aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/e_powl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_powl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_powl.c441
1 files changed, 0 insertions, 441 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_powl.c b/sysdeps/ieee754/ldbl-128ibm/e_powl.c
deleted file mode 100644
index feeaa8c..0000000
--- a/sysdeps/ieee754/ldbl-128ibm/e_powl.c
+++ /dev/null
@@ -1,441 +0,0 @@
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* Expansions and modifications for 128-bit long double are
- Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
- and are incorporated herein by permission of the author. The author
- reserves the right to distribute this material elsewhere under different
- copying permissions. These modifications are distributed here under
- the following terms:
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
-
-/* __ieee754_powl(x,y) return x**y
- *
- * n
- * Method: Let x = 2 * (1+f)
- * 1. Compute and return log2(x) in two pieces:
- * log2(x) = w1 + w2,
- * where w1 has 113-53 = 60 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
- * arithmetic, where |y'|<=0.5.
- * 3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- * 1. (anything) ** 0 is 1
- * 2. (anything) ** 1 is itself
- * 3. (anything) ** NAN is NAN
- * 4. NAN ** (anything except 0) is NAN
- * 5. +-(|x| > 1) ** +INF is +INF
- * 6. +-(|x| > 1) ** -INF is +0
- * 7. +-(|x| < 1) ** +INF is +0
- * 8. +-(|x| < 1) ** -INF is +INF
- * 9. +-1 ** +-INF is NAN
- * 10. +0 ** (+anything except 0, NAN) is +0
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
- * 12. +0 ** (-anything except 0, NAN) is +INF
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
- * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- * 15. +INF ** (+anything except 0,NAN) is +INF
- * 16. +INF ** (-anything except 0,NAN) is +0
- * 17. -INF ** (anything) = -0 ** (-anything)
- * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- * 19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- */
-
-#include "math.h"
-#include "math_private.h"
-
-static const long double bp[] = {
- 1.0L,
- 1.5L,
-};
-
-/* log_2(1.5) */
-static const long double dp_h[] = {
- 0.0,
- 5.8496250072115607565592654282227158546448E-1L
-};
-
-/* Low part of log_2(1.5) */
-static const long double dp_l[] = {
- 0.0,
- 1.0579781240112554492329533686862998106046E-16L
-};
-
-static const long double zero = 0.0L,
- one = 1.0L,
- two = 2.0L,
- two113 = 1.0384593717069655257060992658440192E34L,
- huge = 1.0e3000L,
- tiny = 1.0e-3000L;
-
-/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
- z = (x-1)/(x+1)
- 1 <= x <= 1.25
- Peak relative error 2.3e-37 */
-static const long double LN[] =
-{
- -3.0779177200290054398792536829702930623200E1L,
- 6.5135778082209159921251824580292116201640E1L,
- -4.6312921812152436921591152809994014413540E1L,
- 1.2510208195629420304615674658258363295208E1L,
- -9.9266909031921425609179910128531667336670E-1L
-};
-static const long double LD[] =
-{
- -5.129862866715009066465422805058933131960E1L,
- 1.452015077564081884387441590064272782044E2L,
- -1.524043275549860505277434040464085593165E2L,
- 7.236063513651544224319663428634139768808E1L,
- -1.494198912340228235853027849917095580053E1L
- /* 1.0E0 */
-};
-
-/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
- 0 <= x <= 0.5
- Peak relative error 5.7e-38 */
-static const long double PN[] =
-{
- 5.081801691915377692446852383385968225675E8L,
- 9.360895299872484512023336636427675327355E6L,
- 4.213701282274196030811629773097579432957E4L,
- 5.201006511142748908655720086041570288182E1L,
- 9.088368420359444263703202925095675982530E-3L,
-};
-static const long double PD[] =
-{
- 3.049081015149226615468111430031590411682E9L,
- 1.069833887183886839966085436512368982758E8L,
- 8.259257717868875207333991924545445705394E5L,
- 1.872583833284143212651746812884298360922E3L,
- /* 1.0E0 */
-};
-
-static const long double
- /* ln 2 */
- lg2 = 6.9314718055994530941723212145817656807550E-1L,
- lg2_h = 6.9314718055994528622676398299518041312695E-1L,
- lg2_l = 2.3190468138462996154948554638754786504121E-17L,
- ovt = 8.0085662595372944372e-0017L,
- /* 2/(3*log(2)) */
- cp = 9.6179669392597560490661645400126142495110E-1L,
- cp_h = 9.6179669392597555432899980587535537779331E-1L,
- cp_l = 5.0577616648125906047157785230014751039424E-17L;
-
-#ifdef __STDC__
-long double
-__ieee754_powl (long double x, long double y)
-#else
-long double
-__ieee754_powl (x, y)
- long double x, y;
-#endif
-{
- long double z, ax, z_h, z_l, p_h, p_l;
- long double y1, t1, t2, r, s, t, u, v, w;
- long double s2, s_h, s_l, t_h, t_l;
- int32_t i, j, k, yisint, n;
- u_int32_t ix, iy;
- int32_t hx, hy;
- ieee854_long_double_shape_type o, p, q;
-
- p.value = x;
- hx = p.parts32.w0;
- ix = hx & 0x7fffffff;
-
- q.value = y;
- hy = q.parts32.w0;
- iy = hy & 0x7fffffff;
-
-
- /* y==zero: x**0 = 1 */
- if ((iy | q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
- return one;
-
- /* 1.0**y = 1; -1.0**+-Inf = 1 */
- if (x == one)
- return one;
- if (x == -1.0L && iy == 0x7ff00000
- && (q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
- return one;
-
- /* +-NaN return x+y */
- if ((ix > 0x7ff00000)
- || ((ix == 0x7ff00000)
- && ((p.parts32.w1 | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) != 0))
- || (iy > 0x7ff00000)
- || ((iy == 0x7ff00000)
- && ((q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) != 0)))
- return x + y;
-
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- yisint = 0;
- if (hx < 0)
- {
- if ((q.parts32.w2 & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
- yisint = 2; /* even integer y */
- else if (iy >= 0x3ff00000) /* 1.0 */
- {
- if (__floorl (y) == y)
- {
- z = 0.5 * y;
- if (__floorl (z) == z)
- yisint = 2;
- else
- yisint = 1;
- }
- }
- }
-
- /* special value of y */
- if ((q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
- {
- if (iy == 0x7ff00000 && q.parts32.w1 == 0) /* y is +-inf */
- {
- if (((ix - 0x3ff00000) | p.parts32.w1
- | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) == 0)
- return y - y; /* inf**+-1 is NaN */
- else if (ix > 0x3ff00000 || fabsl (x) > 1.0L)
- /* (|x|>1)**+-inf = inf,0 */
- return (hy >= 0) ? y : zero;
- else
- /* (|x|<1)**-,+inf = inf,0 */
- return (hy < 0) ? -y : zero;
- }
- if (iy == 0x3ff00000)
- { /* y is +-1 */
- if (hy < 0)
- return one / x;
- else
- return x;
- }
- if (hy == 0x40000000)
- return x * x; /* y is 2 */
- if (hy == 0x3fe00000)
- { /* y is 0.5 */
- if (hx >= 0) /* x >= +0 */
- return __ieee754_sqrtl (x);
- }
- }
-
- ax = fabsl (x);
- /* special value of x */
- if ((p.parts32.w1 | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) == 0)
- {
- if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000)
- {
- z = ax; /*x is +-0,+-inf,+-1 */
- if (hy < 0)
- z = one / z; /* z = (1/|x|) */
- if (hx < 0)
- {
- if (((ix - 0x3ff00000) | yisint) == 0)
- {
- z = (z - z) / (z - z); /* (-1)**non-int is NaN */
- }
- else if (yisint == 1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
- }
-
- /* (x<0)**(non-int) is NaN */
- if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
- return (x - x) / (x - x);
-
- /* |y| is huge.
- 2^-16495 = 1/2 of smallest representable value.
- If (1 - 1/131072)^y underflows, y > 1.4986e9 */
- if (iy > 0x41d654b0)
- {
- /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
- if (iy > 0x47d654b0)
- {
- if (ix <= 0x3fefffff)
- return (hy < 0) ? huge * huge : tiny * tiny;
- if (ix >= 0x3ff00000)
- return (hy > 0) ? huge * huge : tiny * tiny;
- }
- /* over/underflow if x is not close to one */
- if (ix < 0x3fefffff)
- return (hy < 0) ? huge * huge : tiny * tiny;
- if (ix > 0x3ff00000)
- return (hy > 0) ? huge * huge : tiny * tiny;
- }
-
- n = 0;
- /* take care subnormal number */
- if (ix < 0x00100000)
- {
- ax *= two113;
- n -= 113;
- o.value = ax;
- ix = o.parts32.w0;
- }
- n += ((ix) >> 20) - 0x3ff;
- j = ix & 0x000fffff;
- /* determine interval */
- ix = j | 0x3ff00000; /* normalize ix */
- if (j <= 0x39880)
- k = 0; /* |x|<sqrt(3/2) */
- else if (j < 0xbb670)
- k = 1; /* |x|<sqrt(3) */
- else
- {
- k = 0;
- n += 1;
- ix -= 0x00100000;
- }
-
- o.value = ax;
- o.value = __scalbnl (o.value, ((int) ((ix - o.parts32.w0) * 2)) >> 21);
- ax = o.value;
-
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = one / (ax + bp[k]);
- s = u * v;
- s_h = s;
-
- o.value = s_h;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- s_h = o.value;
- /* t_h=ax+bp[k] High */
- t_h = ax + bp[k];
- o.value = t_h;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- t_h = o.value;
- t_l = ax - (t_h - bp[k]);
- s_l = v * ((u - s_h * t_h) - s_h * t_l);
- /* compute log(ax) */
- s2 = s * s;
- u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
- v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
- r = s2 * s2 * u / v;
- r += s_l * (s_h + s);
- s2 = s_h * s_h;
- t_h = 3.0 + s2 + r;
- o.value = t_h;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- t_h = o.value;
- t_l = r - ((t_h - 3.0) - s2);
- /* u+v = s*(1+...) */
- u = s_h * t_h;
- v = s_l * t_h + t_l * s;
- /* 2/(3log2)*(s+...) */
- p_h = u + v;
- o.value = p_h;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- p_h = o.value;
- p_l = v - (p_h - u);
- z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = cp_l * p_h + p_l * cp + dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (long double) n;
- t1 = (((z_h + z_l) + dp_h[k]) + t);
- o.value = t1;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- t1 = o.value;
- t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
-
- /* s (sign of result -ve**odd) = -1 else = 1 */
- s = one;
- if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
- s = -one; /* (-ve)**(odd int) */
-
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- y1 = y;
- o.value = y1;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- y1 = o.value;
- p_l = (y - y1) * t1 + y * t2;
- p_h = y1 * t1;
- z = p_l + p_h;
- o.value = z;
- j = o.parts32.w0;
- if (j >= 0x40d00000) /* z >= 16384 */
- {
- /* if z > 16384 */
- if (((j - 0x40d00000) | o.parts32.w1
- | (o.parts32.w2 & 0x7fffffff) | o.parts32.w3) != 0)
- return s * huge * huge; /* overflow */
- else
- {
- if (p_l + ovt > z - p_h)
- return s * huge * huge; /* overflow */
- }
- }
- else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
- {
- /* z < -16495 */
- if (((j - 0xc0d01bc0) | o.parts32.w1
- | (o.parts32.w2 & 0x7fffffff) | o.parts32.w3) != 0)
- return s * tiny * tiny; /* underflow */
- else
- {
- if (p_l <= z - p_h)
- return s * tiny * tiny; /* underflow */
- }
- }
- /* compute 2**(p_h+p_l) */
- i = j & 0x7fffffff;
- k = (i >> 20) - 0x3ff;
- n = 0;
- if (i > 0x3fe00000)
- { /* if |z| > 0.5, set n = [z+0.5] */
- n = __floorl (z + 0.5L);
- t = n;
- p_h -= t;
- }
- t = p_l + p_h;
- o.value = t;
- o.parts32.w3 = 0;
- o.parts32.w2 &= 0xffff8000;
- t = o.value;
- u = t * lg2_h;
- v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
- z = u + v;
- w = v - (z - u);
- /* exp(z) */
- t = z * z;
- u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
- v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
- t1 = z - t * u / v;
- r = (z * t1) / (t1 - two) - (w + z * w);
- z = one - (r - z);
- z = __scalbnl (z, n);
- return s * z;
-}