diff options
Diffstat (limited to 'sysdeps/powerpc')
-rw-r--r-- | sysdeps/powerpc/powerpc32/power4/fpu/Makefile | 1 | ||||
-rw-r--r-- | sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c | 93 | ||||
-rw-r--r-- | sysdeps/powerpc/powerpc64/power4/fpu/Makefile | 1 | ||||
-rw-r--r-- | sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c | 93 |
4 files changed, 2 insertions, 186 deletions
diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/Makefile b/sysdeps/powerpc/powerpc32/power4/fpu/Makefile index f487ed6..ded9976 100644 --- a/sysdeps/powerpc/powerpc32/power4/fpu/Makefile +++ b/sysdeps/powerpc/powerpc32/power4/fpu/Makefile @@ -2,4 +2,5 @@ ifeq ($(subdir),math) CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops +CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1 endif diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c b/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c deleted file mode 100644 index 7c97d95..0000000 --- a/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c +++ /dev/null @@ -1,93 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2013 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/*************************************************************************/ -/* MODULE_NAME:slowpow.c */ -/* */ -/* FUNCTION:slowpow */ -/* */ -/*FILES NEEDED:mpa.h */ -/* mpa.c mpexp.c mplog.c halfulp.c */ -/* */ -/* Given two IEEE double machine numbers y,x , routine computes the */ -/* correctly rounded (to nearest) value of x^y. Result calculated by */ -/* multiplication (in halfulp.c) or if result isn't accurate enough */ -/* then routine converts x and y into multi-precision doubles and */ -/* recompute. */ -/*************************************************************************/ - -#include "mpa.h" -#include <math_private.h> - -void __mpexp (mp_no * x, mp_no * y, int p); -void __mplog (mp_no * x, mp_no * y, int p); -double ulog (double); -double __halfulp (double x, double y); - -double -__slowpow (double x, double y, double z) -{ - double res, res1; - long double ldw, ldz, ldpp; - static const long double ldeps = 0x4.0p-96; - - res = __halfulp (x, y); /* halfulp() returns -10 or x^y */ - if (res >= 0) - return res; /* if result was really computed by halfulp */ - /* else, if result was not really computed by halfulp */ - - /* Compute pow as long double, 106 bits */ - ldz = __ieee754_logl ((long double) x); - ldw = (long double) y *ldz; - ldpp = __ieee754_expl (ldw); - res = (double) (ldpp + ldeps); - res1 = (double) (ldpp - ldeps); - - if (res != res1) /* if result still not accurate enough */ - { /* use mpa for higher precision. */ - mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; - static const mp_no eps = { -3, {1.0, 4.0} }; - int p; - - p = 10; /* p=precision 240 bits */ - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(x) = z */ - __mul (&mpy, &mpz, &mpw, p); /* y * z =w */ - __mpexp (&mpw, &mpp, p); /* e^w =pp */ - __add (&mpp, &eps, &mpr, p); /* pp+eps =r */ - __mp_dbl (&mpr, &res, p); - __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */ - __mp_dbl (&mpr1, &res1, p); /* converting into double precision */ - if (res == res1) - return res; - - /* if we get here result wasn't calculated exactly, continue for - more exact calculation using 768 bits. */ - p = 32; - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(c)=z */ - __mul (&mpy, &mpz, &mpw, p); /* y*z =w */ - __mpexp (&mpw, &mpp, p); /* e^w=pp */ - __mp_dbl (&mpp, &res, p); /* converting into double precision */ - } - return res; -} diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile index f8bb3ef..41f2553 100644 --- a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile +++ b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile @@ -2,4 +2,5 @@ ifeq ($(subdir),math) CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops +CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1 endif diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c b/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c deleted file mode 100644 index 7c97d95..0000000 --- a/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c +++ /dev/null @@ -1,93 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2013 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/*************************************************************************/ -/* MODULE_NAME:slowpow.c */ -/* */ -/* FUNCTION:slowpow */ -/* */ -/*FILES NEEDED:mpa.h */ -/* mpa.c mpexp.c mplog.c halfulp.c */ -/* */ -/* Given two IEEE double machine numbers y,x , routine computes the */ -/* correctly rounded (to nearest) value of x^y. Result calculated by */ -/* multiplication (in halfulp.c) or if result isn't accurate enough */ -/* then routine converts x and y into multi-precision doubles and */ -/* recompute. */ -/*************************************************************************/ - -#include "mpa.h" -#include <math_private.h> - -void __mpexp (mp_no * x, mp_no * y, int p); -void __mplog (mp_no * x, mp_no * y, int p); -double ulog (double); -double __halfulp (double x, double y); - -double -__slowpow (double x, double y, double z) -{ - double res, res1; - long double ldw, ldz, ldpp; - static const long double ldeps = 0x4.0p-96; - - res = __halfulp (x, y); /* halfulp() returns -10 or x^y */ - if (res >= 0) - return res; /* if result was really computed by halfulp */ - /* else, if result was not really computed by halfulp */ - - /* Compute pow as long double, 106 bits */ - ldz = __ieee754_logl ((long double) x); - ldw = (long double) y *ldz; - ldpp = __ieee754_expl (ldw); - res = (double) (ldpp + ldeps); - res1 = (double) (ldpp - ldeps); - - if (res != res1) /* if result still not accurate enough */ - { /* use mpa for higher precision. */ - mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; - static const mp_no eps = { -3, {1.0, 4.0} }; - int p; - - p = 10; /* p=precision 240 bits */ - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(x) = z */ - __mul (&mpy, &mpz, &mpw, p); /* y * z =w */ - __mpexp (&mpw, &mpp, p); /* e^w =pp */ - __add (&mpp, &eps, &mpr, p); /* pp+eps =r */ - __mp_dbl (&mpr, &res, p); - __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */ - __mp_dbl (&mpr1, &res1, p); /* converting into double precision */ - if (res == res1) - return res; - - /* if we get here result wasn't calculated exactly, continue for - more exact calculation using 768 bits. */ - p = 32; - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(c)=z */ - __mul (&mpy, &mpz, &mpw, p); /* y*z =w */ - __mpexp (&mpw, &mpp, p); /* e^w=pp */ - __mp_dbl (&mpp, &res, p); /* converting into double precision */ - } - return res; -} |