & 0xf000) == 0)
          return 0;

        total_l3_cache = (edx & 0x3ffc0000) << 1;
        cpu_features = __get_cpu_features ();

        /* Figure out the number of logical threads that share L3.  */
        if (max_cpuid >= 0x80000008)
          {
            /* Get width of APIC ID.  */
            __cpuid (0x80000008, eax, ebx, ecx, edx);
            threads = (ecx & 0xff) + 1;
          }

        if (threads == 0)
          {
            /* If APIC ID width is not available, use logical
            processor count.  */
            __cpuid (0x00000001, eax, ebx, ecx, edx);
            if ((edx & (1 << 28)) != 0)
              threads = (ebx >> 16) & 0xff;
          }

        /* Cap usage of highest cache level to the number of
           supported threads.  */
        if (threads > 0)
          l3_cache_per_thread = total_l3_cache/threads;

        /* Get shared cache per ccx for Zen architectures.  */
        if (cpu_features->basic.family >= 0x17)
          {
            long int l3_cache_per_ccx = 0;
            /* Get number of threads share the L3 cache in CCX.  */
            __cpuid_count (0x8000001D, 0x3, eax, ebx, ecx, edx);
            unsigned int threads_per_ccx = ((eax >> 14) & 0xfff) + 1;
            l3_cache_per_ccx = l3_cache_per_thread * threads_per_ccx;
            return l3_cache_per_ccx;
          }
        else
          {
            return l3_cache_per_thread;
          }
      }

    case _SC_LEVEL3_CACHE_ASSOC:
      switch ((edx >> 12) & 0xf)
      {
        case 0:
        case 1:
        case 2:
        case 4:
          return (edx >> 12) & 0xf;
        case 6:
          return 8;
        case 8:
          return 16;
        case 10:
          return 32;
        case 11:
          return 48;
        case 12:
          return 64;
        case 13:
          return 96;
        case 14:
          return 128;
        case 15:
          return ((edx & 0x3ffc0000) << 1) / (edx & 0xff);
        default:
          return 0;
      }

    case _SC_LEVEL3_CACHE_LINESIZE:
      return (edx & 0xf000) == 0 ? 0 : edx & 0xff;

    default:
      __builtin_unreachable ();
    }
  return -1;
}


static long int __attribute__ ((noinline))
handle_zhaoxin (int name)
{
  unsigned int eax;
  unsigned int ebx;
  unsigned int ecx;
  unsigned int edx;

  int folded_rel_name = (M(name) / 3) * 3;

  unsigned int round = 0;
  while (1)
    {
      __cpuid_count (4, round, eax, ebx, ecx, edx);

      enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f;
      if (type == null)
        break;

      unsigned int level = (eax >> 5) & 0x7;

      if ((level == 1 && type == data
        && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE))
        || (level == 1 && type == inst
            && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE))
        || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE))
        || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)))
        {
          unsigned int offset = M(name) - folded_rel_name;

          if (offset == 0)
            /* Cache size.  */
            return (((ebx >> 22) + 1)
                * (((ebx >> 12) & 0x3ff) + 1)
                * ((ebx & 0xfff) + 1)
                * (ecx + 1));
          if (offset == 1)
            return (ebx >> 22) + 1;

          assert (offset == 2);
          return (ebx & 0xfff) + 1;
        }

      ++round;
    }

  /* Nothing found.  */
  return 0;
}

static void
get_common_cache_info (long int *shared_ptr, long int * shared_per_thread_ptr, unsigned int *threads_ptr,
                long int core)
{
  unsigned int eax;
  unsigned int ebx;
  unsigned int ecx;
  unsigned int edx;

  /* Number of logical processors sharing L2 cache.  */
  int threads_l2;

  /* Number of logical processors sharing L3 cache.  */
  int threads_l3;

  const struct cpu_features *cpu_features = __get_cpu_features ();
  int max_cpuid = cpu_features->basic.max_cpuid;
  unsigned int family = cpu_features->basic.family;
  unsigned int model = cpu_features->basic.model;
  long int shared = *shared_ptr;
  long int shared_per_thread = *shared_per_thread_ptr;
  unsigned int threads = *threads_ptr;
  bool inclusive_cache = true;
  bool support_count_mask = true;

  /* Try L3 first.  */
  unsigned int level = 3;

  if (cpu_features->basic.kind == arch_kind_zhaoxin && family == 6)
    support_count_mask = false;

  if (shared <= 0)
    {
      /* Try L2 otherwise.  */
      level  = 2;
      shared = core;
      shared_per_thread = core;
      threads_l2 = 0;
      threads_l3 = -1;
    }
  else
    {
      threads_l2 = 0;
      threads_l3 = 0;
    }

  /* A value of 0 for the HTT bit indicates there is only a single
     logical processor.  */
  if (HAS_CPU_FEATURE (HTT))
    {
      /* Figure out the number of logical threads that share the
         highest cache level.  */
      if (max_cpuid >= 4)
        {
          int i = 0;

          /* Query until cache level 2 and 3 are enumerated.  */
          int check = 0x1 | (threads_l3 == 0) << 1;
          do
            {
              __cpuid_count (4, i++, eax, ebx, ecx, edx);

              /* There seems to be a bug in at least some Pentium Ds
                 which sometimes fail to iterate all cache parameters.
                 Do not loop indefinitely here, stop in this case and
                 assume there is no such information.  */
              if (cpu_features->basic.kind == arch_kind_intel
                  && (eax & 0x1f) == 0 )
                goto intel_bug_no_cache_info;

              switch ((eax >> 5) & 0x7)
                {
                  default:
                    break;
                  case 2:
                    if ((check & 0x1))
                      {
                        /* Get maximum number of logical processors
                           sharing L2 cache.  */
                        threads_l2 = (eax >> 14) & 0x3ff;
                        check &= ~0x1;
                      }
                    break;
                  case 3:
                    if ((check & (0x1 << 1)))
                      {
                        /* Get maximum number of logical processors
                           sharing L3 cache.  */
                        threads_l3 = (eax >> 14) & 0x3ff;

                        /* Check if L2 and L3 caches are inclusive.  */
                        inclusive_cache = (edx & 0x2) != 0;
                        check &= ~(0x1 << 1);
                      }
                    break;
                }
            }
          while (check);

          /* If max_cpuid >= 11, THREADS_L2/THREADS_L3 are the maximum
             numbers of addressable IDs for logical processors sharing
             the cache, instead of the maximum number of threads
             sharing the cache.  */
          if (max_cpuid >= 11 && support_count_mask)
            {
              /* Find the number of logical processors shipped in
                 one core and apply count mask.  */
              i = 0;

              /* Count SMT only if there is L3 cache.  Always count
                 core if there is no L3 cache.  */
              int count = ((threads_l2 > 0 && level == 3)
                           | ((threads_l3 > 0
                               || (threads_l2 > 0 && level == 2)) << 1));

              while (count)
                {
                  __cpuid_count (11, i++, eax, ebx, ecx, edx);

                  int shipped = ebx & 0xff;
                  int type = ecx & 0xff00;
                  if (shipped == 0 || type == 0)
                    break;
                  else if (type == 0x100)
                    {
                      /* Count SMT.  */
                      if ((count & 0x1))
                        {
                          int count_mask;

                          /* Compute count mask.  */
                          asm ("bsr %1, %0"
                               : "=r" (count_mask) : "g" (threads_l2));
                          count_mask = ~(-1 << (count_mask + 1));
                          threads_l2 = (shipped - 1) & count_mask;
                          count &= ~0x1;
                        }
                    }
                  else if (type == 0x200)
                    {
                      /* Count core.  */
                      if ((count & (0x1 << 1)))
                        {
                          int count_mask;
                          int threads_core
                            = (level == 2 ? threads_l2 : threads_l3);

                          /* Compute count mask.  */
                          asm ("bsr %1, %0"
                               : "=r" (count_mask) : "g" (threads_core));
                          count_mask = ~(-1 << (count_mask + 1));
                          threads_core = (shipped - 1) & count_mask;
                          if (level == 2)
                            threads_l2 = threads_core;
                          else
                            threads_l3 = threads_core;
                          count &= ~(0x1 << 1);
                        }
                    }
                }
            }
          if (threads_l2 > 0)
            threads_l2 += 1;
          if (threads_l3 > 0)
            threads_l3 += 1;
          if (level == 2)
            {
              if (threads_l2)
                {
                  threads = threads_l2;
                  if (cpu_features->basic.kind == arch_kind_intel
                      && threads > 2
                      && family == 6)
                    switch (model)
                      {
                        case 0x37:
                        case 0x4a:
                        case 0x4d:
                        case 0x5a:
                        case 0x5d:
                          /* Silvermont has L2 cache shared by 2 cores.  */
                          threads = 2;
                          break;
                        default:
                          break;
                      }
                }
            }
          else if (threads_l3)
            threads = threads_l3;
        }
      else
        {
	intel_bug_no_cache_info:
	  /* Assume that all logical threads share the highest cache
	     level.  */
	  threads = ((cpu_features->features[CPUID_INDEX_1].cpuid.ebx >> 16)
		     & 0xff);
	}
      /* Get per-thread size of highest level cache.  */
      if (shared_per_thread > 0 && threads > 0)
	shared_per_thread /= threads;
    }

  /* Account for non-inclusive L2 and L3 caches.  */
  if (!inclusive_cache)
    {
      long int core_per_thread = threads_l2 > 0 ? (core / threads_l2) : core;
      shared_per_thread += core_per_thread;
      shared += core;
    }

  *shared_ptr = shared;
  *shared_per_thread_ptr = shared_per_thread;
  *threads_ptr = threads;
}

static void
dl_init_cacheinfo (struct cpu_features *cpu_features)
{
  /* Find out what brand of processor.  */
  long int data = -1;
  long int shared = -1;
  long int shared_per_thread = -1;
  long int core = -1;
  unsigned int threads = 0;
  unsigned long int level1_icache_size = -1;
  unsigned long int level1_icache_linesize = -1;
  unsigned long int level1_dcache_size = -1;
  unsigned long int level1_dcache_assoc = -1;
  unsigned long int level1_dcache_linesize = -1;
  unsigned long int level2_cache_size = -1;
  unsigned long int level2_cache_assoc = -1;
  unsigned long int level2_cache_linesize = -1;
  unsigned long int level3_cache_size = -1;
  unsigned long int level3_cache_assoc = -1;
  unsigned long int level3_cache_linesize = -1;
  unsigned long int level4_cache_size = -1;

  if (cpu_features->basic.kind == arch_kind_intel)
    {
      data = handle_intel (_SC_LEVEL1_DCACHE_SIZE, cpu_features);
      core = handle_intel (_SC_LEVEL2_CACHE_SIZE, cpu_features);
      shared = handle_intel (_SC_LEVEL3_CACHE_SIZE, cpu_features);
      shared_per_thread = shared;

      level1_icache_size
	= handle_intel (_SC_LEVEL1_ICACHE_SIZE, cpu_features);
      level1_icache_linesize
	= handle_intel (_SC_LEVEL1_ICACHE_LINESIZE, cpu_features);
      level1_dcache_size = data;
      level1_dcache_assoc
	= handle_intel (_SC_LEVEL1_DCACHE_ASSOC, cpu_features);
      level1_dcache_linesize
	= handle_intel (_SC_LEVEL1_DCACHE_LINESIZE, cpu_features);
      level2_cache_size = core;
      level2_cache_assoc
	= handle_intel (_SC_LEVEL2_CACHE_ASSOC, cpu_features);
      level2_cache_linesize
	= handle_intel (_SC_LEVEL2_CACHE_LINESIZE, cpu_features);
      level3_cache_size = shared;
      level3_cache_assoc
	= handle_intel (_SC_LEVEL3_CACHE_ASSOC, cpu_features);
      level3_cache_linesize
	= handle_intel (_SC_LEVEL3_CACHE_LINESIZE, cpu_features);
      level4_cache_size
	= handle_intel (_SC_LEVEL4_CACHE_SIZE, cpu_features);

      get_common_cache_info (&shared, &shared_per_thread, &threads, core);
    }
  else if (cpu_features->basic.kind == arch_kind_zhaoxin)
    {
      data = handle_zhaoxin (_SC_LEVEL1_DCACHE_SIZE);
      core = handle_zhaoxin (_SC_LEVEL2_CACHE_SIZE);
      shared = handle_zhaoxin (_SC_LEVEL3_CACHE_SIZE);
      shared_per_thread = shared;

      level1_icache_size = handle_zhaoxin (_SC_LEVEL1_ICACHE_SIZE);
      level1_icache_linesize = handle_zhaoxin (_SC_LEVEL1_ICACHE_LINESIZE);
      level1_dcache_size = data;
      level1_dcache_assoc = handle_zhaoxin (_SC_LEVEL1_DCACHE_ASSOC);
      level1_dcache_linesize = handle_zhaoxin (_SC_LEVEL1_DCACHE_LINESIZE);
      level2_cache_size = core;
      level2_cache_assoc = handle_zhaoxin (_SC_LEVEL2_CACHE_ASSOC);
      level2_cache_linesize = handle_zhaoxin (_SC_LEVEL2_CACHE_LINESIZE);
      level3_cache_size = shared;
      level3_cache_assoc = handle_zhaoxin (_SC_LEVEL3_CACHE_ASSOC);
      level3_cache_linesize = handle_zhaoxin (_SC_LEVEL3_CACHE_LINESIZE);

      get_common_cache_info (&shared, &shared_per_thread, &threads, core);
    }
  else if (cpu_features->basic.kind == arch_kind_amd)
    {
      data = handle_amd (_SC_LEVEL1_DCACHE_SIZE);
      core = handle_amd (_SC_LEVEL2_CACHE_SIZE);
      shared = handle_amd (_SC_LEVEL3_CACHE_SIZE);

      level1_icache_size = handle_amd (_SC_LEVEL1_ICACHE_SIZE);
      level1_icache_linesize = handle_amd (_SC_LEVEL1_ICACHE_LINESIZE);
      level1_dcache_size = data;
      level1_dcache_assoc = handle_amd (_SC_LEVEL1_DCACHE_ASSOC);
      level1_dcache_linesize = handle_amd (_SC_LEVEL1_DCACHE_LINESIZE);
      level2_cache_size = core;
      level2_cache_assoc = handle_amd (_SC_LEVEL2_CACHE_ASSOC);
      level2_cache_linesize = handle_amd (_SC_LEVEL2_CACHE_LINESIZE);
      level3_cache_size = shared;
      level3_cache_assoc = handle_amd (_SC_LEVEL3_CACHE_ASSOC);
      level3_cache_linesize = handle_amd (_SC_LEVEL3_CACHE_LINESIZE);
      level4_cache_size = handle_amd (_SC_LEVEL4_CACHE_SIZE);

      if (shared <= 0)
        {
           /* No shared L3 cache.  All we have is the L2 cache.  */
           shared = core;
        }
      else if (cpu_features->basic.family < 0x17)
        {
           /* Account for exclusive L2 and L3 caches.  */
           shared += core;
        }

      shared_per_thread = shared;
    }

  cpu_features->level1_icache_size = level1_icache_size;
  cpu_features->level1_icache_linesize = level1_icache_linesize;
  cpu_features->level1_dcache_size = level1_dcache_size;
  cpu_features->level1_dcache_assoc = level1_dcache_assoc;
  cpu_features->level1_dcache_linesize = level1_dcache_linesize;
  cpu_features->level2_cache_size = level2_cache_size;
  cpu_features->level2_cache_assoc = level2_cache_assoc;
  cpu_features->level2_cache_linesize = level2_cache_linesize;
  cpu_features->level3_cache_size = level3_cache_size;
  cpu_features->level3_cache_assoc = level3_cache_assoc;
  cpu_features->level3_cache_linesize = level3_cache_linesize;
  cpu_features->level4_cache_size = level4_cache_size;

  unsigned long int cachesize_non_temporal_divisor
      = cpu_features->cachesize_non_temporal_divisor;
  if (cachesize_non_temporal_divisor <= 0)
    cachesize_non_temporal_divisor = 4;

  /* The default setting for the non_temporal threshold is [1/8, 1/2] of size
     of the chip's cache (depending on `cachesize_non_temporal_divisor` which
     is microarch specific. The default is 1/4). For most Intel processors
     with an initial release date between 2017 and 2023, a thread's
     typical share of the cache is from 18-64MB. Using a reasonable size
     fraction of L3 is meant to estimate the point where non-temporal stores
     begin out-competing REP MOVSB. As well the point where the fact that
     non-temporal stores are forced back to main memory would already occurred
     to the majority of the lines in the copy. Note, concerns about the entire
     L3 cache being evicted by the copy are mostly alleviated by the fact that
     modern HW detects streaming patterns and provides proper LRU hints so that
     the maximum thrashing capped at 1/associativity. */
  unsigned long int non_temporal_threshold
      = shared / cachesize_non_temporal_divisor;

  /* If the computed non_temporal_threshold <= 3/4 * per-thread L3, we most
     likely have incorrect/incomplete cache info in which case, default to
     3/4 * per-thread L3 to avoid regressions.  */
  unsigned long int non_temporal_threshold_lowbound
      = shared_per_thread * 3 / 4;
  if (non_temporal_threshold < non_temporal_threshold_lowbound)
    non_temporal_threshold = non_temporal_threshold_lowbound;

  /* If no ERMS, we use the per-thread L3 chunking. Normal cacheable stores run
     a higher risk of actually thrashing the cache as they don't have a HW LRU
     hint. As well, their performance in highly parallel situations is
     noticeably worse.  */
  if (!CPU_FEATURE_USABLE_P (cpu_features, ERMS))
    non_temporal_threshold = non_temporal_threshold_lowbound;
  /* SIZE_MAX >> 4 because memmove-vec-unaligned-erms right-shifts the value of
     'x86_non_temporal_threshold' by `LOG_4X_MEMCPY_THRESH` (4) and it is best
     if that operation cannot overflow. Minimum of 0x4040 (16448) because the
     L(large_memset_4x) loops need 64-byte to cache align and enough space for
     at least 1 iteration of 4x PAGE_SIZE unrolled loop.  Both values are
     reflected in the manual.  */
  unsigned long int maximum_non_temporal_threshold = SIZE_MAX >> 4;
  unsigned long int minimum_non_temporal_threshold = 0x4040;

  /* If `non_temporal_threshold` less than `minimum_non_temporal_threshold`
     it most likely means we failed to detect the cache info. We don't want
     to default to `minimum_non_temporal_threshold` as such a small value,
     while correct, has bad performance. We default to 64MB as reasonable
     default bound. 64MB is likely conservative in that most/all systems would
     choose a lower value so it should never forcing non-temporal stores when
     they otherwise wouldn't be used.  */
  if (non_temporal_threshold < minimum_non_temporal_threshold)
    non_temporal_threshold = 64 * 1024 * 1024;
  else if (non_temporal_threshold > maximum_non_temporal_threshold)
    non_temporal_threshold = maximum_non_temporal_threshold;

  /* NB: The REP MOVSB threshold must be greater than VEC_SIZE * 8.  */
  unsigned int minimum_rep_movsb_threshold;
  /* NB: The default REP MOVSB threshold is 4096 * (VEC_SIZE / 16) for
     VEC_SIZE == 64 or 32.  For VEC_SIZE == 16, the default REP MOVSB
     threshold is 2048 * (VEC_SIZE / 16).  */
  unsigned int rep_movsb_threshold;
  if (CPU_FEATURE_USABLE_P (cpu_features, AVX512F)
      && !CPU_FEATURE_PREFERRED_P (cpu_features, Prefer_No_AVX512))
    {
      rep_movsb_threshold = 4096 * (64 / 16);
      minimum_rep_movsb_threshold = 64 * 8;
    }
  else if (CPU_FEATURE_PREFERRED_P (cpu_features,
				    AVX_Fast_Unaligned_Load))
    {
      rep_movsb_threshold = 4096 * (32 / 16);
      minimum_rep_movsb_threshold = 32 * 8;
    }
  else
    {
      rep_movsb_threshold = 2048 * (16 / 16);
      minimum_rep_movsb_threshold = 16 * 8;
    }
  /* NB: The default REP MOVSB threshold is 2112 on processors with fast
     short REP MOVSB (FSRM).  */
  if (CPU_FEATURE_USABLE_P (cpu_features, FSRM))
    rep_movsb_threshold = 2112;

  /* The default threshold to use Enhanced REP STOSB.  */
  unsigned long int rep_stosb_threshold = 2048;

  long int tunable_size;

  tunable_size = TUNABLE_GET (x86_data_cache_size, long int, NULL);
  /* NB: Ignore the default value 0.  */
  if (tunable_size != 0)
    data = tunable_size;

  tunable_size = TUNABLE_GET (x86_shared_cache_size, long int, NULL);
  /* NB: Ignore the default value 0.  */
  if (tunable_size != 0)
    shared = tunable_size;

  tunable_size = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL);
  if (tunable_size > minimum_non_temporal_threshold
      && tunable_size <= maximum_non_temporal_threshold)
    non_temporal_threshold = tunable_size;

  tunable_size = TUNABLE_GET (x86_rep_movsb_threshold, long int, NULL);
  if (tunable_size > minimum_rep_movsb_threshold)
    rep_movsb_threshold = tunable_size;

  /* NB: The default value of the x86_rep_stosb_threshold tunable is the
     same as the default value of __x86_rep_stosb_threshold and the
     minimum value is fixed.  */
  rep_stosb_threshold = TUNABLE_GET (x86_rep_stosb_threshold,
				     long int, NULL);

  TUNABLE_SET_WITH_BOUNDS (x86_data_cache_size, data, 0, SIZE_MAX);
  TUNABLE_SET_WITH_BOUNDS (x86_shared_cache_size, shared, 0, SIZE_MAX);
  TUNABLE_SET_WITH_BOUNDS (x86_non_temporal_threshold, non_temporal_threshold,
			   minimum_non_temporal_threshold,
			   maximum_non_temporal_threshold);
  TUNABLE_SET_WITH_BOUNDS (x86_rep_movsb_threshold, rep_movsb_threshold,
			   minimum_rep_movsb_threshold, SIZE_MAX);
  TUNABLE_SET_WITH_BOUNDS (x86_rep_stosb_threshold, rep_stosb_threshold, 1,
			   SIZE_MAX);

  unsigned long int rep_movsb_stop_threshold;
  /* ERMS feature is implemented from AMD Zen3 architecture and it is
     performing poorly for data above L2 cache size. Henceforth, adding
     an upper bound threshold parameter to limit the usage of Enhanced
     REP MOVSB operations and setting its value to L2 cache size.  */
  if (cpu_features->basic.kind == arch_kind_amd)
    rep_movsb_stop_threshold = core;
  /* Setting the upper bound of ERMS to the computed value of
     non-temporal threshold for architectures other than AMD.  */
  else
    rep_movsb_stop_threshold = non_temporal_threshold;

  cpu_features->data_cache_size = data;
  cpu_features->shared_cache_size = shared;
  cpu_features->non_temporal_threshold = non_temporal_threshold;
  cpu_features->rep_movsb_threshold = rep_movsb_threshold;
  cpu_features->rep_stosb_threshold = rep_stosb_threshold;
  cpu_features->rep_movsb_stop_threshold = rep_movsb_stop_threshold;
}