diff options
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r-- | sysdeps/ieee754/dbl-64/s_erfc.c | 1 | ||||
-rw-r--r-- | sysdeps/ieee754/float128/s_erfcf128.c | 1 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/e_gammaf_r.c | 2 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/e_lgammaf_r.c | 575 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/k_tanf.c | 102 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/lgamma_negf.c | 283 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/math_config.h | 27 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_cbrtf.c | 136 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_erfcf.c | 187 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_erff.c | 470 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_expm1f.c | 2 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_tanf.c | 224 | ||||
-rw-r--r-- | sysdeps/ieee754/ldbl-128/s_erfcl.c | 1 | ||||
-rw-r--r-- | sysdeps/ieee754/ldbl-128ibm/s_erfcl.c | 1 | ||||
-rw-r--r-- | sysdeps/ieee754/ldbl-96/s_erfcl.c | 1 |
15 files changed, 1068 insertions, 945 deletions
diff --git a/sysdeps/ieee754/dbl-64/s_erfc.c b/sysdeps/ieee754/dbl-64/s_erfc.c new file mode 100644 index 0000000..95d17c8 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/s_erfc.c @@ -0,0 +1 @@ +/* Not required. */ diff --git a/sysdeps/ieee754/float128/s_erfcf128.c b/sysdeps/ieee754/float128/s_erfcf128.c new file mode 100644 index 0000000..95d17c8 --- /dev/null +++ b/sysdeps/ieee754/float128/s_erfcf128.c @@ -0,0 +1 @@ +/* Not required. */ diff --git a/sysdeps/ieee754/flt-32/e_gammaf_r.c b/sysdeps/ieee754/flt-32/e_gammaf_r.c index 6b1f95d..66e8cae 100644 --- a/sysdeps/ieee754/flt-32/e_gammaf_r.c +++ b/sysdeps/ieee754/flt-32/e_gammaf_r.c @@ -140,7 +140,7 @@ __ieee754_gammaf_r (float x, int *signgamp) }; double m = z - 0x1.7p+1; - double i = roundeven (m); + double i = roundeven_finite (m); double step = copysign (1.0, i); double d = m - i, d2 = d * d, d4 = d2 * d2, d8 = d4 * d4; double f = (c[0] + d * c[1]) + d2 * (c[2] + d * c[3]) diff --git a/sysdeps/ieee754/flt-32/e_lgammaf_r.c b/sysdeps/ieee754/flt-32/e_lgammaf_r.c index a1a3a60..75ec25f 100644 --- a/sysdeps/ieee754/flt-32/e_lgammaf_r.c +++ b/sysdeps/ieee754/flt-32/e_lgammaf_r.c @@ -1,247 +1,366 @@ -/* e_lgammaf_r.c -- float version of e_lgamma_r.c. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ +/* Correctly-rounded logarithm of the absolute value of the gamma function + for binary32 value. +Copyright (c) 2023, 2024 Alexei Sibidanov. + +This file is part of the CORE-MATH project +project (file src/binary32/lgamma/lgammaf.c, revision bc385c2). + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ + +/* Changes with respect to the original CORE-MATH code: + - removed the dealing with errno + (this is done in the wrapper math/w_lgammaf_compat2.c). + - usage of math_narrow_eval to deal with underflow/overflow. + - deal with signamp. */ + +#include <array_length.h> +#include <stdint.h> #include <math.h> -#include <math-narrow-eval.h> -#include <math_private.h> -#include <libc-diag.h> #include <libm-alias-finite.h> +#include <limits.h> +#include <math-narrow-eval.h> +#include "math_config.h" -static const float -two23= 8.3886080000e+06, /* 0x4b000000 */ -half= 5.0000000000e-01, /* 0x3f000000 */ -one = 1.0000000000e+00, /* 0x3f800000 */ -pi = 3.1415927410e+00, /* 0x40490fdb */ -a0 = 7.7215664089e-02, /* 0x3d9e233f */ -a1 = 3.2246702909e-01, /* 0x3ea51a66 */ -a2 = 6.7352302372e-02, /* 0x3d89f001 */ -a3 = 2.0580807701e-02, /* 0x3ca89915 */ -a4 = 7.3855509982e-03, /* 0x3bf2027e */ -a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ -a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ -a7 = 5.1006977446e-04, /* 0x3a05b634 */ -a8 = 2.2086278477e-04, /* 0x39679767 */ -a9 = 1.0801156895e-04, /* 0x38e28445 */ -a10 = 2.5214456400e-05, /* 0x37d383a2 */ -a11 = 4.4864096708e-05, /* 0x383c2c75 */ -tc = 1.4616321325e+00, /* 0x3fbb16c3 */ -tf = -1.2148628384e-01, /* 0xbdf8cdcd */ -/* tt = -(tail of tf) */ -tt = 6.6971006518e-09, /* 0x31e61c52 */ -t0 = 4.8383611441e-01, /* 0x3ef7b95e */ -t1 = -1.4758771658e-01, /* 0xbe17213c */ -t2 = 6.4624942839e-02, /* 0x3d845a15 */ -t3 = -3.2788541168e-02, /* 0xbd064d47 */ -t4 = 1.7970675603e-02, /* 0x3c93373d */ -t5 = -1.0314224288e-02, /* 0xbc28fcfe */ -t6 = 6.1005386524e-03, /* 0x3bc7e707 */ -t7 = -3.6845202558e-03, /* 0xbb7177fe */ -t8 = 2.2596477065e-03, /* 0x3b141699 */ -t9 = -1.4034647029e-03, /* 0xbab7f476 */ -t10 = 8.8108185446e-04, /* 0x3a66f867 */ -t11 = -5.3859531181e-04, /* 0xba0d3085 */ -t12 = 3.1563205994e-04, /* 0x39a57b6b */ -t13 = -3.1275415677e-04, /* 0xb9a3f927 */ -t14 = 3.3552918467e-04, /* 0x39afe9f7 */ -u0 = -7.7215664089e-02, /* 0xbd9e233f */ -u1 = 6.3282704353e-01, /* 0x3f2200f4 */ -u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ -u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ -u4 = 2.2896373272e-01, /* 0x3e6a7578 */ -u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ -v1 = 2.4559779167e+00, /* 0x401d2ebe */ -v2 = 2.1284897327e+00, /* 0x4008392d */ -v3 = 7.6928514242e-01, /* 0x3f44efdf */ -v4 = 1.0422264785e-01, /* 0x3dd572af */ -v5 = 3.2170924824e-03, /* 0x3b52d5db */ -s0 = -7.7215664089e-02, /* 0xbd9e233f */ -s1 = 2.1498242021e-01, /* 0x3e5c245a */ -s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ -s3 = 1.4635047317e-01, /* 0x3e15dce6 */ -s4 = 2.6642270386e-02, /* 0x3cda40e4 */ -s5 = 1.8402845599e-03, /* 0x3af135b4 */ -s6 = 3.1947532989e-05, /* 0x3805ff67 */ -r1 = 1.3920053244e+00, /* 0x3fb22d3b */ -r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ -r3 = 1.7193385959e-01, /* 0x3e300f6e */ -r4 = 1.8645919859e-02, /* 0x3c98bf54 */ -r5 = 7.7794247773e-04, /* 0x3a4beed6 */ -r6 = 7.3266842264e-06, /* 0x36f5d7bd */ -w0 = 4.1893854737e-01, /* 0x3ed67f1d */ -w1 = 8.3333335817e-02, /* 0x3daaaaab */ -w2 = -2.7777778450e-03, /* 0xbb360b61 */ -w3 = 7.9365057172e-04, /* 0x3a500cfd */ -w4 = -5.9518753551e-04, /* 0xba1c065c */ -w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ -w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ - -static const float zero= 0.0000000000e+00; - -static float -sin_pif(float x) +static double +as_r7 (double x, const double *c) { - float y,z; - int n,ix; - - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - - if(ix<0x3e800000) return __sinf (pi*x); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floorf(y); - if(z!=y) { /* inexact anyway */ - y *= (float)0.5; - y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ - n = (int) (y*(float)4.0); - } else { - if(ix>=0x4b800000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x4b000000) z = y+two23; /* exact */ - GET_FLOAT_WORD(n,z); - n &= 1; - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __sinf (pi*y); break; - case 1: - case 2: y = __cosf (pi*((float)0.5-y)); break; - case 3: - case 4: y = __sinf (pi*(one-y)); break; - case 5: - case 6: y = -__cosf (pi*(y-(float)1.5)); break; - default: y = __sinf (pi*(y-(float)2.0)); break; - } - return -y; + return (((x - c[0]) * (x - c[1])) * ((x - c[2]) * (x - c[3]))) + * (((x - c[4]) * (x - c[5])) * ((x - c[6]))); } +static double +as_r8 (double x, const double *c) +{ + return (((x - c[0]) * (x - c[1])) * ((x - c[2]) * (x - c[3]))) + * (((x - c[4]) * (x - c[5])) * ((x - c[6]) * (x - c[7]))); +} + +static double +as_sinpi (double x) +{ + static const double c[] = + { + 0x1p+2, -0x1.de9e64df22ea4p+1, 0x1.472be122401f8p+0, + -0x1.d4fcd82df91bp-3, 0x1.9f05c97e0aab2p-6, -0x1.f3091c427b611p-10, + 0x1.b22c9bfdca547p-14, -0x1.15484325ef569p-18 + }; + x -= 0.5; + double x2 = x * x, x4 = x2 * x2, x8 = x4 * x4; + return (0.25 - x2) + * ((c[0] + x2 * c[1]) + x4 * (c[2] + x2 * c[3]) + + x8 * ((c[4] + x2 * c[5]) + x4 * (c[6] + x2 * c[7]))); +} + +static double +as_ln (double x) +{ + uint64_t t = asuint64 (x); + int e = (t >> 52) - 0x3ff; + static const double c[] = + { + 0x1.fffffffffff24p-1, -0x1.ffffffffd1d67p-2, 0x1.55555537802dep-2, + -0x1.ffffeca81b866p-3, 0x1.999611761d772p-3, -0x1.54f3e581b61bfp-3, + 0x1.1e642b4cb5143p-3, -0x1.9115a5af1e1edp-4 + }; + static const double il[] = + { + 0x1.59caeec280116p-57, 0x1.f0a30c01162aap-5, 0x1.e27076e2af2ebp-4, + 0x1.5ff3070a793d6p-3, 0x1.c8ff7c79a9a2p-3, 0x1.1675cababa60fp-2, + 0x1.4618bc21c5ec2p-2, 0x1.739d7f6bbd007p-2, 0x1.9f323ecbf984dp-2, + 0x1.c8ff7c79a9a21p-2, 0x1.f128f5faf06ecp-2, 0x1.0be72e4252a83p-1, + 0x1.1e85f5e7040d1p-1, 0x1.307d7334f10bep-1, 0x1.41d8fe84672afp-1, + 0x1.52a2d265bc5abp-1 + }; + static const double ix[] = + { + 0x1p+0, 0x1.e1e1e1e1e1e1ep-1, 0x1.c71c71c71c71cp-1, + 0x1.af286bca1af28p-1, 0x1.999999999999ap-1, 0x1.8618618618618p-1, + 0x1.745d1745d1746p-1, 0x1.642c8590b2164p-1, 0x1.5555555555555p-1, + 0x1.47ae147ae147bp-1, 0x1.3b13b13b13b14p-1, 0x1.2f684bda12f68p-1, + 0x1.2492492492492p-1, 0x1.1a7b9611a7b96p-1, 0x1.1111111111111p-1, + 0x1.0842108421084p-1 + }; + int i = (t >> 48) & 0xf; + t = (t & (~UINT64_C(0) >> 12)) | (INT64_C(0x3ff) << 52); + double z = ix[i] * asdouble (t) - 1; + double z2 = z * z, z4 = z2 * z2; + return e * 0x1.62e42fefa39efp-1 + il[i] + + z * ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3]) + + z4 * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7]))); +} float -__ieee754_lgammaf_r(float x, int *signgamp) +__ieee754_lgammaf_r (float x, int *signgamp) { - float t,y,z,nadj,p,p1,p2,p3,q,r,w; - int i,hx,ix; - - GET_FLOAT_WORD(hx,x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(__builtin_expect(ix>=0x7f800000, 0)) return x*x; - if(__builtin_expect(ix==0, 0)) - { - if (hx < 0) - *signgamp = -1; - return one/fabsf(x); - } - if(__builtin_expect(ix<0x30800000, 0)) { - /* |x|<2**-30, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -__ieee754_logf(-x); - } else return -__ieee754_logf(x); + static const struct + { + float x; + float f; + float df; + } tb[] = { + { -0x1.efc2a2p+14, -0x1.222dbcp+18, -0x1p-7 }, + { -0x1.627346p+7, -0x1.73235ep+9, -0x1p-16 }, + { -0x1.08b14p+4, -0x1.f0cbe6p+4, -0x1p-21 }, + { -0x1.69d628p+3, -0x1.0eac2ap+4, -0x1p-21 }, + { -0x1.904902p+2, -0x1.65532cp+2, 0x1p-23 }, + { -0x1.9272d2p+1, -0x1.170b98p-8, 0x1p-33 }, + { -0x1.625edap+1, 0x1.6a6c4ap-5, -0x1p-30 }, + { -0x1.5fc2aep+1, 0x1.c0a484p-11, -0x1p-36 }, + { -0x1.5fb43ep+1, 0x1.5b697p-17, 0x1p-42 }, + { -0x1.5fa20cp+1, -0x1.132f7ap-10, 0x1p-35 }, + { -0x1.580c1ep+1, -0x1.5787c6p-4, 0x1p-29 }, + { -0x1.3a7fcap+1, -0x1.e4cf24p-24, -0x1p-49 }, + { -0x1.c2f04p-30, 0x1.43a6f6p+4, 0x1p-21 }, + { -0x1.ade594p-30, 0x1.446ab2p+4, -0x1p-21 }, + { -0x1.437e74p-40, 0x1.b7dec2p+4, -0x1p-21 }, + { -0x1.d85bfep-43, 0x1.d31592p+4, -0x1p-21 }, + { -0x1.f51c8ep-49, 0x1.0a572ap+5, -0x1p-20 }, + { -0x1.108a5ap-66, 0x1.6d7b18p+5, -0x1p-20 }, + { -0x1.ecf3fep-73, 0x1.8f8e5ap+5, -0x1p-20 }, + { -0x1.25cb66p-123, 0x1.547a44p+6, -0x1p-19 }, + { 0x1.ecf3fep-73, 0x1.8f8e5ap+5, -0x1p-20 }, + { 0x1.108a5ap-66, 0x1.6d7b18p+5, -0x1p-20 }, + { 0x1.a68bbcp-42, 0x1.c9c6e8p+4, 0x1p-21 }, + { 0x1.ddfd06p-12, 0x1.ec5ba8p+2, -0x1p-23 }, + { 0x1.f8a754p-9, 0x1.63acc2p+2, 0x1p-23 }, + { 0x1.8d16b2p+5, 0x1.1e4b4ep+7, 0x1p-18 }, + { 0x1.359e0ep+10, 0x1.d9ad02p+12, -0x1p-13 }, + { 0x1.a82a2cp+13, 0x1.c38036p+16, 0x1p-9 }, + { 0x1.62c646p+14, 0x1.9075bep+17, -0x1p-8 }, + { 0x1.7f298p+31, 0x1.f44946p+35, -0x1p+10 }, + { 0x1.a45ea4p+33, 0x1.25dcbcp+38, -0x1p+13 }, + { 0x1.f9413ep+76, 0x1.9d5ab4p+82, -0x1p+57 }, + { 0x1.dcbbaap+99, 0x1.fc5772p+105, 0x1p+80 }, + { 0x1.58ace8p+112, 0x1.9e4f66p+118, -0x1p+93 }, + { 0x1.87bdfp+115, 0x1.e465aep+121, 0x1p+96 }, + }; + + float fx = floor (x); + float ax = fabsf (x); + uint32_t t = asuint (ax); + if (__glibc_unlikely (t >= (0xffu << 23))) + { + *signgamp = 1; + if (t == (0xffu << 23)) + return INFINITY; + return x + x; /* nan */ + } + if (__glibc_unlikely (fx == x)) + { + if (x <= 0.0f) + { + *signgamp = asuint (x) >> 31 ? -1 : 1; + return 1.0f / 0.0f; } - if(hx<0) { - if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ - return fabsf (x)/zero; - if (ix > 0x40000000 /* X < 2.0f. */ - && ix < 0x41700000 /* X > -15.0f. */) - return __lgamma_negf (x, signgamp); - t = sin_pif(x); - if(t==zero) return one/fabsf(t); /* -integer */ - nadj = __ieee754_logf(pi/fabsf(t*x)); - if(t<zero) *signgamp = -1; - x = -x; + if (x == 1.0f || x == 2.0f) + { + *signgamp = 1; + return 0.0f; } + } + + /* Check the value of fx to avoid a spurious invalid exception. + Note that for a binary32 |x| >= 2^23, x is necessarily an integer, + and we already dealed with negative integers, thus now: + -2^23 < x < +Inf and x is not a negative integer nor 0, 1, 2. */ + if (__glibc_likely (fx >= 0)) + *signgamp = 1; + else + /* gamma(x) is negative in (-2n-1,-2n), thus when fx is odd. */ + *signgamp = 1 - ((((int) fx) & 1) << 1); - /* purge off 1 and 2 */ - if (ix==0x3f800000||ix==0x40000000) r = 0; - /* for x < 2.0 */ - else if(ix<0x40000000) { - if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ - r = -__ieee754_logf(x); - if(ix>=0x3f3b4a20) {y = one-x; i= 0;} - else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} + double z = ax, f; + if (__glibc_unlikely (ax < 0x1.52p-1f)) + { + static const double rn[] = + { + -0x1.505bdf4b65acp+4, -0x1.51c80eb47e068p+2, + 0x1.0000000007cb8p+0, -0x1.4ac529250a1fcp+1, + -0x1.a8c99dbe1621ap+0, -0x1.4abdcc74115eap+0, + -0x1.1b87fe5a5b923p+0, -0x1.05b8a4d47ff64p+0 + }; + const double c0 = 0x1.0fc0fad268c4dp+2; + static const double rd[] = + { + -0x1.4db2cfe9a5265p+5, -0x1.062e99d1c4f27p+3, + -0x1.c81bc2ecf25f6p+1, -0x1.108e55c10091bp+1, + -0x1.7dd25af0b83d4p+0, -0x1.36bf1880125fcp+0, + -0x1.1379fc8023d9cp+0, -0x1.03712e41525d2p+0 + }; + double s = x; + f = (c0 * s) * as_r8 (s, rn) / as_r8 (s, rd) - as_ln (z); + } + else + { + if (ax > 0x1.afc1ap+1f) + { + if (__glibc_unlikely (x > 0x1.895f1cp+121f)) + return math_narrow_eval (0x1p127f * 0x1p127f); + /* |x|>=2**23, must be -integer */ + if (__glibc_unlikely (x < 0.0f && ax > 0x1p+23)) + return ax / 0.0f; + double lz = as_ln (z); + f = (z - 0.5) * (lz - 1) + 0x1.acfe390c97d69p-2; + if (ax < 0x1.0p+20f) + { + double iz = 1.0 / z, iz2 = iz * iz; + if (ax > 1198.0f) + f += iz * (1. / 12.); + else if (ax > 0x1.279a7p+6f) + { + static const double c[] = + { + 0x1.555555547fbadp-4, -0x1.6c0fd270c465p-9 + }; + f += iz * (c[0] + iz2 * c[1]); + } + else if (ax > 0x1.555556p+3f) + { + static const double c[] = + { + 0x1.555555554de0bp-4, -0x1.6c16bdc45944fp-9, + 0x1.a0077f300ecb3p-11, -0x1.2e9cfff3b29c2p-11 + }; + double iz4 = iz2 * iz2; + f += iz * ((c[0] + iz2 * c[1]) + iz4 * (c[2] + iz2 * c[3])); + } + else + { + static const double c[] = + { + 0x1.5555555551286p-4, -0x1.6c16c0e7c4cf4p-9, + 0x1.a0193267fe6f2p-11, -0x1.37e87ec19cb45p-11, + 0x1.b40011dfff081p-11, -0x1.c16c8946b19b6p-10, + 0x1.e9f47ace150d8p-9, -0x1.4f5843a71a338p-8 + }; + double iz4 = iz2 * iz2, iz8 = iz4 * iz4; + double p = ((c[0] + iz2 * c[1]) + iz4 * (c[2] + iz2 * c[3])) + + iz8 * ((c[4] + iz2 * c[5]) + + iz4 * (c[6] + iz2 * c[7])); + f += iz * p; + } } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-(float)0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-(float)0.5*y + p1/p2); + if (x < 0.0f) + { + f = 0x1.250d048e7a1bdp+0 - f - lz; + double lp = as_ln (as_sinpi (x - fx)); + f -= lp; } } - else if(ix<0x41000000) { /* x < 8.0 */ - i = (int)x; - t = zero; - y = x-(float)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+(float)6.0); /* FALLTHRU */ - case 6: z *= (y+(float)5.0); /* FALLTHRU */ - case 5: z *= (y+(float)4.0); /* FALLTHRU */ - case 4: z *= (y+(float)3.0); /* FALLTHRU */ - case 3: z *= (y+(float)2.0); /* FALLTHRU */ - r += __ieee754_logf(z); break; + else + { + static const double rn[] = + { + -0x1.667923ff14df7p+5, -0x1.2d35f25ad8f64p+3, + -0x1.b8c9eab9d5bd3p+1, -0x1.7a4a97f494127p+0, + -0x1.3a6c8295b4445p-1, -0x1.da44e8b810024p-3, + -0x1.9061e81c77e4ap-5 + }; + if (x < 0.0f) + { + int ni = floorf (-2 * x); + if ((ni & 1) == 0 && ni == -2 * x) + return 1.0f / 0.0f; + } + const double c0 = 0x1.3cc0e6a0106b3p+2; + static const double rd[] = + { + -0x1.491a899e84c52p+6, -0x1.d202961b9e098p+3, + -0x1.4ced68c631ed6p+2, -0x1.2589eedf40738p+1, + -0x1.1302e3337271p+0, -0x1.c36b802f26dffp-2, + -0x1.3ded448acc39dp-3, -0x1.bffc491078eafp-6 + }; + f = (z - 1) * (z - 2) * c0 * as_r7 (z, rn) / as_r8 (z, rd); + if (x < 0.0f) + { + if (__glibc_unlikely (t < 0x40301b93u && t > 0x402f95c2u)) + { + double h = (x + 0x1.5fb410a1bd901p+1) + - 0x1.a19a96d2e6f85p-54; + double h2 = h * h; + double h4 = h2 * h2; + static const double c[] = + { + -0x1.ea12da904b18cp+0, 0x1.3267f3c265a54p+3, + -0x1.4185ac30cadb3p+4, 0x1.f504accc3f2e4p+5, + -0x1.8588444c679b4p+7, 0x1.43740491dc22p+9, + -0x1.12400ea23f9e6p+11, 0x1.dac829f365795p+12 + }; + f = h * ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3]) + + h4 * ((c[4] + h * c[5]) + h2 * (c[6] + h * c[7]))); + } + else if (__glibc_unlikely (t > 0x401ceccbu && t < 0x401d95cau)) + { + double h = (x + 0x1.3a7fc9600f86cp+1) + + 0x1.55f64f98af8dp-55; + double h2 = h * h; + double h4 = h2 * h2; + static const double c[] = + { + 0x1.83fe966af535fp+0, 0x1.36eebb002f61ap+2, + 0x1.694a60589a0b3p+0, 0x1.1718d7aedb0b5p+3, + 0x1.733a045eca0d3p+2, 0x1.8d4297421205bp+4, + 0x1.7feea5fb29965p+4 + }; + f = h + * ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3]) + + h4 * ((c[4] + h * c[5]) + h2 * (c[6]))); + } + else if (__glibc_unlikely (t > 0x40492009u && t < 0x404940efu)) + { + double h = (x + 0x1.9260dbc9e59afp+1) + + 0x1.f717cd335a7b3p-53; + double h2 = h * h; + double h4 = h2 * h2; + static const double c[] = + { + 0x1.f20a65f2fac55p+2, 0x1.9d4d297715105p+4, + 0x1.c1137124d5b21p+6, 0x1.267203d24de38p+9, + 0x1.99a63399a0b44p+11, 0x1.2941214faaf0cp+14, + 0x1.bb912c0c9cdd1p+16 + }; + f = h * ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3]) + + h4 * ((c[4] + h * c[5]) + h2 * (c[6]))); + } + else + { + f = 0x1.250d048e7a1bdp+0 - f; + double lp = as_ln (as_sinpi (x - fx) * z); + f -= lp; + } } - /* 8.0 <= x < 2**26 */ - } else if (ix < 0x4c800000) { - t = __ieee754_logf(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**26 <= x <= inf */ - r = math_narrow_eval (x*(__ieee754_logf(x)-one)); - /* NADJ is set for negative arguments but not otherwise, - resulting in warnings that it may be used uninitialized - although in the cases where it is used it has always been - set. */ - DIAG_PUSH_NEEDS_COMMENT; - DIAG_IGNORE_NEEDS_COMMENT (4.9, "-Wmaybe-uninitialized"); - if(hx<0) r = nadj - r; - DIAG_POP_NEEDS_COMMENT; - return r; + } + } + + uint64_t tl = (asuint64 (f) + 5) & 0xfffffff; + float r = f; + if (__glibc_unlikely (tl <= 31u)) + { + t = asuint (x); + for (unsigned i = 0; i < array_length (tb); i++) + { + if (t == asuint (tb[i].x)) + return tb[i].f + tb[i].df; + } + } + return r; } libm_alias_finite (__ieee754_lgammaf_r, __lgammaf_r) diff --git a/sysdeps/ieee754/flt-32/k_tanf.c b/sysdeps/ieee754/flt-32/k_tanf.c index e1c9d14..1cc8931 100644 --- a/sysdeps/ieee754/flt-32/k_tanf.c +++ b/sysdeps/ieee754/flt-32/k_tanf.c @@ -1,101 +1 @@ -/* k_tanf.c -- float version of k_tan.c - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: k_tanf.c,v 1.4 1995/05/10 20:46:39 jtc Exp $"; -#endif - -#include <float.h> -#include <math.h> -#include <math_private.h> -#include <math-underflow.h> -static const float -one = 1.0000000000e+00, /* 0x3f800000 */ -pio4 = 7.8539812565e-01, /* 0x3f490fda */ -pio4lo= 3.7748947079e-08, /* 0x33222168 */ -T[] = { - 3.3333334327e-01, /* 0x3eaaaaab */ - 1.3333334029e-01, /* 0x3e088889 */ - 5.3968254477e-02, /* 0x3d5d0dd1 */ - 2.1869488060e-02, /* 0x3cb327a4 */ - 8.8632395491e-03, /* 0x3c11371f */ - 3.5920790397e-03, /* 0x3b6b6916 */ - 1.4562094584e-03, /* 0x3abede48 */ - 5.8804126456e-04, /* 0x3a1a26c8 */ - 2.4646313977e-04, /* 0x398137b9 */ - 7.8179444245e-05, /* 0x38a3f445 */ - 7.1407252108e-05, /* 0x3895c07a */ - -1.8558637748e-05, /* 0xb79bae5f */ - 2.5907305826e-05, /* 0x37d95384 */ -}; - -float __kernel_tanf(float x, float y, int iy) -{ - float z,r,v,w,s; - int32_t ix,hx; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; /* high word of |x| */ - if(ix<0x39000000) /* x < 2**-13 */ - {if((int)x==0) { /* generate inexact */ - if((ix|(iy+1))==0) return one/fabsf(x); - else if (iy == 1) - { - math_check_force_underflow (x); - return x; - } - else - return -one / x; - } - } - if(ix>=0x3f2ca140) { /* |x|>=0.6744 */ - if(hx<0) {x = -x; y = -y;} - z = pio4-x; - w = pio4lo-y; - x = z+w; y = 0.0; - if (fabsf (x) < 0x1p-13f) - return (1 - ((hx >> 30) & 2)) * iy * (1.0f - 2 * iy * x); - } - z = x*x; - w = z*z; - /* Break x^5*(T[1]+x^2*T[2]+...) into - * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + - * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) - */ - r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); - v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); - s = z*x; - r = y + z*(s*(r+v)+y); - r += T[0]*s; - w = x+r; - if(ix>=0x3f2ca140) { - v = (float)iy; - return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r))); - } - if(iy==1) return w; - else { /* if allow error up to 2 ulp, - simply return -1.0/(x+r) here */ - /* compute -1.0/(x+r) accurately */ - float a,t; - int32_t i; - z = w; - GET_FLOAT_WORD(i,z); - SET_FLOAT_WORD(z,i&0xfffff000); - v = r-(z - x); /* z+v = r+x */ - t = a = -(float)1.0/w; /* a = -1.0/w */ - GET_FLOAT_WORD(i,t); - SET_FLOAT_WORD(t,i&0xfffff000); - s = (float)1.0+t*z; - return t+a*(s+t*v); - } -} +/* Not needed. */ diff --git a/sysdeps/ieee754/flt-32/lgamma_negf.c b/sysdeps/ieee754/flt-32/lgamma_negf.c index a8aa74e..1cc8931 100644 --- a/sysdeps/ieee754/flt-32/lgamma_negf.c +++ b/sysdeps/ieee754/flt-32/lgamma_negf.c @@ -1,282 +1 @@ -/* lgammaf expanding around zeros. - Copyright (C) 2015-2024 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <https://www.gnu.org/licenses/>. */ - -#include <float.h> -#include <math.h> -#include <math-narrow-eval.h> -#include <math_private.h> -#include <fenv_private.h> - -static const float lgamma_zeros[][2] = - { - { -0x2.74ff94p+0f, 0x1.3fe0f2p-24f }, - { -0x2.bf682p+0f, -0x1.437b2p-24f }, - { -0x3.24c1b8p+0f, 0x6.c34cap-28f }, - { -0x3.f48e2cp+0f, 0x1.707a04p-24f }, - { -0x4.0a13ap+0f, 0x1.e99aap-24f }, - { -0x4.fdd5ep+0f, 0x1.64454p-24f }, - { -0x5.021a98p+0f, 0x2.03d248p-24f }, - { -0x5.ffa4cp+0f, 0x2.9b82fcp-24f }, - { -0x6.005ac8p+0f, -0x1.625f24p-24f }, - { -0x6.fff3p+0f, 0x2.251e44p-24f }, - { -0x7.000dp+0f, 0x8.48078p-28f }, - { -0x7.fffe6p+0f, 0x1.fa98c4p-28f }, - { -0x8.0001ap+0f, -0x1.459fcap-28f }, - { -0x8.ffffdp+0f, -0x1.c425e8p-24f }, - { -0x9.00003p+0f, 0x1.c44b82p-24f }, - { -0xap+0f, 0x4.9f942p-24f }, - { -0xap+0f, -0x4.9f93b8p-24f }, - { -0xbp+0f, 0x6.b9916p-28f }, - { -0xbp+0f, -0x6.b9915p-28f }, - { -0xcp+0f, 0x8.f76c8p-32f }, - { -0xcp+0f, -0x8.f76c7p-32f }, - { -0xdp+0f, 0xb.09231p-36f }, - { -0xdp+0f, -0xb.09231p-36f }, - { -0xep+0f, 0xc.9cba5p-40f }, - { -0xep+0f, -0xc.9cba5p-40f }, - { -0xfp+0f, 0xd.73f9fp-44f }, - }; - -static const float e_hi = 0x2.b7e15p+0f, e_lo = 0x1.628aeep-24f; - -/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's - approximation to lgamma function. */ - -static const float lgamma_coeff[] = - { - 0x1.555556p-4f, - -0xb.60b61p-12f, - 0x3.403404p-12f, - }; - -#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) - -/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is - the integer end-point of the half-integer interval containing x and - x0 is the zero of lgamma in that half-integer interval. Each - polynomial is expressed in terms of x-xm, where xm is the midpoint - of the interval for which the polynomial applies. */ - -static const float poly_coeff[] = - { - /* Interval [-2.125, -2] (polynomial degree 5). */ - -0x1.0b71c6p+0f, - -0xc.73a1ep-4f, - -0x1.ec8462p-4f, - -0xe.37b93p-4f, - -0x1.02ed36p-4f, - -0xe.cbe26p-4f, - /* Interval [-2.25, -2.125] (polynomial degree 5). */ - -0xf.29309p-4f, - -0xc.a5cfep-4f, - 0x3.9c93fcp-4f, - -0x1.02a2fp+0f, - 0x9.896bep-4f, - -0x1.519704p+0f, - /* Interval [-2.375, -2.25] (polynomial degree 5). */ - -0xd.7d28dp-4f, - -0xe.6964cp-4f, - 0xb.0d4f1p-4f, - -0x1.9240aep+0f, - 0x1.dadabap+0f, - -0x3.1778c4p+0f, - /* Interval [-2.5, -2.375] (polynomial degree 6). */ - -0xb.74ea2p-4f, - -0x1.2a82cp+0f, - 0x1.880234p+0f, - -0x3.320c4p+0f, - 0x5.572a38p+0f, - -0x9.f92bap+0f, - 0x1.1c347ep+4f, - /* Interval [-2.625, -2.5] (polynomial degree 6). */ - -0x3.d10108p-4f, - 0x1.cd5584p+0f, - 0x3.819c24p+0f, - 0x6.84cbb8p+0f, - 0xb.bf269p+0f, - 0x1.57fb12p+4f, - 0x2.7b9854p+4f, - /* Interval [-2.75, -2.625] (polynomial degree 6). */ - -0x6.b5d25p-4f, - 0x1.28d604p+0f, - 0x1.db6526p+0f, - 0x2.e20b38p+0f, - 0x4.44c378p+0f, - 0x6.62a08p+0f, - 0x9.6db3ap+0f, - /* Interval [-2.875, -2.75] (polynomial degree 5). */ - -0x8.a41b2p-4f, - 0xc.da87fp-4f, - 0x1.147312p+0f, - 0x1.7617dap+0f, - 0x1.d6c13p+0f, - 0x2.57a358p+0f, - /* Interval [-3, -2.875] (polynomial degree 5). */ - -0xa.046d6p-4f, - 0x9.70b89p-4f, - 0xa.a89a6p-4f, - 0xd.2f2d8p-4f, - 0xd.e32b4p-4f, - 0xf.fb741p-4f, - }; - -static const size_t poly_deg[] = - { - 5, - 5, - 5, - 6, - 6, - 6, - 5, - 5, - }; - -static const size_t poly_end[] = - { - 5, - 11, - 17, - 24, - 31, - 38, - 44, - 50, - }; - -/* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ - -static float -lg_sinpi (float x) -{ - if (x <= 0.25f) - return __sinf (M_PIf * x); - else - return __cosf (M_PIf * (0.5f - x)); -} - -/* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ - -static float -lg_cospi (float x) -{ - if (x <= 0.25f) - return __cosf (M_PIf * x); - else - return __sinf (M_PIf * (0.5f - x)); -} - -/* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ - -static float -lg_cotpi (float x) -{ - return lg_cospi (x) / lg_sinpi (x); -} - -/* Compute lgamma of a negative argument -15 < X < -2, setting - *SIGNGAMP accordingly. */ - -float -__lgamma_negf (float x, int *signgamp) -{ - /* Determine the half-integer region X lies in, handle exact - integers and determine the sign of the result. */ - int i = floorf (-2 * x); - if ((i & 1) == 0 && i == -2 * x) - return 1.0f / 0.0f; - float xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); - i -= 4; - *signgamp = ((i & 2) == 0 ? -1 : 1); - - SET_RESTORE_ROUNDF (FE_TONEAREST); - - /* Expand around the zero X0 = X0_HI + X0_LO. */ - float x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; - float xdiff = x - x0_hi - x0_lo; - - /* For arguments in the range -3 to -2, use polynomial - approximations to an adjusted version of the gamma function. */ - if (i < 2) - { - int j = floorf (-8 * x) - 16; - float xm = (-33 - 2 * j) * 0.0625f; - float x_adj = x - xm; - size_t deg = poly_deg[j]; - size_t end = poly_end[j]; - float g = poly_coeff[end]; - for (size_t j = 1; j <= deg; j++) - g = g * x_adj + poly_coeff[end - j]; - return __log1pf (g * xdiff / (x - xn)); - } - - /* The result we want is log (sinpi (X0) / sinpi (X)) - + log (gamma (1 - X0) / gamma (1 - X)). */ - float x_idiff = fabsf (xn - x), x0_idiff = fabsf (xn - x0_hi - x0_lo); - float log_sinpi_ratio; - if (x0_idiff < x_idiff * 0.5f) - /* Use log not log1p to avoid inaccuracy from log1p of arguments - close to -1. */ - log_sinpi_ratio = __ieee754_logf (lg_sinpi (x0_idiff) - / lg_sinpi (x_idiff)); - else - { - /* Use log1p not log to avoid inaccuracy from log of arguments - close to 1. X0DIFF2 has positive sign if X0 is further from - XN than X is from XN, negative sign otherwise. */ - float x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5f; - float sx0d2 = lg_sinpi (x0diff2); - float cx0d2 = lg_cospi (x0diff2); - log_sinpi_ratio = __log1pf (2 * sx0d2 - * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); - } - - float log_gamma_ratio; - float y0 = math_narrow_eval (1 - x0_hi); - float y0_eps = -x0_hi + (1 - y0) - x0_lo; - float y = math_narrow_eval (1 - x); - float y_eps = -x + (1 - y); - /* We now wish to compute LOG_GAMMA_RATIO - = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF - accurately approximates the difference Y0 + Y0_EPS - Y - - Y_EPS. Use Stirling's approximation. */ - float log_gamma_high - = (xdiff * __log1pf ((y0 - e_hi - e_lo + y0_eps) / e_hi) - + (y - 0.5f + y_eps) * __log1pf (xdiff / y)); - /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ - float y0r = 1 / y0, yr = 1 / y; - float y0r2 = y0r * y0r, yr2 = yr * yr; - float rdiff = -xdiff / (y * y0); - float bterm[NCOEFF]; - float dlast = rdiff, elast = rdiff * yr * (yr + y0r); - bterm[0] = dlast * lgamma_coeff[0]; - for (size_t j = 1; j < NCOEFF; j++) - { - float dnext = dlast * y0r2 + elast; - float enext = elast * yr2; - bterm[j] = dnext * lgamma_coeff[j]; - dlast = dnext; - elast = enext; - } - float log_gamma_low = 0; - for (size_t j = 0; j < NCOEFF; j++) - log_gamma_low += bterm[NCOEFF - 1 - j]; - log_gamma_ratio = log_gamma_high + log_gamma_low; - - return log_sinpi_ratio + log_gamma_ratio; -} +/* Not needed. */ diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h index dc07ebd..b30a03e 100644 --- a/sysdeps/ieee754/flt-32/math_config.h +++ b/sysdeps/ieee754/flt-32/math_config.h @@ -57,6 +57,33 @@ static inline int32_t converttoint (double_t x); #endif +#ifndef ROUNDEVEN_INTRINSICS +/* When set, roundeven_finite will route to the internal roundeven function. */ +# define ROUNDEVEN_INTRINSICS 1 +#endif + +/* Round x to nearest integer value in floating-point format, rounding halfway + cases to even. If the input is non finite the result is unspecified. */ +static inline double +roundeven_finite (double x) +{ + if (!isfinite (x)) + __builtin_unreachable (); +#if ROUNDEVEN_INTRINSICS + return roundeven (x); +#else + double y = round (x); + if (fabs (x - y) == 0.5) + { + union { double f; uint64_t i; } u = {y}; + union { double f; uint64_t i; } v = {y - copysign (1.0, x)}; + if (__builtin_ctzll (v.i) > __builtin_ctzll (u.i)) + y = v.f; + } + return y; +#endif +} + static inline uint32_t asuint (float f) { diff --git a/sysdeps/ieee754/flt-32/s_cbrtf.c b/sysdeps/ieee754/flt-32/s_cbrtf.c index 68b8b0e..5a7a9a9 100644 --- a/sysdeps/ieee754/flt-32/s_cbrtf.c +++ b/sysdeps/ieee754/flt-32/s_cbrtf.c @@ -1,61 +1,99 @@ -/* Compute cubic root of float value. - Copyright (C) 1997-2024 Free Software Foundation, Inc. - This file is part of the GNU C Library. +/* Correctly-rounded cubic root of binary32 value. - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. +Copyright (c) 2023, 2024 Alexei Sibidanov. - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. +The original version of this file was copied from the CORE-MATH +project (file src/binary32/cbrt/cbrtf.c, revision bc385c2). - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <https://www.gnu.org/licenses/>. */ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: -#include <math.h> -#include <libm-alias-float.h> +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ -#define CBRT2 1.2599210498948731648 /* 2^(1/3) */ -#define SQR_CBRT2 1.5874010519681994748 /* 2^(2/3) */ - -static const double factor[5] = -{ - 1.0 / SQR_CBRT2, - 1.0 / CBRT2, - 1.0, - CBRT2, - SQR_CBRT2 -}; - +#include <fenv.h> +#include <libm-alias-float.h> +#include <math.h> +#include <stdint.h> +#include "math_config.h" float __cbrtf (float x) { - float xm, ym, u, t2; - int xe; - - /* Reduce X. XM now is an range 1.0 to 0.5. */ - xm = __frexpf (fabsf (x), &xe); - - /* If X is not finite or is null return it (with raising exceptions - if necessary. - Note: *Our* version of `frexp' sets XE to zero if the argument is - Inf or NaN. This is not portable but faster. */ - if (xe == 0 && fpclassify (x) <= FP_ZERO) - return x + x; - - u = (0.492659620528969547 + (0.697570460207922770 - - 0.191502161678719066 * xm) * xm); - - t2 = u * u * u; - - ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3]; - - return __ldexpf (x > 0.0 ? ym : -ym, xe / 3); + static const union + { + double d; + uint64_t u; + } escale[3] = + { + { .d = 1.0 }, + { .d = 0x1.428a2f98d728bp+0 }, /* 2^(1/3) */ + { .d = 0x1.965fea53d6e3dp+0 }, /* 2^(2/3) */ + }; + uint32_t u = asuint (x); + uint32_t au = u << 1; + uint32_t sgn = u >> 31; + uint32_t e = au >> 24; + if (__glibc_unlikely (au < 1u << 24 || au >= 0xffu << 24)) + { + if (au >= 0xffu << 24) + return x + x; /* inf, nan */ + if (au == 0) + return x; /* +-0 */ + int nz = __builtin_clz (au) - 7; /* subnormal */ + au <<= nz; + e -= nz - 1; + } + uint32_t mant = au & 0xffffff; + e += 899; + uint32_t et = e / 3, it = e % 3; + uint64_t isc = escale[it].u; + isc += (int64_t) (et - 342) << 52; + isc |= (int64_t) sgn << 63; + double cvt2 = asdouble (isc); + static const double c[] = + { + 0x1.2319d352ea5d5p-1, 0x1.67ad8ee258d1ap-1, -0x1.9342edf9cbad9p-2, + 0x1.b6388fc510a75p-3, -0x1.6002455599e2fp-4, 0x1.7b096936192c4p-6, + -0x1.e5577187e8bf8p-9, 0x1.169ef81d6c34ep-12 + }; + double z = asdouble ((uint64_t) mant << 28 | UINT64_C(0x3ff) << 52); + double r0 = -0x1.9931c6c2d19d1p-6 / z; + double z2 = z * z; + double z4 = z2 * z2; + double f = ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3])) + + z4 * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7])) + r0; + double r = f * cvt2; + float ub = r; + float lb = r - cvt2 * 1.4182e-9; + if (__glibc_likely (ub == lb)) + return ub; + const double u0 = -0x1.ab16ec65d138fp+3; + double h = f * f * f - z; + f -= (f * r0 * u0) * h; + r = f * cvt2; + uint64_t cvt1 = asuint64 (r); + ub = r; + int64_t m0 = cvt1 << 19; + int64_t m1 = m0 >> 63; + if (__glibc_unlikely ((m0 ^ m1) < (UINT64_C(1) << 31))) + { + cvt1 = (cvt1 + (UINT64_C(1) << 31)) & UINT64_C(0xffffffff00000000); + ub = asdouble (cvt1); + } + return ub; } libm_alias_float (__cbrt, cbrt) diff --git a/sysdeps/ieee754/flt-32/s_erfcf.c b/sysdeps/ieee754/flt-32/s_erfcf.c new file mode 100644 index 0000000..3dae2a0 --- /dev/null +++ b/sysdeps/ieee754/flt-32/s_erfcf.c @@ -0,0 +1,187 @@ +/* Correctly-rounded complementary error function for the binary32 format + +Copyright (c) 2023, 2024 Alexei Sibidanov. + +This file is part of the CORE-MATH project +project (file src/binary32/erfc/erfcf.c revision bc385c2). + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ + +#include <errno.h> +#include <math.h> +#include <stdint.h> +#include <libm-alias-float.h> +#include "math_config.h" + +static const double E[] = + { + 0x1p+0, 0x1.0163da9fb3335p+0, 0x1.02c9a3e778061p+0, + 0x1.04315e86e7f85p+0, 0x1.059b0d3158574p+0, 0x1.0706b29ddf6dep+0, + 0x1.0874518759bc8p+0, 0x1.09e3ecac6f383p+0, 0x1.0b5586cf9890fp+0, + 0x1.0cc922b7247f7p+0, 0x1.0e3ec32d3d1a2p+0, 0x1.0fb66affed31bp+0, + 0x1.11301d0125b51p+0, 0x1.12abdc06c31ccp+0, 0x1.1429aaea92dep+0, + 0x1.15a98c8a58e51p+0, 0x1.172b83c7d517bp+0, 0x1.18af9388c8deap+0, + 0x1.1a35beb6fcb75p+0, 0x1.1bbe084045cd4p+0, 0x1.1d4873168b9aap+0, + 0x1.1ed5022fcd91dp+0, 0x1.2063b88628cd6p+0, 0x1.21f49917ddc96p+0, + 0x1.2387a6e756238p+0, 0x1.251ce4fb2a63fp+0, 0x1.26b4565e27cddp+0, + 0x1.284dfe1f56381p+0, 0x1.29e9df51fdee1p+0, 0x1.2b87fd0dad99p+0, + 0x1.2d285a6e4030bp+0, 0x1.2ecafa93e2f56p+0, 0x1.306fe0a31b715p+0, + 0x1.32170fc4cd831p+0, 0x1.33c08b26416ffp+0, 0x1.356c55f929ff1p+0, + 0x1.371a7373aa9cbp+0, 0x1.38cae6d05d866p+0, 0x1.3a7db34e59ff7p+0, + 0x1.3c32dc313a8e5p+0, 0x1.3dea64c123422p+0, 0x1.3fa4504ac801cp+0, + 0x1.4160a21f72e2ap+0, 0x1.431f5d950a897p+0, 0x1.44e086061892dp+0, + 0x1.46a41ed1d0057p+0, 0x1.486a2b5c13cdp+0, 0x1.4a32af0d7d3dep+0, + 0x1.4bfdad5362a27p+0, 0x1.4dcb299fddd0dp+0, 0x1.4f9b2769d2ca7p+0, + 0x1.516daa2cf6642p+0, 0x1.5342b569d4f82p+0, 0x1.551a4ca5d920fp+0, + 0x1.56f4736b527dap+0, 0x1.58d12d497c7fdp+0, 0x1.5ab07dd485429p+0, + 0x1.5c9268a5946b7p+0, 0x1.5e76f15ad2148p+0, 0x1.605e1b976dc09p+0, + 0x1.6247eb03a5585p+0, 0x1.6434634ccc32p+0, 0x1.6623882552225p+0, + 0x1.68155d44ca973p+0, 0x1.6a09e667f3bcdp+0, 0x1.6c012750bdabfp+0, + 0x1.6dfb23c651a2fp+0, 0x1.6ff7df9519484p+0, 0x1.71f75e8ec5f74p+0, + 0x1.73f9a48a58174p+0, 0x1.75feb564267c9p+0, 0x1.780694fde5d3fp+0, + 0x1.7a11473eb0187p+0, 0x1.7c1ed0130c132p+0, 0x1.7e2f336cf4e62p+0, + 0x1.80427543e1a12p+0, 0x1.82589994cce13p+0, 0x1.8471a4623c7adp+0, + 0x1.868d99b4492edp+0, 0x1.88ac7d98a6699p+0, 0x1.8ace5422aa0dbp+0, + 0x1.8cf3216b5448cp+0, 0x1.8f1ae99157736p+0, 0x1.9145b0b91ffc6p+0, + 0x1.93737b0cdc5e5p+0, 0x1.95a44cbc8520fp+0, 0x1.97d829fde4e5p+0, + 0x1.9a0f170ca07bap+0, 0x1.9c49182a3f09p+0, 0x1.9e86319e32323p+0, + 0x1.a0c667b5de565p+0, 0x1.a309bec4a2d33p+0, 0x1.a5503b23e255dp+0, + 0x1.a799e1330b358p+0, 0x1.a9e6b5579fdbfp+0, 0x1.ac36bbfd3f37ap+0, + 0x1.ae89f995ad3adp+0, 0x1.b0e07298db666p+0, 0x1.b33a2b84f15fbp+0, + 0x1.b59728de5593ap+0, 0x1.b7f76f2fb5e47p+0, 0x1.ba5b030a1064ap+0, + 0x1.bcc1e904bc1d2p+0, 0x1.bf2c25bd71e09p+0, 0x1.c199bdd85529cp+0, + 0x1.c40ab5fffd07ap+0, 0x1.c67f12e57d14bp+0, 0x1.c8f6d9406e7b5p+0, + 0x1.cb720dcef9069p+0, 0x1.cdf0b555dc3fap+0, 0x1.d072d4a07897cp+0, + 0x1.d2f87080d89f2p+0, 0x1.d5818dcfba487p+0, 0x1.d80e316c98398p+0, + 0x1.da9e603db3285p+0, 0x1.dd321f301b46p+0, 0x1.dfc97337b9b5fp+0, + 0x1.e264614f5a129p+0, 0x1.e502ee78b3ff6p+0, 0x1.e7a51fbc74c83p+0, + 0x1.ea4afa2a490dap+0, 0x1.ecf482d8e67f1p+0, 0x1.efa1bee615a27p+0, + 0x1.f252b376bba97p+0, 0x1.f50765b6e454p+0, 0x1.f7bfdad9cbe14p+0, + 0x1.fa7c1819e90d8p+0, 0x1.fd3c22b8f71f1p+0 + }; + +float +__erfcf (float xf) +{ + float axf = fabsf (xf); + double axd = axf; + double x2 = axd * axd; + uint32_t t = asuint (xf); + unsigned int at = t & (~0u >> 1); + unsigned int sgn = t >> 31; + int64_t i = at > 0x40051000; + /* for x < -0x1.ea8f94p+1, erfc(x) rounds to 2 (to nearest) */ + if (__glibc_unlikely (t > 0xc07547ca)) + { /* xf < -0x1.ea8f94p+1 */ + if (__glibc_unlikely (t >= 0xff800000)) + { /* -Inf or NaN */ + if (t == 0xff800000) + return 2.0f; /* -Inf */ + return xf + xf; /* NaN */ + } + return 2.0f - 0x1p-25f; /* rounds to 2 or nextbelow(2) */ + } + /* at is the absolute value of xf + for x >= 0x1.41bbf8p+3, erfc(x) < 2^-150, thus rounds to 0 or to 2^-149 + depending on the rounding mode */ + if (__glibc_unlikely (at >= 0x4120ddfc)) + { /* |xf| >= 0x1.41bbf8p+3 */ + if (__glibc_unlikely (at >= 0x7f800000)) + { /* +Inf or NaN */ + if (at == 0x7f800000) + return 0.0f; /* +Inf */ + return xf + xf; /* NaN */ + } + __set_errno (ERANGE); + /* 0x1p-149f * 0.25f rounds to 0 or 2^-149 depending on rounding */ + return 0x1p-149f * 0.25f; + } + if (__glibc_unlikely (at <= 0x3db80000)) + { /* |x| <= 0x1.7p-4 */ + if (__glibc_unlikely (t == 0xb76c9f62)) + return 0x1.00010ap+0f + 0x1p-25f; /* exceptional case */ + /* for |x| <= 0x1.c5bf88p-26. erfc(x) rounds to 1 (to nearest) */ + if (__glibc_unlikely (at <= 0x32e2dfc4)) + { /* |x| <= 0x1.c5bf88p-26 */ + if (__glibc_unlikely (at == 0)) + return 1.0f; + static const float d[] = { -0x1p-26, 0x1p-25 }; + return 1.0f + d[sgn]; + } + /* around 0, erfc(x) behaves as 1 - (odd polynomial) */ + static const double c[] = + { + 0x1.20dd750429b6dp+0, -0x1.812746b03610bp-2, 0x1.ce2f218831d2fp-4, + -0x1.b82c609607dcbp-6, 0x1.553af09b8008ep-8 + }; + double f0 = xf + * (c[0] + x2 * (c[1] + x2 * (c[2] + x2 * (c[3] + x2 * (c[4]))))); + return 1.0 - f0; + } + + /* now -0x1.ea8f94p+1 <= x <= 0x1.41bbf8p+3, with |x| > 0x1.7p-4 */ + const double iln2 = 0x1.71547652b82fep+0; + const double ln2h = 0x1.62e42fefap-8; + const double ln2l = 0x1.cf79abd6f5dc8p-47; + uint64_t jt = asuint64 (fma (x2, iln2, -(1024 + 0x1p-8))); + int64_t j = (int64_t) (jt << 12) >> 48; + double S = asdouble (((j >> 7) + (0x3ff | sgn << 11)) << 52); + static const double ch[] = + { + -0x1.ffffffffff333p-2, 0x1.5555555556a14p-3, -0x1.55556666659b4p-5, + 0x1.1111074cc7b22p-7 + }; + double d = (x2 + ln2h * j) + ln2l * j; + double d2 = d * d; + double e0 = E[j & 127]; + double f = d + d2 * ((ch[0] + d * ch[1]) + d2 * (ch[2] + d * ch[3])); + static const double ct[][16] = + { + { + 0x1.c162355429b28p-1, 0x1.d99999999999ap+1, 0x1.da951cece2b85p-2, + -0x1.70ef6cff4bcc4p+0, 0x1.3d7f7b3d617dep+1, -0x1.9d0aa47537c51p+1, + 0x1.9754ea9a3fcb1p+1, -0x1.27a5453fcc015p+1, 0x1.1ef2e0531aebap+0, + -0x1.eca090f5a1c06p-3, -0x1.7a3cd173a063cp-4, 0x1.30fa68a68fdddp-4, + 0x1.55ad9a326993ap-10, -0x1.07e7b0bb39fbfp-6, 0x1.2328706c0e95p-10, + 0x1.d6aa0b7b19cfep-9 + }, + { + 0x1.137c8983f8516p+2, 0x1.799999999999ap+1, 0x1.05b53aa241333p-3, + -0x1.a3f53872bf87p-3, 0x1.de4c30742c9d5p-4, -0x1.cb24bfa591986p-5, + 0x1.666aec059ca5fp-6, -0x1.a61250eb26b0bp-8, 0x1.2b28b7924b34dp-10, + 0x1.41b13a9d45013p-15, -0x1.6dd5e8a273613p-14, 0x1.09ce8ea5e8da5p-16, + 0x1.33923b4102981p-18, -0x1.1dfd161e3f984p-19, -0x1.c87618fcae3b3p-23, + 0x1.e8a6ffa0ba2c7p-23 + } + }; + double z = (axd - ct[i][0]) / (axd + ct[i][1]); + double z2 = z * z, z4 = z2 * z2; + double z8 = z4 * z4; + const double *c = ct[i] + 3; + double s = (((c[0] + z * c[1]) + z2 * (c[2] + z * c[3])) + + z4 * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7]))) + + z8 * (((c[8] + z * c[9]) + z2 * (c[10] + z * c[11])) + z4 * (c[12])); + s = ct[i][2] + z * s; + static const double off[] = { 0, 2 }; + double r = (S * (e0 - f * e0)) * s; + double y = off[sgn] + r; + return y; +} +libm_alias_float (__erfc, erfc) diff --git a/sysdeps/ieee754/flt-32/s_erff.c b/sysdeps/ieee754/flt-32/s_erff.c index ba29734..025c207 100644 --- a/sysdeps/ieee754/flt-32/s_erff.c +++ b/sysdeps/ieee754/flt-32/s_erff.c @@ -1,232 +1,256 @@ -/* s_erff.c -- float version of s_erf.c. - */ +/* Correctly-rounded error function for binary32 value. -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ +Copyright (c) 2022-2024 Alexei Sibidanov. -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: s_erff.c,v 1.4 1995/05/10 20:47:07 jtc Exp $"; -#endif +This file is part of the CORE-MATH project +project (file src/binary32/erf/erff.c revision bc385c2). -#include <errno.h> -#include <float.h> -#include <math.h> -#include <math-narrow-eval.h> -#include <math_private.h> -#include <math-underflow.h> -#include <libm-alias-float.h> -#include <fix-int-fp-convert-zero.h> +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: -static const float -tiny = 1e-30, -half= 5.0000000000e-01, /* 0x3F000000 */ -one = 1.0000000000e+00, /* 0x3F800000 */ -two = 2.0000000000e+00, /* 0x40000000 */ - /* c = (subfloat)0.84506291151 */ -erx = 8.4506291151e-01, /* 0x3f58560b */ -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -efx = 1.2837916613e-01, /* 0x3e0375d4 */ -pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ -pp1 = -3.2504209876e-01, /* 0xbea66beb */ -pp2 = -2.8481749818e-02, /* 0xbce9528f */ -pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ -pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ -qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ -qq2 = 6.5022252500e-02, /* 0x3d852a63 */ -qq3 = 5.0813062117e-03, /* 0x3ba68116 */ -qq4 = 1.3249473704e-04, /* 0x390aee49 */ -qq5 = -3.9602282413e-06, /* 0xb684e21a */ -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ -pa1 = 4.1485610604e-01, /* 0x3ed46805 */ -pa2 = -3.7220788002e-01, /* 0xbebe9208 */ -pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ -pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ -pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ -pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ -qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ -qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ -qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ -qa4 = 1.2617121637e-01, /* 0x3e013307 */ -qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ -qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -ra0 = -9.8649440333e-03, /* 0xbc21a093 */ -ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ -ra2 = -1.0558626175e+01, /* 0xc128f022 */ -ra3 = -6.2375331879e+01, /* 0xc2798057 */ -ra4 = -1.6239666748e+02, /* 0xc322658c */ -ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ -ra6 = -8.1287437439e+01, /* 0xc2a2932b */ -ra7 = -9.8143291473e+00, /* 0xc11d077e */ -sa1 = 1.9651271820e+01, /* 0x419d35ce */ -sa2 = 1.3765776062e+02, /* 0x4309a863 */ -sa3 = 4.3456588745e+02, /* 0x43d9486f */ -sa4 = 6.4538726807e+02, /* 0x442158c9 */ -sa5 = 4.2900814819e+02, /* 0x43d6810b */ -sa6 = 1.0863500214e+02, /* 0x42d9451f */ -sa7 = 6.5702495575e+00, /* 0x40d23f7c */ -sa8 = -6.0424413532e-02, /* 0xbd777f97 */ -/* - * Coefficients for approximation to erfc in [1/.35,28] - */ -rb0 = -9.8649431020e-03, /* 0xbc21a092 */ -rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ -rb2 = -1.7757955551e+01, /* 0xc18e104b */ -rb3 = -1.6063638306e+02, /* 0xc320a2ea */ -rb4 = -6.3756646729e+02, /* 0xc41f6441 */ -rb5 = -1.0250950928e+03, /* 0xc480230b */ -rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ -sb1 = 3.0338060379e+01, /* 0x41f2b459 */ -sb2 = 3.2579251099e+02, /* 0x43a2e571 */ -sb3 = 1.5367296143e+03, /* 0x44c01759 */ -sb4 = 3.1998581543e+03, /* 0x4547fdbb */ -sb5 = 2.5530502930e+03, /* 0x451f90ce */ -sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ -sb7 = -2.2440952301e+01; /* 0xc1b38712 */ +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. -float __erff(float x) -{ - int32_t hx,ix,i; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erf(nan)=nan */ - i = ((uint32_t)hx>>31)<<1; - return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ - } +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x31800000) { /* |x|<2**-28 */ - if (ix < 0x04000000) - { - /* Avoid spurious underflow. */ - float ret = 0.0625f * (16.0f * x + (16.0f * efx) * x); - math_check_force_underflow (ret); - return ret; - } - return x + efx*x; - } - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - return x + x*y; - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) return erx + P/Q; else return -erx - P/Q; - } - if (ix >= 0x40c00000) { /* inf>|x|>=6 */ - if(hx>=0) return one-tiny; else return tiny-one; - } - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/0.35 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xfffff000); - r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); - if(hx>=0) return one-r/x; else return r/x-one; -} -libm_alias_float (__erf, erf) +#include <math.h> +#include <stdint.h> +#include <libm-alias-float.h> +#include "math_config.h" -float __erfcf(float x) +float +__erff (float x) { - int32_t hx,ix; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - float ret = (float)(((uint32_t)hx>>31)<<1)+one/x; - if (FIX_INT_FP_CONVERT_ZERO && ret == 0.0f) - return 0.0f; - return ret; - } - - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x32800000) /* |x|<2**-26 */ - return one-x; - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - if(hx < 0x3e800000) { /* x<1/4 */ - return one-(x+x*y); - } else { - r = x*y; - r += (x-half); - return half - r ; - } - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) { - z = one-erx; return z - P/Q; - } else { - z = erx+P/Q; return one+z; - } - } - if (ix < 0x41e00000) { /* |x|<28 */ - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/.35 ~ 2.857143 */ - if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xffffe000); - r = __ieee754_expf(-z*z-(float)0.5625)* - __ieee754_expf((z-x)*(z+x)+R/S); - if(hx>0) { - float ret = math_narrow_eval (r/x); - if (ret == 0) - __set_errno (ERANGE); - return ret; - } else - return two-r/x; - } else { - if(hx>0) { - __set_errno (ERANGE); - return tiny*tiny; - } else - return two-tiny; - } + /* for 7 <= i < 63, C[i-7] is a degree-7 polynomial approximation of + erf(i/16+1/32+x) for -1/32 <= x <= 1/32 */ + static const double C[56][8] = { + { 0x1.f86faa9428f9cp-2, 0x1.cfc41e36c7dfap-1, -0x1.b2c7dc53508b9p-2, + -0x1.5a9de93fa556ep-3, 0x1.731793dbb01b5p-3, 0x1.133e06426cf18p-6, + -0x1.a12a6289cafd8p-5, 0x1.717d6f1d6f557p-9 }, + { 0x1.1855a5fd3dd50p-1, 0x1.b3aafcc27502fp-1, -0x1.cee5ac8e92bb2p-2, + -0x1.fa02983ca2d79p-4, 0x1.77cd746cb1922p-3, -0x1.fa6f277886487p-10, + -0x1.8de75458db416p-5, 0x1.00899c98551c9p-7 }, + { 0x1.32a54cb8db67ap-1, 0x1.96164fafd8de5p-1, -0x1.e23a7ea0c9ad3p-2, + -0x1.3f5ee15671cf4p-4, 0x1.70e468a3d72d9p-3, -0x1.3da68037cfc99p-6, + -0x1.69ed9ba1f9839p-5, 0x1.8cab9244a4ff4p-7 }, + { 0x1.4b13713ad3513p-1, 0x1.7791b886e7405p-1, -0x1.ecef423109bf5p-2, + -0x1.15c3c5cec6847p-5, 0x1.5f688fc931ba6p-3, -0x1.1da63ed190037p-5, + -0x1.38427ca63cca4p-5, 0x1.fa00e52525e17p-7 }, + { 0x1.61955607dd15dp-1, 0x1.58a445da7c74ep-1, -0x1.ef6c246a0f66cp-2, + 0x1.e83e0d9d61330p-8, 0x1.44cc65535bc9fp-3, -0x1.87d3c4860435dp-5, + -0x1.f90b10501169bp-6, 0x1.22295856d427ap-6 }, + { 0x1.762870f720c6fp-1, 0x1.39ccc1b136d5cp-1, -0x1.ea4feea4e4744p-2, + 0x1.715e5952ebfbap-5, 0x1.22cdbd83c75c4p-3, -0x1.da50aa1d925b6p-5, + -0x1.754dc0a29b4ddp-6, 0x1.350b6bef9392cp-6 }, + { 0x1.88d1cd474a2e0p-1, 0x1.1b7e98fe26219p-1, -0x1.de65a22ce1419p-2, + 0x1.40686a3f16400p-4, 0x1.f6b0cbb216b2bp-4, -0x1.09c7c903edd57p-4, + -0x1.da7529fde641p-7, 0x1.362a7a0588eabp-6 }, + { 0x1.999d4192a5717p-1, 0x1.fc3ee5d1524b3p-2, -0x1.cc990045b55c8p-2, + 0x1.b37338e68b37dp-4, 0x1.a0d120c872ea7p-4, -0x1.19bb2b07ecff6p-4, + -0x1.a110f5f593aafp-8, 0x1.272c15a57720ep-6 }, + { 0x1.a89c850b7d54dp-1, 0x1.c40b0729ed54ap-2, -0x1.b5eaaef0a2346p-2, + 0x1.0847c7dacbae1p-3, 0x1.47de0ba6d18fbp-4, -0x1.1d9de77a4b648p-4, + 0x1.30ffbe56f0726p-10, 0x1.0a9cb99feea01p-6 }, + { 0x1.b5e62fce16096p-1, 0x1.8eed36b886d95p-2, -0x1.9b64a06e50705p-2, + 0x1.2bb6e2c744df5p-3, 0x1.dee3261ca61bcp-5, -0x1.16996004f7da5p-4, + 0x1.fdff37bae983ep-8, 0x1.c750083e65f9ap-7 }, + { 0x1.c194b1d49a184p-1, 0x1.5d4fd33729015p-2, -0x1.7e0f4f045addbp-2, + 0x1.444bc66c31a1bp-3, 0x1.356dbf16ec8f1p-5, -0x1.0643de0906cd8p-4, + 0x1.b281af7bd3a2cp-7, 0x1.6b97eaa2c6abdp-7 }, + { 0x1.cbc54b476248ep-1, 0x1.2f7cc3fe6f423p-2, -0x1.5ee8429e36de8p-2, + 0x1.52a8395f96177p-3, 0x1.313761ba257dcp-6, -0x1.dcf844d5fed8fp-5, + 0x1.1e1420f475fa9p-6, 0x1.091c7dc1e18b2p-7 }, + { 0x1.d4970f9ce00d9p-1, 0x1.059f59af7a905p-2, -0x1.3eda354de36c3p-2, + 0x1.57b85ad439779p-3, 0x1.8e913b9778136p-10, -0x1.a2893bd3435f4p-5, + 0x1.4d3a90e37164ap-6, 0x1.4ce7f6e19a902p-8 }, + { 0x1.dc29fb60715b0p-1, 0x1.bf8e1b1ca2277p-3, -0x1.1eb7095e5d6d2p-2, + 0x1.549ea6f7a64f4p-3, -0x1.b10f12f3877a3p-7, -0x1.61420c8f7156ap-5, + 0x1.674f1f92a8812p-6, 0x1.25543ffd74d52p-9 }, + { 0x1.e29e22a89d767p-1, 0x1.7bd5c7df3fe99p-3, -0x1.fe674494077bfp-3, + 0x1.4a9feacf86578p-3, -0x1.a008269076644p-6, -0x1.1cf0e8fb4f1cbp-5, + 0x1.6e0d2ef105fb3p-6, -0x1.367205fbd7876p-12 }, + { 0x1.e812fc64db36ap-1, 0x1.3fda6bc016991p-3, -0x1.c1cb278627920p-3, + 0x1.3b10512314f1ep-3, -0x1.1e6457bb1b9a9p-5, -0x1.b1f6474e2388cp-6, + 0x1.640a5345f7ec7p-6, -0x1.3dae5a997fdbp-9 }, + { 0x1.eca6ccd709544p-1, 0x1.0b3f52ce8c380p-3, -0x1.8885019f63c6dp-3, + 0x1.274275fc91a05p-3, -0x1.57f73699a8372p-5, -0x1.3076a305fc7cep-6, + 0x1.4c6ae04843a41p-6, -0x1.0be5fcf5ecc91p-8 }, + { 0x1.f0762fde45ee7p-1, 0x1.bb1c972f23e4ap-4, -0x1.5341e3c01b58dp-3, + 0x1.107929f6f0b60p-3, -0x1.7e1b34f976c02p-5, -0x1.73b62589c234ap-7, + 0x1.2a97ee1876486p-6, -0x1.595f40a3150fep-8 }, + { 0x1.f39bc242e43e6p-1, 0x1.6c7e64e7281c5p-4, -0x1.2274b86835fd3p-3, + 0x1.efb890e5c770dp-4, -0x1.92c7db16847e0p-5, -0x1.45477db5e2dd4p-8, + 0x1.01fc6165fc866p-6, -0x1.8845509030c2cp-8 }, + { 0x1.f62fe80272419p-1, 0x1.297db960e4f5dp-4, -0x1.ecb83b087c04fp-4, + 0x1.bce18363ca3d1p-4, -0x1.985aaf776482cp-5, 0x1.cd953efdae886p-12, + 0x1.ab9a0b89b54ffp-7, -0x1.9b5e576ccc31cp-8 }, + { 0x1.f848acb544e95p-1, 0x1.e1d4cf1e24501p-5, -0x1.9e12e1fde5552p-4, + 0x1.8a27806df3d1bp-4, -0x1.91674e5eb3319p-5, 0x1.3bc75595b2db8p-8, + 0x1.51bc537ac61afp-7, -0x1.96b23b19ea04dp-8 }, + { 0x1.f9f9ba8d3c733p-1, 0x1.83298d7172108p-5, -0x1.58d101f905a75p-4, + 0x1.58f1456f8639bp-4, -0x1.808d1850b8231p-5, 0x1.0c1bd99c348a7p-7, + 0x1.f61e9d7bc48cap-8, -0x1.7f07c13441774p-8 }, + { 0x1.fb54641aebbc9p-1, 0x1.34ac36ad8dafap-5, -0x1.1c8ec267f9405p-4, + 0x1.2a52c5d841848p-4, -0x1.68541c02b3b6bp-5, 0x1.5afe400196379p-7, + 0x1.565b2d6eda3d6p-8, -0x1.596aaff29e739p-8 }, + { 0x1.fc67bcf2d7b8fp-1, 0x1.e85c449e377efp-6, -0x1.d177f166c07c6p-5, + 0x1.fe23b7584b504p-5, -0x1.4b12109613313p-5, 0x1.8d9905c0acf7dp-7, + 0x1.9265032a669dap-9, -0x1.2ac4a6dbcbf3ep-8 }, + { 0x1.fd40bd6d7a785p-1, 0x1.7f5188610ddc7p-6, -0x1.7954423f7c998p-5, + 0x1.af5baae33887fp-5, -0x1.2ad77c7cbc474p-5, 0x1.a7b8c47ec2a51p-7, + 0x1.46646ee094bccp-10, -0x1.ef19d8db8673p-9 }, + { 0x1.fdea6e062d0c9p-1, 0x1.2a875b5ffab58p-6, -0x1.2f3178cd6dcd5p-5, + 0x1.68d1c45b94182p-5, -0x1.09648ed3aeaefp-5, 0x1.ad8b150d38164p-7, + -0x1.e9a6023d9429fp-13, -0x1.8722d19ee2e8ep-9 }, + { 0x1.fe6e1742f7cf5p-1, 0x1.cd5ec93c1243ap-7, -0x1.e2ff3aaacb386p-6, + 0x1.2aa4e5823cc89p-5, -0x1.d049842dbe399p-6, 0x1.a34edb21ab302p-7, + -0x1.676e5996c7f9bp-10, -0x1.23b01a35140bfp-9 }, + { 0x1.fed37386190fbp-1, 0x1.61beae53b72c2p-7, -0x1.7d6193f22c3c1p-6, + 0x1.e947279e3bb7dp-6, -0x1.906031b97ca97p-6, 0x1.8d14d62561755p-7, + -0x1.1f245e7178882p-9, -0x1.9257d4eb47685p-10 }, + { 0x1.ff20e0a7ba8c2p-1, 0x1.0d1d69569b839p-7, -0x1.2a8ca0dc02752p-6, + 0x1.8cc071b709751p-6, -0x1.54a149f1b070cp-6, 0x1.6e9137b13412cp-7, + -0x1.6577ed3d8e83bp-9, -0x1.e9c1a5178a289p-11 }, + { 0x1.ff5b8fb26f5f6p-1, 0x1.9646f35a7663cp-8, -0x1.cf68ed9311b0bp-7, + 0x1.3e8735b5a694fp-6, -0x1.1e1612d026fdfp-6, 0x1.4afd8e6ca636dp-7, + -0x1.8c375170ccb22p-9, -0x1.c799443c4fd3bp-12 }, + { 0x1.ff87b1913e853p-1, 0x1.30499b5039596p-8, -0x1.64964201ec8bap-7, + 0x1.fa73d7eafba98p-7, -0x1.daa3022141fbbp-7, 0x1.2509444c063b7p-7, + -0x1.99482a2f8a0a1p-9, -0x1.403d1f76c9454p-15 }, + { 0x1.ffa89fe5b3625p-1, 0x1.c4412bf4b8f35p-9, -0x1.100f347126cf0p-7, + 0x1.8ebda07671d40p-7, -0x1.850c6a31c98c1p-7, 0x1.fdac860c67d21p-8, + -0x1.927d03d2ba12cp-9, 0x1.0ff620b4190fep-12 }, + { 0x1.ffc10194fcb64p-1, 0x1.4d78bba8ca621p-9, -0x1.9ba107a443e02p-8, + 0x1.36f273fbc04ccp-7, -0x1.3b38716ac7e6fp-7, 0x1.b3fe0181914acp-8, + -0x1.7d3fe7de98c5cp-9, 0x1.ea31f8e5317f7p-12 }, + { 0x1.ffd2eae369a07p-1, 0x1.e7f232d9e266cp-10, -0x1.34c7442dd48d9p-8, + 0x1.e066bed070a0bp-8, -0x1.f914f3c42fc0dp-8, 0x1.6f4664ed2260fp-8, + -0x1.5e59910761d24p-9, 0x1.39cbb6e84c126p-11 }, + { 0x1.ffdff92db56e5p-1, 0x1.6235fbd7a4373p-10, -0x1.cb5e029b9e56ap-9, + 0x1.6fa4c7ef274dap-8, -0x1.903a089a835f3p-8, 0x1.30f12e0ca1901p-8, + -0x1.39d21b6957f99p-9, 0x1.5d3f8495a703cp-11 }, + { 0x1.ffe96a78a04a9p-1, 0x1.fe41cd9bb4f2cp-11, -0x1.52d7b28966c0cp-9, + 0x1.16c192d86a1a7p-8, -0x1.39bfce951100cp-8, 0x1.f376a7869f9e3p-9, + -0x1.12e6cef999c4fp-9, 0x1.66acd4d667b5p-11 }, + { 0x1.fff0312b010b5p-1, 0x1.6caa0d3583018p-11, -0x1.efb729f4cf75bp-10, + 0x1.a2da7cebe12acp-9, -0x1.e6c27a24bc759p-9, 0x1.93b1f4d8ea65p-9, + -0x1.d82050aa94a08p-10, 0x1.5cd7dc75d6cbap-11 }, + { 0x1.fff50456dab8cp-1, 0x1.0295ef6591865p-11, -0x1.679880e95a4dap-10, + 0x1.37d38e3a5c8ebp-9, -0x1.75b3708aebb8fp-9, 0x1.4231c4b4b0296p-9, + -0x1.8e26476489318p-10, 0x1.45c3b570dd924p-11 }, + { 0x1.fff86cfd3e657p-1, 0x1.6be02102b353dp-12, -0x1.02b157780d6aep-10, + 0x1.cc1d886861133p-10, -0x1.1bff6f12ec9abp-9, 0x1.fc0f77bd9c736p-10, + -0x1.4a3320bd0959dp-10, 0x1.267f8b4f95d2p-11 }, + { 0x1.fffad0b901755p-1, 0x1.fc0d55470cf5ep-13, -0x1.7121aff5e820ep-11, + 0x1.506d6992f7de5p-10, -0x1.ab595d3ecd0d6p-10, 0x1.8bdd79daaf754p-10, + -0x1.0d9b090f997c1p-10, 0x1.031ab9fd1c7dap-11 }, + { 0x1.fffc7a37857d2p-1, 0x1.5feada379d8a5p-13, -0x1.05304df58f3aap-11, + 0x1.e79c081b8600fp-11, -0x1.3e5dbe33232e0p-10, 0x1.30eb208200729p-10, + -0x1.b1d493b147945p-11, 0x1.bd587bbc071bep-12 }, + { 0x1.fffd9fdeabccep-1, 0x1.e3bcf436a1a49p-14, -0x1.6e953111ef0a1p-12, + 0x1.5e3edf6768654p-11, -0x1.d5be67c0547a4p-11, 0x1.d07d9ffa1d435p-11, + -0x1.58328f5f358cap-11, 0x1.76d42d95c42c4p-12 }, + { 0x1.fffe68f4fa777p-1, 0x1.49e17724f4cddp-14, -0x1.fe48c44e229c1p-13, + 0x1.f2bd95d76f188p-12, -0x1.57388cb12d011p-11, 0x1.5decc25c5c079p-11, + -0x1.0d7499d1b0d2dp-11, 0x1.359332c94ecdcp-12 }, + { 0x1.fffef1960d85dp-1, 0x1.be6abbb10a4cdp-15, -0x1.6040381a8c313p-13, + 0x1.5fff1dde9ee9dp-12, -0x1.f0c933efa9971p-12, 0x1.04cbf4a5cd760p-11, + -0x1.a07f150af6dadp-12, 0x1.f68dd183426bap-13 }, + { 0x1.ffff4db27f146p-1, 0x1.2bb5cc22e5cd8p-15, -0x1.e25894899f526p-14, + 0x1.ec8a8e5a72757p-13, -0x1.64256ae0a3cf9p-12, 0x1.80a836c18c46cp-12, + -0x1.3dea401af6775p-12, 0x1.915ddff3fe0d1p-13 }, + { 0x1.ffff8b500e77cp-1, 0x1.8f4ccca7fc769p-16, -0x1.478cffe305946p-14, + 0x1.559f04adde504p-13, -0x1.f9e1577d6961dp-13, 0x1.18bda53c14716p-12, + -0x1.df8634c35541cp-13, 0x1.3bb5c6b616337p-13 }, + { 0x1.ffffb43555b5fp-1, 0x1.07ebd2a2d26c8p-16, -0x1.b93e442a37f2bp-15, + 0x1.d5cf15159ce28p-14, -0x1.63f5e1469c006p-13, 0x1.95a03acebac18p-13, + -0x1.656e5e2a1f8e2p-13, 0x1.e98c437189bdep-14 }, + { 0x1.ffffcf23ff5fcp-1, 0x1.5a2adfa0b492cp-17, -0x1.26c88270759f0p-15, + 0x1.40473572b99a8p-14, -0x1.f057cbde578a5p-14, 0x1.22178d1c3c948p-13, + -0x1.0765b61a0d859p-13, 0x1.765b3ea03ddbep-14 }, + { 0x1.ffffe0bd3e852p-1, 0x1.c282cd3957a72p-18, -0x1.86ad6dfa44faap-16, + 0x1.b0f313f03a029p-15, -0x1.56e44abecd255p-14, 0x1.9ad1ecfe34a89p-14, + -0x1.7fe4033478618p-14, 0x1.1a8184e049fbfp-14 }, + { 0x1.ffffec2641a9ep-1, 0x1.22df29821407ep-18, -0x1.00c902a6cfd98p-16, + 0x1.22234eb88671fp-15, -0x1.d57a181c9e6e1p-15, 0x1.200c283b54a90p-14, + -0x1.14b4c3295a7d0p-14, 0x1.a4f966f713bdep-15 }, + { 0x1.fffff37d63a36p-1, 0x1.74adc8f405eecp-19, -0x1.4ed4228e44858p-17, + 0x1.81918baea92bap-16, -0x1.3e81b17a0009cp-15, 0x1.9004a36116436p-15, + -0x1.8aa1ba400e076p-15, 0x1.35cd4e2340a9ep-15 }, + { 0x1.fffff82cdcf1bp-1, 0x1.d9c73698fa87dp-20, -0x1.b11017ec67115p-18, + 0x1.fc0dfadf653f8p-17, -0x1.ac4e03cd2dfc2p-16, 0x1.131806b5abbc5p-15, + -0x1.1672ef66fcaafp-15, 0x1.c2882c7debed7p-16 }, + { 0x1.fffffb248c39dp-1, 0x1.2acee2f5ec66ap-20, -0x1.15cc570408a36p-18, + 0x1.4be757bbb75a3p-17, -0x1.1d6aa5f8d2940p-16, 0x1.76c5937d5105ep-16, + -0x1.84dffc3ca9302p-16, 0x1.43c8315f2c30ap-16 }, + { 0x1.fffffd01f36afp-1, 0x1.75fa8dbc840bap-21, -0x1.6186da0133f5ap-19, + 0x1.ae023231e1af5p-18, -0x1.790812f7ca394p-17, 0x1.f9c25656d0ef2p-17, + -0x1.0cc66682e304cp-16, 0x1.cc170a75d6f9cp-17 }, + { 0x1.fffffe2ba0ea5p-1, 0x1.d06ad6ecde88ep-22, -0x1.be46aa8edc9a1p-20, + 0x1.143860c7840b8p-18, -0x1.edaba78fb1260p-18, 0x1.52138a96ecee2p-17, + -0x1.6fca538c4e2eep-17, 0x1.434040640bcefp-17 }, + { 0x1.fffffee3cc32cp-1, 0x1.1e1e857adb8ddp-22, -0x1.1769ce5f2a6e8p-20, + 0x1.5fe5d479b0543p-19, -0x1.405d865c94c2ap-18, 0x1.bfc94feb96afcp-18, + -0x1.f245d5f3e8358p-18, 0x1.c142456acf443p-18 }, + }; + float ax = fabsf (x); + uint32_t ux = asuint (ax); + double s = x; + double z = ax; + /* 0x407ad444 corresponds to x = 0x1.f5a888p+1 = 3.91921..., which is the + largest float such that erf(x) does not round to 1 (to nearest). */ + if (__glibc_unlikely (ux > 0x407ad444u)) + { + float os = copysignf (1.0f, x); + if (ux > (0xffu << 23)) + return x + x; /* nan */ + if (ux == (0xffu << 23)) + return os; /* +-inf */ + return os - 0x1p-25f * os; + } + double v = floor (16.0 * z); + uint32_t i = 16.0f * ax; + /* 0x3ee00000 corresponds to x = 0.4375, for smaller x we have i < 7. */ + if (__glibc_unlikely (ux < 0x3ee00000u)) + { + static const double c[] = + { + 0x1.20dd750429b6dp+0, -0x1.812746b0375fbp-2, + 0x1.ce2f219fd6f45p-4, -0x1.b82ce2cbf0838p-6, + 0x1.565bb655adb85p-8, -0x1.c025bfc879c94p-11, + 0x1.f81718f61309cp-14, -0x1.cc67bd88f5867p-17 + }; + double z2 = s * s, z4 = z2 * z2, z8 = z4 * z4; + double c0 = c[0] + z2 * c[1]; + double c2 = c[2] + z2 * c[3]; + double c4 = c[4] + z2 * c[5]; + double c6 = c[6] + z2 * c[7]; + c0 += z4 * c2; + c4 += z4 * c6; + c0 += z8 * c4; + return s * c0; + } + z = (z - 0.03125) - 0.0625 * v; + const double *c = C[i - 7]; + double z2 = z * z, z4 = z2 * z2; + double c0 = c[0] + z * c[1]; + double c2 = c[2] + z * c[3]; + double c4 = c[4] + z * c[5]; + double c6 = c[6] + z * c[7]; + c0 += z2 * c2; + c4 += z2 * c6; + c0 += z4 * c4; + return copysign (c0, s); } -libm_alias_float (__erfc, erfc) +libm_alias_float (__erf, erf) diff --git a/sysdeps/ieee754/flt-32/s_expm1f.c b/sysdeps/ieee754/flt-32/s_expm1f.c index edd7c9a..a36e578 100644 --- a/sysdeps/ieee754/flt-32/s_expm1f.c +++ b/sysdeps/ieee754/flt-32/s_expm1f.c @@ -95,7 +95,7 @@ __expm1f (float x) return __math_oflowf (0); } double a = iln2 * z; - double ia = roundeven (a); + double ia = roundeven_finite (a); double h = a - ia; double h2 = h * h; uint64_t u = asuint64 (ia + big); diff --git a/sysdeps/ieee754/flt-32/s_tanf.c b/sysdeps/ieee754/flt-32/s_tanf.c index ae6600b..dfe56fc 100644 --- a/sysdeps/ieee754/flt-32/s_tanf.c +++ b/sysdeps/ieee754/flt-32/s_tanf.c @@ -1,76 +1,180 @@ -/* s_tanf.c -- float version of s_tan.c. - */ +/* Correctly-rounded tangent of binary32 value. -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ +Copyright (c) 2022-2024 Alexei Sibidanov. -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: s_tanf.c,v 1.4 1995/05/10 20:48:20 jtc Exp $"; -#endif +The original version of this file was copied from the CORE-MATH +project (file src/binary32/tan/tanf.c, revision 59d21d7). -#include <errno.h> -#include <math.h> -#include <math_private.h> +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ + +#include <array_length.h> +#include <stdint.h> #include <libm-alias-float.h> -#include "s_sincosf.h" +#include "math_config.h" +#include <math_uint128.h> -/* Reduce range of X to a multiple of PI/2. The modulo result is between - -PI/4 and PI/4 and returned as a high part y[0] and a low part y[1]. - The low bit in the return value indicates the first or 2nd half of tanf. */ -static inline int32_t -rem_pio2f (float x, float *y) +/* argument reduction + for |z| < 2^28, return r such that 2/pi*x = q + r */ +static inline double +rltl (float z, int *q) { - double dx = x; - int n; - const sincos_t *p = &__sincosf_table[0]; + double x = z; + double idl = -0x1.b1bbead603d8bp-32 * x; + double idh = 0x1.45f306ep-1 * x; + double id = roundeven_finite (idh); + *q = (int64_t) id; + return (idh - id) + idl; +} - if (__glibc_likely (abstop12 (x) < abstop12 (120.0f))) - dx = reduce_fast (dx, p, &n); - else +/* argument reduction + same as rltl, but for |x| >= 2^28 */ +static double __attribute__ ((noinline)) +rbig (uint32_t u, int *q) +{ + static const uint64_t ipi[] = { - uint32_t xi = asuint (x); - int sign = xi >> 31; - - dx = reduce_large (xi, &n); - dx = sign ? -dx : dx; + 0xfe5163abdebbc562, 0xdb6295993c439041, + 0xfc2757d1f534ddc0, 0xa2f9836e4e441529 + }; + int e = (u >> 23) & 0xff, i; + uint64_t m = (u & (~0u >> 9)) | 1 << 23; + u128 p0 = u128_mul (u128_from_u64 (m), u128_from_u64 (ipi[0])); + u128 p1 = u128_mul (u128_from_u64 (m), u128_from_u64 (ipi[1])); + p1 = u128_add (p1, u128_rshift (p0, 64)); + u128 p2 = u128_mul (u128_from_u64 (m), u128_from_u64 (ipi[2])); + p2 = u128_add (p2, u128_rshift (p1, 64)); + u128 p3 = u128_mul (u128_from_u64 (m), u128_from_u64 (ipi[3])); + p3 = u128_add (p3, u128_rshift (p2, 64)); + uint64_t p3h = u128_high (p3); + uint64_t p3l = u128_low (p3); + uint64_t p2l = u128_low (p2); + uint64_t p1l = u128_low (p1); + int64_t a; + int k = e - 127, s = k - 23; + /* in ctanf(), rbig() is called in the case 127+28 <= e < 0xff + thus 155 <= e <= 254, which yields 28 <= k <= 127 and 5 <= s <= 104 */ + if (s < 64) + { + i = p3h << s | p3l >> (64 - s); + a = p3l << s | p2l >> (64 - s); } - - y[0] = dx; - y[1] = dx - y[0]; - return n; + else if (s == 64) + { + i = p3l; + a = p2l; + } + else + { /* s > 64 */ + i = p3l << (s - 64) | p2l >> (128 - s); + a = p2l << (s - 64) | p1l >> (128 - s); + } + int sgn = u; + sgn >>= 31; + int64_t sm = a >> 63; + i -= sm; + double z = (a ^ sgn) * 0x1p-64; + i = (i ^ sgn) - sgn; + *q = i; + return z; } -float __tanf(float x) +float +__tanf (float x) { - float y[2],z=0.0; - int32_t n, ix; - - GET_FLOAT_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1); - - /* tan(Inf or NaN) is NaN */ - else if (ix>=0x7f800000) { - if (ix==0x7f800000) - __set_errno (EDOM); - return x-x; /* NaN */ + uint32_t t = asuint (x); + int e = (t >> 23) & 0xff; + int i; + double z; + if (__glibc_likely (e < 127 + 28)) /* |x| < 2^28 */ + { + if (__glibc_unlikely (e < 115)) + { + if (__glibc_unlikely (e < 102)) + return fmaf (x, fabsf (x), x); + float x2 = x * x; + return fmaf (x, 0x1.555556p-2f * x2, x); } - - /* argument reduction needed */ - else { - n = rem_pio2f(x,y); - return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even - -1 -- n odd */ + z = rltl (x, &i); + } + else if (e < 0xff) + z = rbig (t, &i); + else + { + if (t << 9) + return x + x; /* nan */ + return __math_invalidf (x); + } + double z2 = z * z; + double z4 = z2 * z2; + static const double cn[] = + { + 0x1.921fb54442d18p+0, -0x1.fd226e573289fp-2, + 0x1.b7a60c8dac9f6p-6, -0x1.725beb40f33e5p-13 + }; + static const double cd[] = + { + 0x1p+0, -0x1.2395347fb829dp+0, + 0x1.2313660f29c36p-3, -0x1.9a707ab98d1c1p-9 + }; + static const double s[] = { 0, 1 }; + double n = cn[0] + z2 * cn[1]; + double n2 = cn[2] + z2 * cn[3]; + n += z4 * n2; + double d = cd[0] + z2 * cd[1]; + double d2 = cd[2] + z2 * cd[3]; + d += z4 * d2; + n *= z; + double s0 = s[i & 1]; + double s1 = s[1 - (i & 1)]; + double r1 = (n * s1 - d * s0) / (n * s0 + d * s1); + uint64_t tail = (asuint64 (r1) + 7) & (~UINT64_C(0) >> 35); + if (__glibc_unlikely (tail <= 14)) + { + static const struct + { + float arg; + float rh; + float rl; + } st[] = { + { 0x1.143ec4p+0f, 0x1.ddf9f6p+0f, -0x1.891d24p-52f }, + { 0x1.ada6aap+27f, 0x1.e80304p-3f, 0x1.419f46p-58f }, + { 0x1.af61dap+48f, 0x1.60d1c8p-2f, -0x1.2d6c3ap-55f }, + { 0x1.0088bcp+52f, 0x1.ca1edp+0f, 0x1.f6053p-53f }, + { 0x1.f90dfcp+72f, 0x1.597f9cp-1f, 0x1.925978p-53f }, + { 0x1.cc4e22p+85f, -0x1.f33584p+1f, 0x1.d7254ap-51f }, + { 0x1.a6ce12p+86f, -0x1.c5612ep-1f, -0x1.26c33ep-53f }, + { 0x1.6a0b76p+102f, -0x1.e42a1ep+0f, -0x1.1dc906p-52f }, + }; + uint32_t ax = t & (~0u >> 1); + uint32_t sgn = t >> 31; + for (int j = 0; j < array_length (st); j++) + { + if (__glibc_unlikely (asfloat (st[j].arg) == ax)) + { + if (sgn) + return -st[j].rh - st[j].rl; + else + return st[j].rh + st[j].rl; + } } + } + return r1; } libm_alias_float (__tan, tan) diff --git a/sysdeps/ieee754/ldbl-128/s_erfcl.c b/sysdeps/ieee754/ldbl-128/s_erfcl.c new file mode 100644 index 0000000..95d17c8 --- /dev/null +++ b/sysdeps/ieee754/ldbl-128/s_erfcl.c @@ -0,0 +1 @@ +/* Not required. */ diff --git a/sysdeps/ieee754/ldbl-128ibm/s_erfcl.c b/sysdeps/ieee754/ldbl-128ibm/s_erfcl.c new file mode 100644 index 0000000..95d17c8 --- /dev/null +++ b/sysdeps/ieee754/ldbl-128ibm/s_erfcl.c @@ -0,0 +1 @@ +/* Not required. */ diff --git a/sysdeps/ieee754/ldbl-96/s_erfcl.c b/sysdeps/ieee754/ldbl-96/s_erfcl.c new file mode 100644 index 0000000..95d17c8 --- /dev/null +++ b/sysdeps/ieee754/ldbl-96/s_erfcl.c @@ -0,0 +1 @@ +/* Not required. */ |