aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_pow.c
blob: d29cd5bf5cacc98a4dd6081d2cb18e771c2fccad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/* Double-precision x^y function.
   Copyright (C) 2018-2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"

/*
Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
*/

#define T __pow_log_data.tab
#define A __pow_log_data.poly
#define Ln2hi __pow_log_data.ln2hi
#define Ln2lo __pow_log_data.ln2lo
#define N (1 << POW_LOG_TABLE_BITS)
#define OFF 0x3fe6955500000000

/* Top 12 bits of a double (sign and exponent bits).  */
static inline uint32_t
top12 (double x)
{
  return asuint64 (x) >> 52;
}

/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
   additional 15 bits precision.  IX is the bit representation of x, but
   normalized in the subnormal range using the sign bit for the exponent.  */
static inline double_t
log_inline (uint64_t ix, double_t *tail)
{
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
  uint64_t iz, tmp;
  int k, i;

  /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
     The range is split into N subintervals.
     The ith subinterval contains z and c is near its center.  */
  tmp = ix - OFF;
  i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
  k = (int64_t) tmp >> 52; /* arithmetic shift */
  iz = ix - (tmp & 0xfffULL << 52);
  z = asdouble (iz);
  kd = (double_t) k;

  /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
  invc = T[i].invc;
  logc = T[i].logc;
  logctail = T[i].logctail;

  /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
     |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
#ifdef __FP_FAST_FMA
  r = __builtin_fma (z, invc, -1.0);
#else
  /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|.  */
  double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
  double_t zlo = z - zhi;
  double_t rhi = zhi * invc - 1.0;
  double_t rlo = zlo * invc;
  r = rhi + rlo;
#endif

  /* k*Ln2 + log(c) + r.  */
  t1 = kd * Ln2hi + logc;
  t2 = t1 + r;
  lo1 = kd * Ln2lo + logctail;
  lo2 = t1 - t2 + r;

  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  double_t ar, ar2, ar3, lo3, lo4;
  ar = A[0] * r; /* A[0] = -0.5.  */
  ar2 = r * ar;
  ar3 = r * ar2;
  /* k*Ln2 + log(c) + r + A[0]*r*r.  */
#ifdef __FP_FAST_FMA
  hi = t2 + ar2;
  lo3 = __builtin_fma (ar, r, -ar2);
  lo4 = t2 - hi + ar2;
#else
  double_t arhi = A[0] * rhi;
  double_t arhi2 = rhi * arhi;
  hi = t2 + arhi2;
  lo3 = rlo * (ar + arhi);
  lo4 = t2 - hi + arhi2;
#endif
  /* p = log1p(r) - r - A[0]*r*r.  */
  p = (ar3
       * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
  lo = lo1 + lo2 + lo3 + lo4 + p;
  y = hi + lo;
  *tail = hi - y + lo;
  return y;
}

#undef N
#undef T
#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]

/* Handle cases that may overflow or underflow when computing the result that
   is scale*(1+TMP) without intermediate rounding.  The bit representation of
   scale is in SBITS, however it has a computed exponent that may have
   overflown into the sign bit so that needs to be adjusted before using it as
   a double.  (int32_t)KI is the k used in the argument reduction and exponent
   adjustment of scale, positive k here means the result may overflow and
   negative k means the result may underflow.  */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
  double_t scale, y;

  if ((ki & 0x80000000) == 0)
    {
      /* k > 0, the exponent of scale might have overflowed by <= 460.  */
      sbits -= 1009ull << 52;
      scale = asdouble (sbits);
      y = 0x1p1009 * (scale + scale * tmp);
      return check_oflow (y);
    }
  /* k < 0, need special care in the subnormal range.  */
  sbits += 1022ull << 52;
  /* Note: sbits is signed scale.  */
  scale = asdouble (sbits);
  y = scale + scale * tmp;
  if (fabs (y) < 1.0)
    {
      /* Round y to the right precision before scaling it into the subnormal
	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
	 E is the worst-case ulp error outside the subnormal range.  So this
	 is only useful if the goal is better than 1 ulp worst-case error.  */
      double_t hi, lo, one = 1.0;
      if (y < 0.0)
	one = -1.0;
      lo = scale - y + scale * tmp;
      hi = one + y;
      lo = one - hi + y + lo;
      y = math_narrow_eval (hi + lo) - one;
      /* Fix the sign of 0.  */
      if (y == 0.0)
	y = asdouble (sbits & 0x8000000000000000);
      /* The underflow exception needs to be signaled explicitly.  */
      math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
    }
  y = 0x1p-1022 * y;
  return check_uflow (y);
}

#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)

/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
   The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1.  */
static inline double
exp_inline (double x, double xtail, uint32_t sign_bias)
{
  uint32_t abstop;
  uint64_t ki, idx, top, sbits;
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t kd, z, r, r2, scale, tail, tmp;

  abstop = top12 (x) & 0x7ff;
  if (__glibc_unlikely (abstop - top12 (0x1p-54)
			>= top12 (512.0) - top12 (0x1p-54)))
    {
      if (abstop - top12 (0x1p-54) >= 0x80000000)
	{
	  /* Avoid spurious underflow for tiny x.  */
	  /* Note: 0 is common input.  */
	  double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
	  return sign_bias ? -one : one;
	}
      if (abstop >= top12 (1024.0))
	{
	  /* Note: inf and nan are already handled.  */
	  if (asuint64 (x) >> 63)
	    return __math_uflow (sign_bias);
	  else
	    return __math_oflow (sign_bias);
	}
      /* Large x is special cased below.  */
      abstop = 0;
    }

  /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
  /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
  z = InvLn2N * x;
#if TOINT_INTRINSICS
  /* z - kd is in [-0.5, 0.5] in all rounding modes.  */
  kd = roundtoint (z);
  ki = converttoint (z);
#else
  /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
  kd = math_narrow_eval (z + Shift);
  ki = asuint64 (kd);
  kd -= Shift;
#endif
  r = x + kd * NegLn2hiN + kd * NegLn2loN;
  /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
  r += xtail;
  /* 2^(k/N) ~= scale * (1 + tail).  */
  idx = 2 * (ki % N);
  top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
  tail = asdouble (T[idx]);
  /* This is only a valid scale when -1023*N < k < 1024*N.  */
  sbits = T[idx + 1] + top;
  /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  r2 = r * r;
  /* Without fma the worst case error is 0.25/N ulp larger.  */
  /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
  tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
  if (__glibc_unlikely (abstop == 0))
    return specialcase (tmp, sbits, ki);
  scale = asdouble (sbits);
  /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
     is no spurious underflow here even without fma.  */
  return scale + scale * tmp;
}

/* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
   the bit representation of a non-zero finite floating-point value.  */
static inline int
checkint (uint64_t iy)
{
  int e = iy >> 52 & 0x7ff;
  if (e < 0x3ff)
    return 0;
  if (e > 0x3ff + 52)
    return 2;
  if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
    return 0;
  if (iy & (1ULL << (0x3ff + 52 - e)))
    return 1;
  return 2;
}

/* Returns 1 if input is the bit representation of 0, infinity or nan.  */
static inline int
zeroinfnan (uint64_t i)
{
  return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
}

#ifndef SECTION
# define SECTION
#endif

double
SECTION
__pow (double x, double y)
{
  uint32_t sign_bias = 0;
  uint64_t ix, iy;
  uint32_t topx, topy;

  ix = asuint64 (x);
  iy = asuint64 (y);
  topx = top12 (x);
  topy = top12 (y);
  if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001
			|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
    {
      /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
	 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1.  */
      /* Special cases: (x < 0x1p-126 or inf or nan) or
	 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan).  */
      if (__glibc_unlikely (zeroinfnan (iy)))
	{
	  if (2 * iy == 0)
	    return issignaling_inline (x) ? x + y : 1.0;
	  if (ix == asuint64 (1.0))
	    return issignaling_inline (y) ? x + y : 1.0;
	  if (2 * ix > 2 * asuint64 (INFINITY)
	      || 2 * iy > 2 * asuint64 (INFINITY))
	    return x + y;
	  if (2 * ix == 2 * asuint64 (1.0))
	    return 1.0;
	  if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
	    return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
	  return y * y;
	}
      if (__glibc_unlikely (zeroinfnan (ix)))
	{
	  double_t x2 = x * x;
	  if (ix >> 63 && checkint (iy) == 1)
	    {
	      x2 = -x2;
	      sign_bias = 1;
	    }
	  if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
	    return __math_divzero (sign_bias);
	  /* Without the barrier some versions of clang hoist the 1/x2 and
	     thus division by zero exception can be signaled spuriously.  */
	  return iy >> 63 ? math_opt_barrier (1 / x2) : x2;
	}
      /* Here x and y are non-zero finite.  */
      if (ix >> 63)
	{
	  /* Finite x < 0.  */
	  int yint = checkint (iy);
	  if (yint == 0)
	    return __math_invalid (x);
	  if (yint == 1)
	    sign_bias = SIGN_BIAS;
	  ix &= 0x7fffffffffffffff;
	  topx &= 0x7ff;
	}
      if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
	{
	  /* Note: sign_bias == 0 here because y is not odd.  */
	  if (ix == asuint64 (1.0))
	    return 1.0;
	  if ((topy & 0x7ff) < 0x3be)
	    {
	      /* |y| < 2^-65, x^y ~= 1 + y*log(x).  */
	      if (WANT_ROUNDING)
		return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
	      else
		return 1.0;
	    }
	  return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
							 : __math_uflow (0);
	}
      if (topx == 0)
	{
	  /* Normalize subnormal x so exponent becomes negative.  */
	  ix = asuint64 (x * 0x1p52);
	  ix &= 0x7fffffffffffffff;
	  ix -= 52ULL << 52;
	}
    }

  double_t lo;
  double_t hi = log_inline (ix, &lo);
  double_t ehi, elo;
#ifdef __FP_FAST_FMA
  ehi = y * hi;
  elo = y * lo + __builtin_fma (y, hi, -ehi);
#else
  double_t yhi = asdouble (iy & -1ULL << 27);
  double_t ylo = y - yhi;
  double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
  double_t llo = hi - lhi + lo;
  ehi = yhi * lhi;
  elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25.  */
#endif
  return exp_inline (ehi, elo, sign_bias);
}
#ifndef __pow
strong_alias (__pow, __ieee754_pow)
libm_alias_finite (__ieee754_pow, __pow)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __pow, pow, GLIBC_2_29);
libm_alias_double_other (__pow, pow)
# else
libm_alias_double (__pow, pow)
# endif
#endif