1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/* Double-precision AdvSIMD inverse tan
Copyright (C) 2023-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f64.h"
static const struct data
{
float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16, c18;
float64x2_t pi_over_2;
double c1, c3, c5, c7, c9, c11, c13, c15, c17, c19;
} data = {
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
[2**-1022, 1.0]. */
.c0 = V2 (-0x1.5555555555555p-2), .c1 = 0x1.99999999996c1p-3,
.c2 = V2 (-0x1.2492492478f88p-3), .c3 = 0x1.c71c71bc3951cp-4,
.c4 = V2 (-0x1.745d160a7e368p-4), .c5 = 0x1.3b139b6a88ba1p-4,
.c6 = V2 (-0x1.11100ee084227p-4), .c7 = 0x1.e1d0f9696f63bp-5,
.c8 = V2 (-0x1.aebfe7b418581p-5), .c9 = 0x1.842dbe9b0d916p-5,
.c10 = V2 (-0x1.5d30140ae5e99p-5), .c11 = 0x1.338e31eb2fbbcp-5,
.c12 = V2 (-0x1.00e6eece7de8p-5), .c13 = 0x1.860897b29e5efp-6,
.c14 = V2 (-0x1.0051381722a59p-6), .c15 = 0x1.14e9dc19a4a4ep-7,
.c16 = V2 (-0x1.d0062b42fe3bfp-9), .c17 = 0x1.17739e210171ap-10,
.c18 = V2 (-0x1.ab24da7be7402p-13), .c19 = 0x1.358851160a528p-16,
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
};
#define SignMask v_u64 (0x8000000000000000)
#define TinyBound 0x3e10000000000000 /* asuint64(0x1p-30). */
#define BigBound 0x4340000000000000 /* asuint64(0x1p53). */
/* Fast implementation of vector atan.
Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
z=1/x and shift = pi/2. Maximum observed error is 2.27 ulps:
_ZGVnN2v_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
want 0x1.9225645bdd7c3p-1. */
float64x2_t VPCS_ATTR V_NAME_D1 (atan) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
float64x2_t c13 = vld1q_f64 (&d->c1);
float64x2_t c57 = vld1q_f64 (&d->c5);
float64x2_t c911 = vld1q_f64 (&d->c9);
float64x2_t c1315 = vld1q_f64 (&d->c13);
float64x2_t c1719 = vld1q_f64 (&d->c17);
/* Small cases, infs and nans are supported by our approximation technique,
but do not set fenv flags correctly. Only trigger special case if we need
fenv. */
uint64x2_t ix = vreinterpretq_u64_f64 (x);
uint64x2_t sign = vandq_u64 (ix, SignMask);
#if WANT_SIMD_EXCEPT
uint64x2_t ia12 = vandq_u64 (ix, v_u64 (0x7ff0000000000000));
uint64x2_t special = vcgtq_u64 (vsubq_u64 (ia12, v_u64 (TinyBound)),
v_u64 (BigBound - TinyBound));
/* If any lane is special, fall back to the scalar routine for all lanes. */
if (__glibc_unlikely (v_any_u64 (special)))
return v_call_f64 (atan, x, v_f64 (0), v_u64 (-1));
#endif
/* Argument reduction:
y := arctan(x) for x < 1
y := pi/2 + arctan(-1/x) for x > 1
Hence, use z=-1/a if x>=1, otherwise z=a. */
uint64x2_t red = vcagtq_f64 (x, v_f64 (1.0));
/* Avoid dependency in abs(x) in division (and comparison). */
float64x2_t z = vbslq_f64 (red, vdivq_f64 (v_f64 (1.0), x), x);
float64x2_t shift = vreinterpretq_f64_u64 (
vandq_u64 (red, vreinterpretq_u64_f64 (d->pi_over_2)));
/* Use absolute value only when needed (odd powers of z). */
float64x2_t az = vbslq_f64 (
SignMask, vreinterpretq_f64_u64 (vandq_u64 (SignMask, red)), z);
/* Calculate the polynomial approximation.
Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
full scheme to avoid underflow in x^16.
The order 19 polynomial P approximates
(atan(sqrt(x))-sqrt(x))/x^(3/2). */
float64x2_t z2 = vmulq_f64 (z, z);
float64x2_t x2 = vmulq_f64 (z2, z2);
float64x2_t x4 = vmulq_f64 (x2, x2);
float64x2_t x8 = vmulq_f64 (x4, x4);
/* estrin_7. */
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, z2, c13, 0);
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, z2, c13, 1);
float64x2_t p03 = vfmaq_f64 (p01, x2, p23);
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, z2, c57, 0);
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, z2, c57, 1);
float64x2_t p47 = vfmaq_f64 (p45, x2, p67);
float64x2_t p07 = vfmaq_f64 (p03, x4, p47);
/* estrin_11. */
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, z2, c911, 0);
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, z2, c911, 1);
float64x2_t p811 = vfmaq_f64 (p89, x2, p1011);
float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, z2, c1315, 0);
float64x2_t p1415 = vfmaq_laneq_f64 (d->c14, z2, c1315, 1);
float64x2_t p1215 = vfmaq_f64 (p1213, x2, p1415);
float64x2_t p1617 = vfmaq_laneq_f64 (d->c16, z2, c1719, 0);
float64x2_t p1819 = vfmaq_laneq_f64 (d->c18, z2, c1719, 1);
float64x2_t p1619 = vfmaq_f64 (p1617, x2, p1819);
float64x2_t p815 = vfmaq_f64 (p811, x4, p1215);
float64x2_t p819 = vfmaq_f64 (p815, x8, p1619);
float64x2_t y = vfmaq_f64 (p07, p819, x8);
/* Finalize. y = shift + z + z^3 * P(z^2). */
y = vfmaq_f64 (az, y, vmulq_f64 (z2, az));
y = vaddq_f64 (y, shift);
/* y = atan(x) if x>0, -atan(-x) otherwise. */
y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), sign));
return y;
}
|