1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
/* Double-Precision vector (SVE) inverse sinpi function
Copyright (C) 2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float64_t c1, c3, c5, c7, c9, c11;
float64_t c0, c2, c4, c6, c8, c10;
float64_t pi_over_2, inv_pi;
} data = {
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
.c0 = 0x1.555555555554ep-3, .c1 = 0x1.3333333337233p-4,
.c2 = 0x1.6db6db67f6d9fp-5, .c3 = 0x1.f1c71fbd29fbbp-6,
.c4 = 0x1.6e8b264d467d6p-6, .c5 = 0x1.1c5997c357e9dp-6,
.c6 = 0x1.c86a22cd9389dp-7, .c7 = 0x1.856073c22ebbep-7,
.c8 = 0x1.fd1151acb6bedp-8, .c9 = 0x1.087182f799c1dp-6,
.c10 = -0x1.6602748120927p-7, .c11 = 0x1.cfa0dd1f9478p-6,
.pi_over_2 = 0x1.921fb54442d18p+0, .inv_pi = 0x1.45f306dc9c883p-2,
};
/* Double-precision SVE implementation of vector asinpi(x).
For |x| in [0, 0.5], use an order 11 polynomial P such that the final
approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
The largest observed error in this region is 1.32 ulp:
_ZGVsMxv_asinpi (0x1.fc12356dbdefbp-2) got 0x1.5272e9658ba66p-3
want 0x1.5272e9658ba64p-3
For |x| in [0.5, 1.0], use same approximation with a change of variable:
asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
The largest observed error in this region is 3.48 ulp:
_ZGVsMxv_asinpi (0x1.03da0c2295424p-1) got 0x1.5b02b3dcafaefp-3
want 0x1.5b02b3dcafaf2p-3. */
svfloat64_t SV_NAME_D1 (asinpi) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svbool_t ptrue = svptrue_b64 ();
svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
svfloat64_t ax = svabs_x (pg, x);
svbool_t a_ge_half = svacge (pg, x, 0.5);
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
z = x ^ 2 and y = |x| , if |x| < 0.5
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),
svmul_x (ptrue, x, x));
svfloat64_t z = svsqrt_m (ax, a_ge_half, z2);
/* Use a single polynomial approximation P for both intervals. */
svfloat64_t z3 = svmul_x (pg, z2, z);
svfloat64_t z4 = svmul_x (pg, z2, z2);
svfloat64_t z8 = svmul_x (pg, z4, z4);
svfloat64_t c13 = svld1rq (ptrue, &d->c1);
svfloat64_t c57 = svld1rq (ptrue, &d->c5);
svfloat64_t c911 = svld1rq (ptrue, &d->c9);
/* Order-11 Estrin scheme. */
svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), z2, c13, 0);
svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), z2, c13, 1);
svfloat64_t p03 = svmla_x (pg, p01, z4, p23);
svfloat64_t p45 = svmla_lane (sv_f64 (d->c4), z2, c57, 0);
svfloat64_t p67 = svmla_lane (sv_f64 (d->c6), z2, c57, 1);
svfloat64_t p47 = svmla_x (pg, p45, z4, p67);
svfloat64_t p89 = svmla_lane (sv_f64 (d->c8), z2, c911, 0);
svfloat64_t p1011 = svmla_lane (sv_f64 (d->c10), z2, c911, 1);
svfloat64_t p811 = svmla_x (pg, p89, z4, p1011);
svfloat64_t p411 = svmla_x (pg, p47, z8, p811);
svfloat64_t p = svmla_x (pg, p03, z8, p411);
/* Finalize polynomial: z + z3 * P(z2). */
p = svmla_x (pg, z, z3, p);
/* asin(|x|) = Q(|x|) , for |x| < 0.5
= pi/2 - 2 Q(|x|), for |x| >= 0.5. */
svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (-2.0), d->pi_over_2);
/* Reinsert the sign from the argument. */
svfloat64_t inv_pi = svreinterpret_f64 (
svorr_x (pg, svreinterpret_u64 (sv_f64 (d->inv_pi)), sign));
return svmul_x (pg, y, inv_pi);
}
|