aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/pow_advsimd.c
blob: 3c91e3e183599e3e87c92a49873e29e352e38a0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* Double-precision vector (AdvSIMD) pow function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "v_math.h"

/* Defines parameters of the approximation and scalar fallback.  */
#include "finite_pow.h"

#define VecSmallExp v_u64 (SmallExp)
#define VecThresExp v_u64 (ThresExp)

#define VecSmallPowX v_u64 (SmallPowX)
#define VecThresPowX v_u64 (ThresPowX)
#define VecSmallPowY v_u64 (SmallPowY)
#define VecThresPowY v_u64 (ThresPowY)

static const struct data
{
  float64x2_t log_poly[6];
  float64x2_t exp_poly[3];
  float64x2_t ln2_hi, ln2_lo;
  float64x2_t shift, inv_ln2_n, ln2_hi_n, ln2_lo_n, small_powx;
  uint64x2_t inf;
} data = {
  /* Coefficients copied from v_pow_log_data.c
     relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8]
     Coefficients are scaled to match the scaling during evaluation.  */
  .log_poly
  = { V2 (0x1.555555555556p-2 * -2), V2 (-0x1.0000000000006p-2 * -2),
      V2 (0x1.999999959554ep-3 * 4), V2 (-0x1.555555529a47ap-3 * 4),
      V2 (0x1.2495b9b4845e9p-3 * -8), V2 (-0x1.0002b8b263fc3p-3 * -8) },
  .ln2_hi = V2 (0x1.62e42fefa3800p-1),
  .ln2_lo = V2 (0x1.ef35793c76730p-45),
  /* Polynomial coefficients: abs error: 1.43*2^-58, ulp error: 0.549
     (0.550 without fma) if |x| < ln2/512.  */
  .exp_poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6ef9p-3),
		V2 (0x1.5555576a5adcep-5) },
  .shift = V2 (0x1.8p52), /* round to nearest int. without intrinsics.  */
  .inv_ln2_n = V2 (0x1.71547652b82fep8), /* N/ln2.  */
  .ln2_hi_n = V2 (0x1.62e42fefc0000p-9), /* ln2/N.  */
  .ln2_lo_n = V2 (-0x1.c610ca86c3899p-45),
  .small_powx = V2 (0x1p-126),
  .inf = V2 (0x7ff0000000000000)
};

#define A(i) data.log_poly[i]
#define C(i) data.exp_poly[i]

/* This version implements an algorithm close to scalar pow but
   - does not implement the trick in the exp's specialcase subroutine to avoid
     double-rounding,
   - does not use a tail in the exponential core computation,
   - and pow's exp polynomial order and table bits might differ.

   Maximum measured error is 1.04 ULPs:
   _ZGVnN2vv_pow(0x1.024a3e56b3c3p-136, 0x1.87910248b58acp-13)
     got 0x1.f71162f473251p-1
    want 0x1.f71162f473252p-1.  */

static inline float64x2_t
v_masked_lookup_f64 (const double *table, uint64x2_t i)
{
  return (float64x2_t){
    table[(i[0] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)],
    table[(i[1] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)]
  };
}

/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
   additional 15 bits precision.  IX is the bit representation of x, but
   normalized in the subnormal range using the sign bit for the exponent.  */
static inline float64x2_t
v_log_inline (uint64x2_t ix, float64x2_t *tail, const struct data *d)
{
  /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
     The range is split into N subintervals.
     The ith subinterval contains z and c is near its center.  */
  uint64x2_t tmp = vsubq_u64 (ix, v_u64 (Off));
  int64x2_t k
      = vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); /* arithmetic shift.  */
  uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, v_u64 (0xfffULL << 52)));
  float64x2_t z = vreinterpretq_f64_u64 (iz);
  float64x2_t kd = vcvtq_f64_s64 (k);
  /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
  float64x2_t invc = v_masked_lookup_f64 (__v_pow_log_data.invc, tmp);
  float64x2_t logc = v_masked_lookup_f64 (__v_pow_log_data.logc, tmp);
  float64x2_t logctail = v_masked_lookup_f64 (__v_pow_log_data.logctail, tmp);
  /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
     |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
  float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, invc);
  /* k*Ln2 + log(c) + r.  */
  float64x2_t t1 = vfmaq_f64 (logc, kd, d->ln2_hi);
  float64x2_t t2 = vaddq_f64 (t1, r);
  float64x2_t lo1 = vfmaq_f64 (logctail, kd, d->ln2_lo);
  float64x2_t lo2 = vaddq_f64 (vsubq_f64 (t1, t2), r);
  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  float64x2_t ar = vmulq_f64 (v_f64 (-0.5), r);
  float64x2_t ar2 = vmulq_f64 (r, ar);
  float64x2_t ar3 = vmulq_f64 (r, ar2);
  /* k*Ln2 + log(c) + r + A[0]*r*r.  */
  float64x2_t hi = vaddq_f64 (t2, ar2);
  float64x2_t lo3 = vfmaq_f64 (vnegq_f64 (ar2), ar, r);
  float64x2_t lo4 = vaddq_f64 (vsubq_f64 (t2, hi), ar2);
  /* p = log1p(r) - r - A[0]*r*r.  */
  float64x2_t a56 = vfmaq_f64 (A (4), r, A (5));
  float64x2_t a34 = vfmaq_f64 (A (2), r, A (3));
  float64x2_t a12 = vfmaq_f64 (A (0), r, A (1));
  float64x2_t p = vfmaq_f64 (a34, ar2, a56);
  p = vfmaq_f64 (a12, ar2, p);
  p = vmulq_f64 (ar3, p);
  float64x2_t lo
      = vaddq_f64 (vaddq_f64 (vaddq_f64 (vaddq_f64 (lo1, lo2), lo3), lo4), p);
  float64x2_t y = vaddq_f64 (hi, lo);
  *tail = vaddq_f64 (vsubq_f64 (hi, y), lo);
  return y;
}

static float64x2_t VPCS_ATTR NOINLINE
exp_special_case (float64x2_t x, float64x2_t xtail)
{
  return (float64x2_t){ exp_nosignbias (x[0], xtail[0]),
			exp_nosignbias (x[1], xtail[1]) };
}

/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.  */
static inline float64x2_t
v_exp_inline (float64x2_t x, float64x2_t xtail, const struct data *d)
{
  /* Fallback to scalar exp_inline for all lanes if any lane
     contains value of x s.t. |x| <= 2^-54 or >= 512.  */
  uint64x2_t abstop
      = vshrq_n_u64 (vandq_u64 (vreinterpretq_u64_f64 (x), d->inf), 52);
  uint64x2_t uoflowx
      = vcgeq_u64 (vsubq_u64 (abstop, VecSmallExp), VecThresExp);
  if (__glibc_unlikely (v_any_u64 (uoflowx)))
    return exp_special_case (x, xtail);

  /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
  /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N].  */
  float64x2_t z = vmulq_f64 (d->inv_ln2_n, x);
  /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
  float64x2_t kd = vaddq_f64 (z, d->shift);
  uint64x2_t ki = vreinterpretq_u64_f64 (kd);
  kd = vsubq_f64 (kd, d->shift);
  float64x2_t r = vfmsq_f64 (x, kd, d->ln2_hi_n);
  r = vfmsq_f64 (r, kd, d->ln2_lo_n);
  /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
  r = vaddq_f64 (r, xtail);
  /* 2^(k/N) ~= scale.  */
  uint64x2_t idx = vandq_u64 (ki, v_u64 (N_EXP - 1));
  uint64x2_t top = vshlq_n_u64 (ki, 52 - V_POW_EXP_TABLE_BITS);
  /* This is only a valid scale when -1023*N < k < 1024*N.  */
  uint64x2_t sbits = v_lookup_u64 (SBits, idx);
  sbits = vaddq_u64 (sbits, top);
  /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1).  */
  float64x2_t r2 = vmulq_f64 (r, r);
  float64x2_t tmp = vfmaq_f64 (C (1), r, C (2));
  tmp = vfmaq_f64 (C (0), r, tmp);
  tmp = vfmaq_f64 (r, r2, tmp);
  float64x2_t scale = vreinterpretq_f64_u64 (sbits);
  /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
     is no spurious underflow here even without fma.  */
  return vfmaq_f64 (scale, scale, tmp);
}

static float64x2_t NOINLINE VPCS_ATTR
scalar_fallback (float64x2_t x, float64x2_t y)
{
  return (float64x2_t){ pow_scalar_special_case (x[0], y[0]),
			pow_scalar_special_case (x[1], y[1]) };
}

float64x2_t VPCS_ATTR V_NAME_D2 (pow) (float64x2_t x, float64x2_t y)
{
  const struct data *d = ptr_barrier (&data);
  /* Case of x <= 0 is too complicated to be vectorised efficiently here,
     fallback to scalar pow for all lanes if any x < 0 detected.  */
  if (v_any_u64 (vclezq_s64 (vreinterpretq_s64_f64 (x))))
    return scalar_fallback (x, y);

  uint64x2_t vix = vreinterpretq_u64_f64 (x);
  uint64x2_t viy = vreinterpretq_u64_f64 (y);
  uint64x2_t iay = vandq_u64 (viy, d->inf);

  /* Special cases of x or y.  */
#if WANT_SIMD_EXCEPT
  /* Small or large.  */
  uint64x2_t vtopx = vshrq_n_u64 (vix, 52);
  uint64x2_t vabstopy = vshrq_n_u64 (iay, 52);
  uint64x2_t specialx
      = vcgeq_u64 (vsubq_u64 (vtopx, VecSmallPowX), VecThresPowX);
  uint64x2_t specialy
      = vcgeq_u64 (vsubq_u64 (vabstopy, VecSmallPowY), VecThresPowY);
#else
  /* The case y==0 does not trigger a special case, since in this case it is
     necessary to fix the result only if x is a signalling nan, which already
     triggers a special case. We test y==0 directly in the scalar fallback.  */
  uint64x2_t iax = vandq_u64 (vix, d->inf);
  uint64x2_t specialx = vcgeq_u64 (iax, d->inf);
  uint64x2_t specialy = vcgeq_u64 (iay, d->inf);
#endif
  uint64x2_t special = vorrq_u64 (specialx, specialy);
  /* Fallback to scalar on all lanes if any lane is inf or nan.  */
  if (__glibc_unlikely (v_any_u64 (special)))
    return scalar_fallback (x, y);

  /* Small cases of x: |x| < 0x1p-126.  */
  uint64x2_t smallx = vcaltq_f64 (x, d->small_powx);
  if (__glibc_unlikely (v_any_u64 (smallx)))
    {
      /* Update ix if top 12 bits of x are 0.  */
      uint64x2_t sub_x = vceqzq_u64 (vshrq_n_u64 (vix, 52));
      if (__glibc_unlikely (v_any_u64 (sub_x)))
	{
	  /* Normalize subnormal x so exponent becomes negative.  */
	  uint64x2_t vix_norm = vreinterpretq_u64_f64 (
	      vabsq_f64 (vmulq_f64 (x, vcvtq_f64_u64 (v_u64 (1ULL << 52)))));
	  vix_norm = vsubq_u64 (vix_norm, v_u64 (52ULL << 52));
	  vix = vbslq_u64 (sub_x, vix_norm, vix);
	}
    }

  /* Vector Log(ix, &lo).  */
  float64x2_t vlo;
  float64x2_t vhi = v_log_inline (vix, &vlo, d);

  /* Vector Exp(y_loghi, y_loglo).  */
  float64x2_t vehi = vmulq_f64 (y, vhi);
  float64x2_t velo = vmulq_f64 (y, vlo);
  float64x2_t vemi = vfmsq_f64 (vehi, y, vhi);
  velo = vsubq_f64 (velo, vemi);
  return v_exp_inline (vehi, velo, d);
}