aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/sinh_sve.c
blob: 072ba8fca9886e24352ec5a04adec1898744e720 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/* Double-precision vector (SVE) atanh function

   Copyright (C) 2024-2025 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"

static const struct data
{
  uint64_t halff;
  double c2, c4;
  double inv_ln2;
  double ln2_hi, ln2_lo;
  double c0, c1, c3;
  double shift, special_bound, bound;
  uint64_t expm1_data[20];
} data = {
  /* Table lookup of 2^(i/64) - 1, for values of i from 0..19.  */
  .expm1_data = {
    0x0000000000000000, 0x3f864d1f3bc03077, 0x3f966c34c5615d0f, 0x3fa0e8a30eb37901,
    0x3fa6ab0d9f3121ec, 0x3fac7d865a7a3440, 0x3fb1301d0125b50a, 0x3fb429aaea92ddfb,
    0x3fb72b83c7d517ae, 0x3fba35beb6fcb754, 0x3fbd4873168b9aa8, 0x3fc031dc431466b2,
    0x3fc1c3d373ab11c3, 0x3fc35a2b2f13e6e9, 0x3fc4f4efa8fef709, 0x3fc6942d3720185a,
    0x3fc837f0518db8a9, 0x3fc9e0459320b7fa, 0x3fcb8d39b9d54e55, 0x3fcd3ed9a72cffb7,
  },

  /* Generated using Remez, in [-log(2)/128, log(2)/128].  */
  .c0 = 0x1p-1,
  .c1 = 0x1.55555555548f9p-3,
  .c2 = 0x1.5555555554c22p-5,
  .c3 = 0x1.111123aaa2fb2p-7,
  .c4 = 0x1.6c16d77d98e5bp-10,
  .ln2_hi = 0x1.62e42fefa3800p-1,
  .ln2_lo = 0x1.ef35793c76730p-45,
  .inv_ln2 = 0x1.71547652b82fep+0,
  .shift = 0x1.800000000ffc0p+46, /* 1.5*2^46+1023.  */
  .halff = 0x3fe0000000000000,
  .special_bound = 0x1.62e37e7d8ba72p+9,	/* ln(2^(1024 - 1/128)).  */
  .bound = 0x1.a56ef8ec924ccp-3 /* 19*ln2/64.  */
};

/* A specialised FEXPA expm1 that is only valid for positive inputs and
   has no special cases. Based off the full FEXPA expm1 implementated for
   _ZGVsMxv_expm1, with a slightly modified file to keep sinh under 3.5ULP.  */
static inline svfloat64_t
expm1_inline (svbool_t pg, svfloat64_t x)
{
  const struct data *d = ptr_barrier (&data);

  svfloat64_t z = svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2);
  svuint64_t u = svreinterpret_u64 (z);
  svfloat64_t n = svsub_x (pg, z, d->shift);

  svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi);
  svfloat64_t c24 = svld1rq (svptrue_b64 (), &d->c2);

  svfloat64_t r = x;
  r = svmls_lane (r, n, ln2, 0);
  r = svmls_lane (r, n, ln2, 1);

  svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r);

  svfloat64_t p;
  svfloat64_t c12 = svmla_lane (sv_f64 (d->c1), r, c24, 0);
  svfloat64_t c34 = svmla_lane (sv_f64 (d->c3), r, c24, 1);
  p = svmad_x (pg, c34, r2, c12);
  p = svmad_x (pg, p, r, sv_f64 (d->c0));
  p = svmad_x (pg, p, r2, r);

  svfloat64_t scale = svexpa (u);

  /* We want to construct expm1(x) = (scale - 1) + scale * poly.
     However, for values of scale close to 1, scale-1 causes large ULP errors
     due to cancellation.

     This can be circumvented by using a small lookup for scale-1
     when our input is below a certain bound, otherwise we can use FEXPA.  */
  svbool_t is_small = svaclt (pg, x, d->bound);

  /* Index via the input of FEXPA, but we only care about the lower 5 bits.  */
  svuint64_t base_idx = svand_x (pg, u, 0x1f);

  /* Compute scale - 1 from FEXPA, and lookup values where this fails.  */
  svfloat64_t scalem1_estimate = svsub_x (pg, scale, sv_f64 (1.0));
  svuint64_t scalem1_lookup
      = svld1_gather_index (is_small, d->expm1_data, base_idx);

  /* Select the appropriate scale - 1 value based on x.  */
  svfloat64_t scalem1
      = svsel (is_small, svreinterpret_f64 (scalem1_lookup), scalem1_estimate);

  /* return expm1 = scale - 1 + (scale * poly).  */
  return svmla_x (pg, scalem1, scale, p);
}

/* Vectorised special case to handle values past where exp_inline overflows.
   Halves the input value and uses the identity exp(x) = exp(x/2)^2 to double
   the valid range of inputs, and returns inf for anything past that.  */
static svfloat64_t NOINLINE
special_case (svbool_t pg, svbool_t special, svfloat64_t ax,
	      svfloat64_t halfsign, const struct data *d)
{
  /* Halves input value, and then check if any cases
     are still going to overflow.  */
  ax = svmul_x (special, ax, 0.5);
  svbool_t is_safe = svaclt (special, ax, d->special_bound);

  svfloat64_t t = expm1_inline (pg, ax);

  /* Finish fastpass to compute values for non-special cases.  */
  svfloat64_t y = svadd_x (pg, t, svdiv_x (pg, t, svadd_x (pg, t, 1.0)));
  y = svmul_x (pg, y, halfsign);

  /* Computes special lane, and set remaining overflow lanes to inf.  */
  svfloat64_t half_special_y = svmul_x (svptrue_b64 (), t, halfsign);
  svfloat64_t special_y = svmul_x (svptrue_b64 (), half_special_y, t);

  svuint64_t signed_inf
      = svorr_x (svptrue_b64 (), svreinterpret_u64 (halfsign),
		 sv_u64 (0x7ff0000000000000));
  special_y = svsel (is_safe, special_y, svreinterpret_f64 (signed_inf));

  /* Join resulting vectors together and return.  */
  return svsel (special, special_y, y);
}

/* Approximation for SVE double-precision sinh(x) using FEXPA expm1.
   Uses sinh(x) = e^2x - 1 / 2e^x, rewritten for accuracy.
   The greatest observed error in the non-special region is 2.63 + 0.5 ULP:
   _ZGVsMxv_sinh (0x1.b5e0e13ba88aep-2) got 0x1.c3587faf97b0cp-2
				       want 0x1.c3587faf97b09p-2

   The greatest observed error in the special region is 2.65 + 0.5 ULP:
   _ZGVsMxv_sinh (0x1.633ce847dab1ap+9) got 0x1.fffd30eea0066p+1023
				       want 0x1.fffd30eea0063p+1023.  */
svfloat64_t SV_NAME_D1 (sinh) (svfloat64_t x, svbool_t pg)
{
  const struct data *d = ptr_barrier (&data);

  svbool_t special = svacge (pg, x, d->special_bound);
  svfloat64_t ax = svabs_x (pg, x);
  svuint64_t sign
      = sveor_x (pg, svreinterpret_u64 (x), svreinterpret_u64 (ax));
  svfloat64_t halfsign = svreinterpret_f64 (svorr_x (pg, sign, d->halff));

  /* Fall back to scalar variant for all lanes if any are special.  */
  if (__glibc_unlikely (svptest_any (pg, special)))
    return special_case (pg, special, ax, halfsign, d);

  /* Up to the point that expm1 overflows, we can use it to calculate sinh
     using a slight rearrangement of the definition of sinh. This allows us to
     retain acceptable accuracy for very small inputs.  */
  svfloat64_t t = expm1_inline (pg, ax);
  t = svadd_x (pg, t, svdiv_x (pg, t, svadd_x (pg, t, 1.0)));
  return svmul_x (pg, t, halfsign);
}