aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/s_fmal.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_fmal.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/s_fmal.c260
1 files changed, 249 insertions, 11 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_fmal.c b/sysdeps/ieee754/ldbl-128ibm/s_fmal.c
index eb3ee3c..177a048 100644
--- a/sysdeps/ieee754/ldbl-128ibm/s_fmal.c
+++ b/sysdeps/ieee754/ldbl-128ibm/s_fmal.c
@@ -17,25 +17,263 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
+#include <fenv.h>
+#include <float.h>
#include <math.h>
+#include <math_private.h>
#include <math_ldbl_opt.h>
+#include <stdlib.h>
+
+/* Calculate X + Y exactly and store the result in *HI + *LO. It is
+ given that |X| >= |Y| and the values are small enough that no
+ overflow occurs. */
+
+static void
+add_split (double *hi, double *lo, double x, double y)
+{
+ /* Apply Dekker's algorithm. */
+ *hi = x + y;
+ *lo = (x - *hi) + y;
+}
+
+/* Calculate X * Y exactly and store the result in *HI + *LO. It is
+ given that the values are small enough that no overflow occurs and
+ large enough (or zero) that no underflow occurs. */
+
+static void
+mul_split (double *hi, double *lo, double x, double y)
+{
+#ifdef __FP_FAST_FMA
+ /* Fast built-in fused multiply-add. */
+ *hi = x * y;
+ *lo = __builtin_fma (x, y, -*hi);
+#else
+ /* Apply Dekker's algorithm. */
+ *hi = x * y;
+# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
+ double x1 = x * C;
+ double y1 = y * C;
+# undef C
+ x1 = (x - x1) + x1;
+ y1 = (y - y1) + y1;
+ double x2 = x - x1;
+ double y2 = y - y1;
+ *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
+#endif
+}
+
+/* Value with extended range, used in intermediate computations. */
+typedef struct
+{
+ /* Value in [0.5, 1), as from frexp, or 0. */
+ double val;
+ /* Exponent of power of 2 it is multiplied by, or 0 for zero. */
+ int exp;
+} ext_val;
+
+/* Store D as an ext_val value. */
+
+static void
+store_ext_val (ext_val *v, double d)
+{
+ v->val = __frexp (d, &v->exp);
+}
+
+/* Store X * Y as ext_val values *V0 and *V1. */
+
+static void
+mul_ext_val (ext_val *v0, ext_val *v1, double x, double y)
+{
+ int xexp, yexp;
+ x = __frexp (x, &xexp);
+ y = __frexp (y, &yexp);
+ double hi, lo;
+ mul_split (&hi, &lo, x, y);
+ store_ext_val (v0, hi);
+ if (hi != 0)
+ v0->exp += xexp + yexp;
+ store_ext_val (v1, lo);
+ if (lo != 0)
+ v1->exp += xexp + yexp;
+}
+
+/* Compare absolute values of ext_val values pointed to by P and Q for
+ qsort. */
+
+static int
+compare (const void *p, const void *q)
+{
+ const ext_val *pe = p;
+ const ext_val *qe = q;
+ if (pe->val == 0)
+ return qe->val == 0 ? 0 : -1;
+ else if (qe->val == 0)
+ return 1;
+ else if (pe->exp < qe->exp)
+ return -1;
+ else if (pe->exp > qe->exp)
+ return 1;
+ else
+ {
+ double pd = fabs (pe->val);
+ double qd = fabs (qe->val);
+ if (pd < qd)
+ return -1;
+ else if (pd == qd)
+ return 0;
+ else
+ return 1;
+ }
+}
+
+/* Calculate *X + *Y exactly, storing the high part in *X (rounded to
+ nearest) and the low part in *Y. It is given that |X| >= |Y|. */
+
+static void
+add_split_ext (ext_val *x, ext_val *y)
+{
+ int xexp = x->exp, yexp = y->exp;
+ if (y->val == 0 || xexp - yexp > 53)
+ return;
+ double hi = x->val;
+ double lo = __scalbn (y->val, yexp - xexp);
+ add_split (&hi, &lo, hi, lo);
+ store_ext_val (x, hi);
+ if (hi != 0)
+ x->exp += xexp;
+ store_ext_val (y, lo);
+ if (lo != 0)
+ y->exp += xexp;
+}
long double
__fmal (long double x, long double y, long double z)
{
- /* An IBM long double 128 is really just 2 IEEE64 doubles, and in
- * the case of inf/nan only the first double counts. So we use the
- * (double) cast to avoid any data movement. */
- if ((isfinite ((double)x) && isfinite ((double)y)) && isinf ((double)z))
- return (z);
+ double xhi, xlo, yhi, ylo, zhi, zlo;
+ int64_t hx, hy, hz;
+ int xexp, yexp, zexp;
+ double scale_val;
+ int scale_exp;
+ ldbl_unpack (x, &xhi, &xlo);
+ EXTRACT_WORDS64 (hx, xhi);
+ xexp = (hx & 0x7ff0000000000000LL) >> 52;
+ ldbl_unpack (y, &yhi, &ylo);
+ EXTRACT_WORDS64 (hy, yhi);
+ yexp = (hy & 0x7ff0000000000000LL) >> 52;
+ ldbl_unpack (z, &zhi, &zlo);
+ EXTRACT_WORDS64 (hz, zhi);
+ zexp = (hz & 0x7ff0000000000000LL) >> 52;
+
+ /* If z is Inf or NaN, but x and y are finite, avoid any exceptions
+ from computing x * y. */
+ if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff)
+ return (z + x) + y;
+
+ /* If z is zero and x are y are nonzero, compute the result as x * y
+ to avoid the wrong sign of a zero result if x * y underflows to
+ 0. */
+ if (z == 0 && x != 0 && y != 0)
+ return x * y;
+
+ /* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y
+ + z. */
+ if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff
+ || x == 0 || y == 0)
+ return (x * y) + z;
+
+ {
+ SET_RESTORE_ROUND (FE_TONEAREST);
+
+ ext_val vals[10];
+ store_ext_val (&vals[0], zhi);
+ store_ext_val (&vals[1], zlo);
+ mul_ext_val (&vals[2], &vals[3], xhi, yhi);
+ mul_ext_val (&vals[4], &vals[5], xhi, ylo);
+ mul_ext_val (&vals[6], &vals[7], xlo, yhi);
+ mul_ext_val (&vals[8], &vals[9], xlo, ylo);
+ qsort (vals, 10, sizeof (ext_val), compare);
+ /* Add up the values so that each element of VALS has absolute
+ value at most equal to the last set bit of the next nonzero
+ element. */
+ for (size_t i = 0; i <= 8; i++)
+ {
+ add_split_ext (&vals[i + 1], &vals[i]);
+ qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare);
+ }
+ /* Add up the values in the other direction, so that each element
+ of VALS has absolute value less than 5ulp of the next
+ value. */
+ size_t dstpos = 9;
+ for (size_t i = 1; i <= 9; i++)
+ {
+ if (vals[dstpos].val == 0)
+ {
+ vals[dstpos] = vals[9 - i];
+ vals[9 - i].val = 0;
+ vals[9 - i].exp = 0;
+ }
+ else
+ {
+ add_split_ext (&vals[dstpos], &vals[9 - i]);
+ if (vals[9 - i].val != 0)
+ {
+ if (9 - i < dstpos - 1)
+ {
+ vals[dstpos - 1] = vals[9 - i];
+ vals[9 - i].val = 0;
+ vals[9 - i].exp = 0;
+ }
+ dstpos--;
+ }
+ }
+ }
+ /* If the result is an exact zero, it results from adding two
+ values with opposite signs; recompute in the original rounding
+ mode. */
+ if (vals[9].val == 0)
+ goto zero_out;
+ /* Adding the top three values will now give a result as accurate
+ as the underlying long double arithmetic. */
+ add_split_ext (&vals[9], &vals[8]);
+ if (compare (&vals[8], &vals[7]) < 0)
+ {
+ ext_val tmp = vals[7];
+ vals[7] = vals[8];
+ vals[8] = tmp;
+ }
+ add_split_ext (&vals[8], &vals[7]);
+ add_split_ext (&vals[9], &vals[8]);
+ if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP)
+ {
+ /* Overflow or underflow, with the result depending on the
+ original rounding mode, but not on the low part computed
+ here. */
+ scale_val = vals[9].val;
+ scale_exp = vals[9].exp;
+ goto scale_out;
+ }
+ double hi = __scalbn (vals[9].val, vals[9].exp);
+ double lo = __scalbn (vals[8].val, vals[8].exp);
+ /* It is possible that the low part became subnormal and was
+ rounded so that the result is no longer canonical. */
+ ldbl_canonicalize (&hi, &lo);
+ long double ret = ldbl_pack (hi, lo);
+ math_check_force_underflow (ret);
+ return ret;
+ }
- /* If z is zero and x are y are nonzero, compute the result
- as x * y to avoid the wrong sign of a zero result if x * y
- underflows to 0. */
- if (z == 0 && x != 0 && y != 0)
- return x * y;
+ scale_out:
+ scale_val = math_opt_barrier (scale_val);
+ scale_val = __scalbn (scale_val, scale_exp);
+ if (fabs (scale_val) == DBL_MAX)
+ return __copysignl (LDBL_MAX, scale_val);
+ math_check_force_underflow (scale_val);
+ return scale_val;
- return (x * y) + z;
+ zero_out:;
+ double zero = 0.0;
+ zero = math_opt_barrier (zero);
+ return zero - zero;
}
#if IS_IN (libm)
long_double_symbol (libm, __fmal, fmal);