aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_expm1l.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/s_expm1l.c160
1 files changed, 160 insertions, 0 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c b/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
new file mode 100644
index 0000000..4908d4e
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
@@ -0,0 +1,160 @@
+/* expm1l.c
+ *
+ * Exponential function, minus 1
+ * 128-bit long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, expm1l();
+ *
+ * y = expm1l( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns e (2.71828...) raised to the x power, minus one.
+ *
+ * Range reduction is accomplished by separating the argument
+ * into an integer k and fraction f such that
+ *
+ * x k f
+ * e = 2 e.
+ *
+ * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
+ * in the basic range [-0.5 ln 2, 0.5 ln 2].
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
+ *
+ */
+
+/* Copyright 2001 by Stephen L. Moshier
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
+
+#include "math.h"
+#include "math_private.h"
+#include <math_ldbl_opt.h>
+
+/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
+ -.5 ln 2 < x < .5 ln 2
+ Theoretical peak relative error = 8.1e-36 */
+
+static const long double
+ P0 = 2.943520915569954073888921213330863757240E8L,
+ P1 = -5.722847283900608941516165725053359168840E7L,
+ P2 = 8.944630806357575461578107295909719817253E6L,
+ P3 = -7.212432713558031519943281748462837065308E5L,
+ P4 = 4.578962475841642634225390068461943438441E4L,
+ P5 = -1.716772506388927649032068540558788106762E3L,
+ P6 = 4.401308817383362136048032038528753151144E1L,
+ P7 = -4.888737542888633647784737721812546636240E-1L,
+ Q0 = 1.766112549341972444333352727998584753865E9L,
+ Q1 = -7.848989743695296475743081255027098295771E8L,
+ Q2 = 1.615869009634292424463780387327037251069E8L,
+ Q3 = -2.019684072836541751428967854947019415698E7L,
+ Q4 = 1.682912729190313538934190635536631941751E6L,
+ Q5 = -9.615511549171441430850103489315371768998E4L,
+ Q6 = 3.697714952261803935521187272204485251835E3L,
+ Q7 = -8.802340681794263968892934703309274564037E1L,
+ /* Q8 = 1.000000000000000000000000000000000000000E0 */
+/* C1 + C2 = ln 2 */
+
+ C1 = 6.93145751953125E-1L,
+ C2 = 1.428606820309417232121458176568075500134E-6L,
+/* ln (2^16384 * (1 - 2^-113)) */
+ maxlog = 1.1356523406294143949491931077970764891253E4L,
+/* ln 2^-114 */
+ minarg = -7.9018778583833765273564461846232128760607E1L, big = 2e307L;
+
+
+long double
+__expm1l (long double x)
+{
+ long double px, qx, xx;
+ int32_t ix, sign;
+ ieee854_long_double_shape_type u;
+ int k;
+
+ /* Detect infinity and NaN. */
+ u.value = x;
+ ix = u.parts32.w0;
+ sign = ix & 0x80000000;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7ff00000)
+ {
+ /* Infinity. */
+ if (((ix & 0xfffff) | u.parts32.w1 | (u.parts32.w2&0x7fffffff) | u.parts32.w3) == 0)
+ {
+ if (sign)
+ return -1.0L;
+ else
+ return x;
+ }
+ /* NaN. No invalid exception. */
+ return x;
+ }
+
+ /* expm1(+- 0) = +- 0. */
+ if ((ix == 0) && (u.parts32.w1 | (u.parts32.w2&0x7fffffff) | u.parts32.w3) == 0)
+ return x;
+
+ /* Overflow. */
+ if (x > maxlog)
+ return (big * big);
+
+ /* Minimum value. */
+ if (x < minarg)
+ return (4.0/big - 1.0L);
+
+ /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
+ xx = C1 + C2; /* ln 2. */
+ px = __floorl (0.5 + x / xx);
+ k = px;
+ /* remainder times ln 2 */
+ x -= px * C1;
+ x -= px * C2;
+
+ /* Approximate exp(remainder ln 2). */
+ px = (((((((P7 * x
+ + P6) * x
+ + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
+
+ qx = (((((((x
+ + Q7) * x
+ + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
+
+ xx = x * x;
+ qx = x + (0.5 * xx + xx * px / qx);
+
+ /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
+
+ We have qx = exp(remainder ln 2) - 1, so
+ exp(x) - 1 = 2^k (qx + 1) - 1
+ = 2^k qx + 2^k - 1. */
+
+ px = ldexpl (1.0L, k);
+ x = px * qx + (px - 1.0);
+ return x;
+}
+libm_hidden_def (__expm1l)
+long_double_symbol (libm, __expm1l, expm1l);