diff options
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_fmal.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128ibm/s_fmal.c | 260 |
1 files changed, 249 insertions, 11 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_fmal.c b/sysdeps/ieee754/ldbl-128ibm/s_fmal.c index eb3ee3c..177a048 100644 --- a/sysdeps/ieee754/ldbl-128ibm/s_fmal.c +++ b/sysdeps/ieee754/ldbl-128ibm/s_fmal.c @@ -17,25 +17,263 @@ License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ +#include <fenv.h> +#include <float.h> #include <math.h> +#include <math_private.h> #include <math_ldbl_opt.h> +#include <stdlib.h> + +/* Calculate X + Y exactly and store the result in *HI + *LO. It is + given that |X| >= |Y| and the values are small enough that no + overflow occurs. */ + +static void +add_split (double *hi, double *lo, double x, double y) +{ + /* Apply Dekker's algorithm. */ + *hi = x + y; + *lo = (x - *hi) + y; +} + +/* Calculate X * Y exactly and store the result in *HI + *LO. It is + given that the values are small enough that no overflow occurs and + large enough (or zero) that no underflow occurs. */ + +static void +mul_split (double *hi, double *lo, double x, double y) +{ +#ifdef __FP_FAST_FMA + /* Fast built-in fused multiply-add. */ + *hi = x * y; + *lo = __builtin_fma (x, y, -*hi); +#else + /* Apply Dekker's algorithm. */ + *hi = x * y; +# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1) + double x1 = x * C; + double y1 = y * C; +# undef C + x1 = (x - x1) + x1; + y1 = (y - y1) + y1; + double x2 = x - x1; + double y2 = y - y1; + *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2; +#endif +} + +/* Value with extended range, used in intermediate computations. */ +typedef struct +{ + /* Value in [0.5, 1), as from frexp, or 0. */ + double val; + /* Exponent of power of 2 it is multiplied by, or 0 for zero. */ + int exp; +} ext_val; + +/* Store D as an ext_val value. */ + +static void +store_ext_val (ext_val *v, double d) +{ + v->val = __frexp (d, &v->exp); +} + +/* Store X * Y as ext_val values *V0 and *V1. */ + +static void +mul_ext_val (ext_val *v0, ext_val *v1, double x, double y) +{ + int xexp, yexp; + x = __frexp (x, &xexp); + y = __frexp (y, &yexp); + double hi, lo; + mul_split (&hi, &lo, x, y); + store_ext_val (v0, hi); + if (hi != 0) + v0->exp += xexp + yexp; + store_ext_val (v1, lo); + if (lo != 0) + v1->exp += xexp + yexp; +} + +/* Compare absolute values of ext_val values pointed to by P and Q for + qsort. */ + +static int +compare (const void *p, const void *q) +{ + const ext_val *pe = p; + const ext_val *qe = q; + if (pe->val == 0) + return qe->val == 0 ? 0 : -1; + else if (qe->val == 0) + return 1; + else if (pe->exp < qe->exp) + return -1; + else if (pe->exp > qe->exp) + return 1; + else + { + double pd = fabs (pe->val); + double qd = fabs (qe->val); + if (pd < qd) + return -1; + else if (pd == qd) + return 0; + else + return 1; + } +} + +/* Calculate *X + *Y exactly, storing the high part in *X (rounded to + nearest) and the low part in *Y. It is given that |X| >= |Y|. */ + +static void +add_split_ext (ext_val *x, ext_val *y) +{ + int xexp = x->exp, yexp = y->exp; + if (y->val == 0 || xexp - yexp > 53) + return; + double hi = x->val; + double lo = __scalbn (y->val, yexp - xexp); + add_split (&hi, &lo, hi, lo); + store_ext_val (x, hi); + if (hi != 0) + x->exp += xexp; + store_ext_val (y, lo); + if (lo != 0) + y->exp += xexp; +} long double __fmal (long double x, long double y, long double z) { - /* An IBM long double 128 is really just 2 IEEE64 doubles, and in - * the case of inf/nan only the first double counts. So we use the - * (double) cast to avoid any data movement. */ - if ((isfinite ((double)x) && isfinite ((double)y)) && isinf ((double)z)) - return (z); + double xhi, xlo, yhi, ylo, zhi, zlo; + int64_t hx, hy, hz; + int xexp, yexp, zexp; + double scale_val; + int scale_exp; + ldbl_unpack (x, &xhi, &xlo); + EXTRACT_WORDS64 (hx, xhi); + xexp = (hx & 0x7ff0000000000000LL) >> 52; + ldbl_unpack (y, &yhi, &ylo); + EXTRACT_WORDS64 (hy, yhi); + yexp = (hy & 0x7ff0000000000000LL) >> 52; + ldbl_unpack (z, &zhi, &zlo); + EXTRACT_WORDS64 (hz, zhi); + zexp = (hz & 0x7ff0000000000000LL) >> 52; + + /* If z is Inf or NaN, but x and y are finite, avoid any exceptions + from computing x * y. */ + if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff) + return (z + x) + y; + + /* If z is zero and x are y are nonzero, compute the result as x * y + to avoid the wrong sign of a zero result if x * y underflows to + 0. */ + if (z == 0 && x != 0 && y != 0) + return x * y; + + /* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y + + z. */ + if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff + || x == 0 || y == 0) + return (x * y) + z; + + { + SET_RESTORE_ROUND (FE_TONEAREST); + + ext_val vals[10]; + store_ext_val (&vals[0], zhi); + store_ext_val (&vals[1], zlo); + mul_ext_val (&vals[2], &vals[3], xhi, yhi); + mul_ext_val (&vals[4], &vals[5], xhi, ylo); + mul_ext_val (&vals[6], &vals[7], xlo, yhi); + mul_ext_val (&vals[8], &vals[9], xlo, ylo); + qsort (vals, 10, sizeof (ext_val), compare); + /* Add up the values so that each element of VALS has absolute + value at most equal to the last set bit of the next nonzero + element. */ + for (size_t i = 0; i <= 8; i++) + { + add_split_ext (&vals[i + 1], &vals[i]); + qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare); + } + /* Add up the values in the other direction, so that each element + of VALS has absolute value less than 5ulp of the next + value. */ + size_t dstpos = 9; + for (size_t i = 1; i <= 9; i++) + { + if (vals[dstpos].val == 0) + { + vals[dstpos] = vals[9 - i]; + vals[9 - i].val = 0; + vals[9 - i].exp = 0; + } + else + { + add_split_ext (&vals[dstpos], &vals[9 - i]); + if (vals[9 - i].val != 0) + { + if (9 - i < dstpos - 1) + { + vals[dstpos - 1] = vals[9 - i]; + vals[9 - i].val = 0; + vals[9 - i].exp = 0; + } + dstpos--; + } + } + } + /* If the result is an exact zero, it results from adding two + values with opposite signs; recompute in the original rounding + mode. */ + if (vals[9].val == 0) + goto zero_out; + /* Adding the top three values will now give a result as accurate + as the underlying long double arithmetic. */ + add_split_ext (&vals[9], &vals[8]); + if (compare (&vals[8], &vals[7]) < 0) + { + ext_val tmp = vals[7]; + vals[7] = vals[8]; + vals[8] = tmp; + } + add_split_ext (&vals[8], &vals[7]); + add_split_ext (&vals[9], &vals[8]); + if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP) + { + /* Overflow or underflow, with the result depending on the + original rounding mode, but not on the low part computed + here. */ + scale_val = vals[9].val; + scale_exp = vals[9].exp; + goto scale_out; + } + double hi = __scalbn (vals[9].val, vals[9].exp); + double lo = __scalbn (vals[8].val, vals[8].exp); + /* It is possible that the low part became subnormal and was + rounded so that the result is no longer canonical. */ + ldbl_canonicalize (&hi, &lo); + long double ret = ldbl_pack (hi, lo); + math_check_force_underflow (ret); + return ret; + } - /* If z is zero and x are y are nonzero, compute the result - as x * y to avoid the wrong sign of a zero result if x * y - underflows to 0. */ - if (z == 0 && x != 0 && y != 0) - return x * y; + scale_out: + scale_val = math_opt_barrier (scale_val); + scale_val = __scalbn (scale_val, scale_exp); + if (fabs (scale_val) == DBL_MAX) + return __copysignl (LDBL_MAX, scale_val); + math_check_force_underflow (scale_val); + return scale_val; - return (x * y) + z; + zero_out:; + double zero = 0.0; + zero = math_opt_barrier (zero); + return zero - zero; } #if IS_IN (libm) long_double_symbol (libm, __fmal, fmal); |