aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/acos_advsimd.c
blob: 453f78031431ae91fb58ff358730fbd8f7003cc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* Double-precision AdvSIMD inverse cos

   Copyright (C) 2023-2025 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "v_math.h"

static const struct data
{
  double c1, c3, c5, c7, c9, c11;
  float64x2_t c0, c2, c4, c6, c8, c10;
  uint64x2_t abs_mask;
  float64x2_t pi, pi_over_2;
} data = {
  /* Polynomial approximation of  (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
     on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57.  */
  .c0 = V2 (0x1.555555555554ep-3),     .c1 = 0x1.3333333337233p-4,
  .c2 = V2 (0x1.6db6db67f6d9fp-5),     .c3 = 0x1.f1c71fbd29fbbp-6,
  .c4 = V2 (0x1.6e8b264d467d6p-6),     .c5 = 0x1.1c5997c357e9dp-6,
  .c6 = V2 (0x1.c86a22cd9389dp-7),     .c7 = 0x1.856073c22ebbep-7,
  .c8 = V2 (0x1.fd1151acb6bedp-8),     .c9 = 0x1.087182f799c1dp-6,
  .c10 = V2 (-0x1.6602748120927p-7),   .c11 = 0x1.cfa0dd1f9478p-6,
  .pi = V2 (0x1.921fb54442d18p+1),     .pi_over_2 = V2 (0x1.921fb54442d18p+0),
  .abs_mask = V2 (0x7fffffffffffffff),
};

#define AllMask v_u64 (0xffffffffffffffff)
#define Oneu 0x3ff0000000000000
#define Small 0x3e50000000000000 /* 2^-53.  */

#if WANT_SIMD_EXCEPT
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
{
  return v_call_f64 (acos, x, y, special);
}
#endif

/* Double-precision implementation of vector acos(x).

   For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
   rounding.
   If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following
   approximation.

   For |x| in [Small, 0.5], use an order 11 polynomial P such that the final
   approximation of asin is an odd polynomial:

     acos(x) ~ pi/2 - (x + x^3 P(x^2)).

   The largest observed error in this region is 1.18 ulp:
   _ZGVnN2v_acos (0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
				       want 0x1.0d54d1985c069p+0.

   For |x| in [0.5, 1.0], use same approximation with a change of variable

     acos(x) = y + y * z * P(z), with  z = (1-x)/2 and y = sqrt(z).

   The largest observed error in this region is 1.50 ulp:
   _ZGVnN2v_acos (0x1.252a2cf3fb9acp-1) got 0x1.ec1a46aa82901p-1
				       want 0x1.ec1a46aa829p-1.  */
float64x2_t VPCS_ATTR V_NAME_D1 (acos) (float64x2_t x)
{
  const struct data *d = ptr_barrier (&data);

  float64x2_t ax = vabsq_f64 (x);

#if WANT_SIMD_EXCEPT
  /* A single comparison for One, Small and QNaN.  */
  uint64x2_t special
      = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)),
		   v_u64 (Oneu - Small));
  if (__glibc_unlikely (v_any_u64 (special)))
    return special_case (x, x, AllMask);
#endif

  uint64x2_t a_le_half = vcleq_f64 (ax, v_f64 (0.5));

  /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
     z2 = x ^ 2         and z = |x|     , if |x| < 0.5
     z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5.  */
  float64x2_t z2 = vbslq_f64 (a_le_half, vmulq_f64 (x, x),
			      vfmaq_f64 (v_f64 (0.5), v_f64 (-0.5), ax));
  float64x2_t z = vbslq_f64 (a_le_half, ax, vsqrtq_f64 (z2));

  /* Use a single polynomial approximation P for both intervals.  */
  float64x2_t z3 = vmulq_f64 (z2, z);
  float64x2_t z4 = vmulq_f64 (z2, z2);
  float64x2_t z8 = vmulq_f64 (z4, z4);

  /* Order-11 Estrin.  */
  float64x2_t c13 = vld1q_f64 (&d->c1);
  float64x2_t c57 = vld1q_f64 (&d->c5);
  float64x2_t c911 = vld1q_f64 (&d->c9);

  float64x2_t p01 = vfmaq_laneq_f64 (d->c0, z2, c13, 0);
  float64x2_t p23 = vfmaq_laneq_f64 (d->c2, z2, c13, 1);
  float64x2_t p03 = vfmaq_f64 (p01, z4, p23);

  float64x2_t p45 = vfmaq_laneq_f64 (d->c4, z2, c57, 0);
  float64x2_t p67 = vfmaq_laneq_f64 (d->c6, z2, c57, 1);
  float64x2_t p47 = vfmaq_f64 (p45, z4, p67);

  float64x2_t p89 = vfmaq_laneq_f64 (d->c8, z2, c911, 0);
  float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, z2, c911, 1);
  float64x2_t p811 = vfmaq_f64 (p89, z4, p1011);

  float64x2_t p411 = vfmaq_f64 (p47, z8, p811);
  float64x2_t p = vfmaq_f64 (p03, z8, p411);

  /* Finalize polynomial: z + z3 * P(z2).  */
  p = vfmaq_f64 (z, z3, p);

  /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for  |x| < 0.5
	       = 2 Q(|x|)               , for  0.5 < x < 1.0
	       = pi - 2 Q(|x|)          , for -1.0 < x < -0.5.  */
  float64x2_t y = vbslq_f64 (d->abs_mask, p, x);

  uint64x2_t is_neg = vcltzq_f64 (x);
  float64x2_t off = vreinterpretq_f64_u64 (
      vandq_u64 (is_neg, vreinterpretq_u64_f64 (d->pi)));
  float64x2_t mul = vbslq_f64 (a_le_half, v_f64 (-1.0), v_f64 (2.0));
  float64x2_t add = vbslq_f64 (a_le_half, d->pi_over_2, off);

  return vfmaq_f64 (add, mul, y);
}