1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/* Double-precision AdvSIMD atan2
Copyright (C) 2023-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
#include "v_math.h"
#include "poly_advsimd_f64.h"
static const struct data
{
float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16, c18;
float64x2_t pi_over_2;
double c1, c3, c5, c7, c9, c11, c13, c15, c17, c19;
uint64x2_t zeroinfnan, minustwo;
} data = {
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
[2**-1022, 1.0]. */
.c0 = V2 (-0x1.5555555555555p-2),
.c1 = 0x1.99999999996c1p-3,
.c2 = V2 (-0x1.2492492478f88p-3),
.c3 = 0x1.c71c71bc3951cp-4,
.c4 = V2 (-0x1.745d160a7e368p-4),
.c5 = 0x1.3b139b6a88ba1p-4,
.c6 = V2 (-0x1.11100ee084227p-4),
.c7 = 0x1.e1d0f9696f63bp-5,
.c8 = V2 (-0x1.aebfe7b418581p-5),
.c9 = 0x1.842dbe9b0d916p-5,
.c10 = V2 (-0x1.5d30140ae5e99p-5),
.c11 = 0x1.338e31eb2fbbcp-5,
.c12 = V2 (-0x1.00e6eece7de8p-5),
.c13 = 0x1.860897b29e5efp-6,
.c14 = V2 (-0x1.0051381722a59p-6),
.c15 = 0x1.14e9dc19a4a4ep-7,
.c16 = V2 (-0x1.d0062b42fe3bfp-9),
.c17 = 0x1.17739e210171ap-10,
.c18 = V2 (-0x1.ab24da7be7402p-13),
.c19 = 0x1.358851160a528p-16,
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
.zeroinfnan = V2 (2 * 0x7ff0000000000000ul - 1),
.minustwo = V2 (0xc000000000000000),
};
#define SignMask v_u64 (0x8000000000000000)
/* Special cases i.e. 0, infinity, NaN (fall back to scalar calls). */
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t y, float64x2_t x, float64x2_t ret,
uint64x2_t sign_xy, uint64x2_t cmp)
{
/* Account for the sign of x and y. */
ret = vreinterpretq_f64_u64 (
veorq_u64 (vreinterpretq_u64_f64 (ret), sign_xy));
return v_call2_f64 (atan2, y, x, ret, cmp);
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline uint64x2_t
zeroinfnan (uint64x2_t i, const struct data *d)
{
/* (2 * i - 1) >= (2 * asuint64 (INFINITY) - 1). */
return vcgeq_u64 (vsubq_u64 (vaddq_u64 (i, i), v_u64 (1)), d->zeroinfnan);
}
/* Fast implementation of vector atan2.
Maximum observed error is 2.8 ulps:
_ZGVnN2vv_atan2 (0x1.9651a429a859ap+5, 0x1.953075f4ee26p+5)
got 0x1.92d628ab678ccp-1
want 0x1.92d628ab678cfp-1. */
float64x2_t VPCS_ATTR V_NAME_D2 (atan2) (float64x2_t y, float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
uint64x2_t ix = vreinterpretq_u64_f64 (x);
uint64x2_t iy = vreinterpretq_u64_f64 (y);
uint64x2_t special_cases
= vorrq_u64 (zeroinfnan (ix, d), zeroinfnan (iy, d));
uint64x2_t sign_x = vandq_u64 (ix, SignMask);
uint64x2_t sign_y = vandq_u64 (iy, SignMask);
uint64x2_t sign_xy = veorq_u64 (sign_x, sign_y);
float64x2_t ax = vabsq_f64 (x);
float64x2_t ay = vabsq_f64 (y);
uint64x2_t pred_xlt0 = vcltzq_f64 (x);
uint64x2_t pred_aygtax = vcagtq_f64 (y, x);
/* Set up z for call to atan. */
float64x2_t n = vbslq_f64 (pred_aygtax, vnegq_f64 (ax), ay);
float64x2_t q = vbslq_f64 (pred_aygtax, ay, ax);
float64x2_t z = vdivq_f64 (n, q);
/* Work out the correct shift. */
float64x2_t shift
= vreinterpretq_f64_u64 (vandq_u64 (pred_xlt0, d->minustwo));
shift = vbslq_f64 (pred_aygtax, vaddq_f64 (shift, v_f64 (1.0)), shift);
shift = vmulq_f64 (shift, d->pi_over_2);
/* Calculate the polynomial approximation.
Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
full scheme to avoid underflow in x^16.
The order 19 polynomial P approximates
(atan(sqrt(x))-sqrt(x))/x^(3/2). */
float64x2_t z2 = vmulq_f64 (z, z);
float64x2_t x2 = vmulq_f64 (z2, z2);
float64x2_t x4 = vmulq_f64 (x2, x2);
float64x2_t x8 = vmulq_f64 (x4, x4);
float64x2_t c13 = vld1q_f64 (&d->c1);
float64x2_t c57 = vld1q_f64 (&d->c5);
float64x2_t c911 = vld1q_f64 (&d->c9);
float64x2_t c1315 = vld1q_f64 (&d->c13);
float64x2_t c1719 = vld1q_f64 (&d->c17);
/* estrin_7. */
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, z2, c13, 0);
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, z2, c13, 1);
float64x2_t p03 = vfmaq_f64 (p01, x2, p23);
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, z2, c57, 0);
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, z2, c57, 1);
float64x2_t p47 = vfmaq_f64 (p45, x2, p67);
float64x2_t p07 = vfmaq_f64 (p03, x4, p47);
/* estrin_11. */
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, z2, c911, 0);
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, z2, c911, 1);
float64x2_t p811 = vfmaq_f64 (p89, x2, p1011);
float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, z2, c1315, 0);
float64x2_t p1415 = vfmaq_laneq_f64 (d->c14, z2, c1315, 1);
float64x2_t p1215 = vfmaq_f64 (p1213, x2, p1415);
float64x2_t p1617 = vfmaq_laneq_f64 (d->c16, z2, c1719, 0);
float64x2_t p1819 = vfmaq_laneq_f64 (d->c18, z2, c1719, 1);
float64x2_t p1619 = vfmaq_f64 (p1617, x2, p1819);
float64x2_t p815 = vfmaq_f64 (p811, x4, p1215);
float64x2_t p819 = vfmaq_f64 (p815, x8, p1619);
float64x2_t ret = vfmaq_f64 (p07, p819, x8);
/* Finalize. y = shift + z + z^3 * P(z^2). */
ret = vfmaq_f64 (z, ret, vmulq_f64 (z2, z));
ret = vaddq_f64 (ret, shift);
if (__glibc_unlikely (v_any_u64 (special_cases)))
return special_case (y, x, ret, sign_xy, special_cases);
/* Account for the sign of x and y. */
ret = vreinterpretq_f64_u64 (
veorq_u64 (vreinterpretq_u64_f64 (ret), sign_xy));
return ret;
}
|