aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/s_tanl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/s_tanl.S')
-rw-r--r--sysdeps/ia64/fpu/s_tanl.S3248
1 files changed, 3248 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/s_tanl.S b/sysdeps/ia64/fpu/s_tanl.S
new file mode 100644
index 0000000..b59936c
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_tanl.S
@@ -0,0 +1,3248 @@
+.file "tancotl.s"
+
+
+// Copyright (c) 2000 - 2004, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+//*********************************************************************
+//
+// History:
+//
+// 02/02/00 (hand-optimized)
+// 04/04/00 Unwind support added
+// 12/28/00 Fixed false invalid flags
+// 02/06/02 Improved speed
+// 05/07/02 Changed interface to __libm_pi_by_2_reduce
+// 05/30/02 Added cotl
+// 02/10/03 Reordered header: .section, .global, .proc, .align;
+// used data8 for long double table values
+// 05/15/03 Reformatted data tables
+// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
+//
+//*********************************************************************
+//
+// Functions: tanl(x) = tangent(x), for double-extended precision x values
+// cotl(x) = cotangent(x), for double-extended precision x values
+//
+//*********************************************************************
+//
+// Resources Used:
+//
+// Floating-Point Registers: f8 (Input and Return Value)
+// f9-f15
+// f32-f121
+//
+// General Purpose Registers:
+// r32-r70
+//
+// Predicate Registers: p6-p15
+//
+//*********************************************************************
+//
+// IEEE Special Conditions for tanl:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions do not occur
+// Underflow exceptions raised when appropriate for tan
+// (No specialized error handling for this routine)
+// Inexact raised when appropriate by algorithm
+//
+// tanl(SNaN) = QNaN
+// tanl(QNaN) = QNaN
+// tanl(inf) = QNaN
+// tanl(+/-0) = +/-0
+//
+//*********************************************************************
+//
+// IEEE Special Conditions for cotl:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions occur at zero and near zero
+// Underflow exceptions do not occur
+// Inexact raised when appropriate by algorithm
+//
+// cotl(SNaN) = QNaN
+// cotl(QNaN) = QNaN
+// cotl(inf) = QNaN
+// cotl(+/-0) = +/-Inf and error handling is called
+//
+//*********************************************************************
+//
+// Below are mathematical and algorithmic descriptions for tanl.
+// For cotl we use next identity cot(x) = -tan(x + Pi/2).
+// So, to compute cot(x) we just need to increment N (N = N + 1)
+// and invert sign of the computed result.
+//
+//*********************************************************************
+//
+// Mathematical Description
+//
+// We consider the computation of FPTANL of Arg. Now, given
+//
+// Arg = N pi/2 + alpha, |alpha| <= pi/4,
+//
+// basic mathematical relationship shows that
+//
+// tan( Arg ) = tan( alpha ) if N is even;
+// = -cot( alpha ) otherwise.
+//
+// The value of alpha is obtained by argument reduction and
+// represented by two working precision numbers r and c where
+//
+// alpha = r + c accurately.
+//
+// The reduction method is described in a previous write up.
+// The argument reduction scheme identifies 4 cases. For Cases 2
+// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be
+// computed very easily by 2 or 3 terms of the Taylor series
+// expansion as follows:
+//
+// Case 2:
+// -------
+//
+// tan(r + c) = r + c + r^3/3 ...accurately
+// -cot(r + c) = -1/(r+c) + r/3 ...accurately
+//
+// Case 4:
+// -------
+//
+// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately
+// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
+//
+//
+// The only cases left are Cases 1 and 3 of the argument reduction
+// procedure. These two cases will be merged since after the
+// argument is reduced in either cases, we have the reduced argument
+// represented as r + c and that the magnitude |r + c| is not small
+// enough to allow the usage of a very short approximation.
+//
+// The greatest challenge of this task is that the second terms of
+// the Taylor series for tan(r) and -cot(r)
+//
+// r + r^3/3 + 2 r^5/15 + ...
+//
+// and
+//
+// -1/r + r/3 + r^3/45 + ...
+//
+// are not very small when |r| is close to pi/4 and the rounding
+// errors will be a concern if simple polynomial accumulation is
+// used. When |r| < 2^(-2), however, the second terms will be small
+// enough (5 bits or so of right shift) that a normal Horner
+// recurrence suffices. Hence there are two cases that we consider
+// in the accurate computation of tan(r) and cot(r), |r| <= pi/4.
+//
+// Case small_r: |r| < 2^(-2)
+// --------------------------
+//
+// Since Arg = N pi/4 + r + c accurately, we have
+//
+// tan(Arg) = tan(r+c) for N even,
+// = -cot(r+c) otherwise.
+//
+// Here for this case, both tan(r) and -cot(r) can be approximated
+// by simple polynomials:
+//
+// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
+// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
+//
+// accurately. Since |r| is relatively small, tan(r+c) and
+// -cot(r+c) can be accurately approximated by replacing r with
+// r+c only in the first two terms of the corresponding polynomials.
+//
+// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to
+// almost 64 sig. bits, thus
+//
+// P1_1 (r+c)^3 = P1_1 r^3 + c * r^2 accurately.
+//
+// Hence,
+//
+// tan(r+c) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
+// + c*(1 + r^2)
+//
+// -cot(r+c) = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
+// + Q1_1*c
+//
+//
+// Case normal_r: 2^(-2) <= |r| <= pi/4
+// ------------------------------------
+//
+// This case is more likely than the previous one if one considers
+// r to be uniformly distributed in [-pi/4 pi/4].
+//
+// The required calculation is either
+//
+// tan(r + c) = tan(r) + correction, or
+// -cot(r + c) = -cot(r) + correction.
+//
+// Specifically,
+//
+// tan(r + c) = tan(r) + c tan'(r) + O(c^2)
+// = tan(r) + c sec^2(r) + O(c^2)
+// = tan(r) + c SEC_sq ...accurately
+// as long as SEC_sq approximates sec^2(r)
+// to, say, 5 bits or so.
+//
+// Similarly,
+//
+// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
+// = -cot(r) + c csc^2(r) + O(c^2)
+// = -cot(r) + c CSC_sq ...accurately
+// as long as CSC_sq approximates csc^2(r)
+// to, say, 5 bits or so.
+//
+// We therefore concentrate on accurately calculating tan(r) and
+// cot(r) for a working-precision number r, |r| <= pi/4 to within
+// 0.1% or so.
+//
+// We will employ a table-driven approach. Let
+//
+// r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63
+// = sgn_r * ( B + x )
+//
+// where
+//
+// B = 2^k * 1.b_1 b_2 ... b_5 1
+// x = |r| - B
+//
+// Now,
+// tan(B) + tan(x)
+// tan( B + x ) = ------------------------
+// 1 - tan(B)*tan(x)
+//
+// / \
+// | tan(B) + tan(x) |
+
+// = tan(B) + | ------------------------ - tan(B) |
+// | 1 - tan(B)*tan(x) |
+// \ /
+//
+// sec^2(B) * tan(x)
+// = tan(B) + ------------------------
+// 1 - tan(B)*tan(x)
+//
+// (1/[sin(B)*cos(B)]) * tan(x)
+// = tan(B) + --------------------------------
+// cot(B) - tan(x)
+//
+//
+// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
+// calculated beforehand and stored in a table. Since
+//
+// |x| <= 2^k * 2^(-6) <= 2^(-7) (because k = -1, -2)
+//
+// a very short polynomial will be sufficient to approximate tan(x)
+// accurately. The details involved in computing the last expression
+// will be given in the next section on algorithm description.
+//
+//
+// Now, we turn to the case where cot( B + x ) is needed.
+//
+//
+// 1 - tan(B)*tan(x)
+// cot( B + x ) = ------------------------
+// tan(B) + tan(x)
+//
+// / \
+// | 1 - tan(B)*tan(x) |
+
+// = cot(B) + | ----------------------- - cot(B) |
+// | tan(B) + tan(x) |
+// \ /
+//
+// [tan(B) + cot(B)] * tan(x)
+// = cot(B) - ----------------------------
+// tan(B) + tan(x)
+//
+// (1/[sin(B)*cos(B)]) * tan(x)
+// = cot(B) - --------------------------------
+// tan(B) + tan(x)
+//
+//
+// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that
+// are needed are the same set of values needed in the previous
+// case.
+//
+// Finally, we can put all the ingredients together as follows:
+//
+// Arg = N * pi/2 + r + c ...accurately
+//
+// tan(Arg) = tan(r) + correction if N is even;
+// = -cot(r) + correction otherwise.
+//
+// For Cases 2 and 4,
+//
+// Case 2:
+// tan(Arg) = tan(r + c) = r + c + r^3/3 N even
+// = -cot(r + c) = -1/(r+c) + r/3 N odd
+// Case 4:
+// tan(Arg) = tan(r + c) = r + c + r^3/3 + 2r^5/15 N even
+// = -cot(r + c) = -1/(r+c) + r/3 + r^3/45 N odd
+//
+//
+// For Cases 1 and 3,
+//
+// Case small_r: |r| < 2^(-2)
+//
+// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
+// + c*(1 + r^2) N even
+//
+// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
+// + Q1_1*c N odd
+//
+// Case normal_r: 2^(-2) <= |r| <= pi/4
+//
+// tan(Arg) = tan(r) + c * sec^2(r) N even
+// = -cot(r) + c * csc^2(r) otherwise
+//
+// For N even,
+//
+// tan(Arg) = tan(r) + c*sec^2(r)
+// = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
+// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
+// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
+//
+// since B approximates |r| to 2^(-6) in relative accuracy.
+//
+// / (1/[sin(B)*cos(B)]) * tan(x)
+// tan(Arg) = sgn_r * | tan(B) + --------------------------------
+// \ cot(B) - tan(x)
+// \
+// + CORR |
+
+// /
+// where
+//
+// CORR = sgn_r*c*tan(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
+//
+// For N odd,
+//
+// tan(Arg) = -cot(r) + c*csc^2(r)
+// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
+// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
+// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
+//
+// since B approximates |r| to 2^(-6) in relative accuracy.
+//
+// / (1/[sin(B)*cos(B)]) * tan(x)
+// tan(Arg) = sgn_r * | -cot(B) + --------------------------------
+// \ tan(B) + tan(x)
+// \
+// + CORR |
+
+// /
+// where
+//
+// CORR = sgn_r*c*cot(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
+//
+//
+// The actual algorithm prescribes how all the mathematical formulas
+// are calculated.
+//
+//
+// 2. Algorithmic Description
+// ==========================
+//
+// 2.1 Computation for Cases 2 and 4.
+// ----------------------------------
+//
+// For Case 2, we use two-term polynomials.
+//
+// For N even,
+//
+// rsq := r * r
+// Poly := c + r * rsq * P1_1
+// Result := r + Poly ...in user-defined rounding
+//
+// For N odd,
+// S_hi := -frcpa(r) ...8 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
+// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
+// ...S_hi + S_lo is -1/(r+c) to extra precision
+// S_lo := S_lo + Q1_1*r
+//
+// Result := S_hi + S_lo ...in user-defined rounding
+//
+// For Case 4, we use three-term polynomials
+//
+// For N even,
+//
+// rsq := r * r
+// Poly := c + r * rsq * (P1_1 + rsq * P1_2)
+// Result := r + Poly ...in user-defined rounding
+//
+// For N odd,
+// S_hi := -frcpa(r) ...8 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
+// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
+// ...S_hi + S_lo is -1/(r+c) to extra precision
+// rsq := r * r
+// P := Q1_1 + rsq*Q1_2
+// S_lo := S_lo + r*P
+//
+// Result := S_hi + S_lo ...in user-defined rounding
+//
+//
+// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are
+// the same as those used in the small_r case of Cases 1 and 3
+// below.
+//
+//
+// 2.2 Computation for Cases 1 and 3.
+// ----------------------------------
+// This is further divided into the case of small_r,
+// where |r| < 2^(-2), and the case of normal_r, where |r| lies between
+// 2^(-2) and pi/4.
+//
+// Algorithm for the case of small_r
+// ---------------------------------
+//
+// For N even,
+// rsq := r * r
+// Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3))
+// r_to_the_8 := rsq * rsq
+// r_to_the_8 := r_to_the_8 * r_to_the_8
+// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
+// CORR := c * ( 1 + rsq )
+// Poly := Poly1 + r_to_the_8*Poly2
+// Poly := r*Poly + CORR
+// Result := r + Poly ...in user-defined rounding
+// ...note that Poly1 and r_to_the_8 can be computed in parallel
+// ...with Poly2 (Poly1 is intentionally set to be much
+// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
+//
+// For N odd,
+// S_hi := -frcpa(r) ...8 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
+// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
+// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
+// ...S_hi + S_lo is -1/(r+c) to extra precision
+// S_lo := S_lo + Q1_1*c
+//
+// ...S_hi and S_lo are computed in parallel with
+// ...the following
+// rsq := r*r
+// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
+//
+// Poly := r*P + S_lo
+// Result := S_hi + Poly ...in user-defined rounding
+//
+//
+// Algorithm for the case of normal_r
+// ----------------------------------
+//
+// Here, we first consider the computation of tan( r + c ). As
+// presented in the previous section,
+//
+// tan( r + c ) = tan(r) + c * sec^2(r)
+// = sgn_r * [ tan(B+x) + CORR ]
+// CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)]
+//
+// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits.
+//
+// tan( r + c ) =
+// / (1/[sin(B)*cos(B)]) * tan(x)
+// sgn_r * | tan(B) + -------------------------------- +
+// \ cot(B) - tan(x)
+// \
+// CORR |
+
+// /
+//
+// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
+// calculated beforehand and stored in a table. Specifically,
+// the table values are
+//
+// tan(B) as T_hi + T_lo;
+// cot(B) as C_hi + C_lo;
+// 1/[sin(B)*cos(B)] as SC_inv
+//
+// T_hi, C_hi are in double-precision memory format;
+// T_lo, C_lo are in single-precision memory format;
+// SC_inv is in extended-precision memory format.
+//
+// The value of tan(x) will be approximated by a short polynomial of
+// the form
+//
+// tan(x) as x + x * P, where
+// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
+//
+// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x)
+// to a relative accuracy better than 2^(-20). Thus, a good
+// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative
+// division is:
+//
+// 1/(cot(B) - tan(x)) is approximately
+// 1/(cot(B) - x) is
+// tan(B)/(1 - x*tan(B)) is approximately
+// T_hi / ( 1 - T_hi * x ) is approximately
+//
+// T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ]
+//
+// The calculation of tan(r+c) therefore proceed as follows:
+//
+// Tx := T_hi * x
+// xsq := x * x
+//
+// V_hi := T_hi*(1 + Tx*(1 + Tx))
+// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
+// ...V_hi serves as an initial guess of 1/(cot(B) - tan(x))
+// ...good to about 20 bits of accuracy
+//
+// tanx := x + x*P
+// D := C_hi - tanx
+// ...D is a double precision denominator: cot(B) - tan(x)
+//
+// V_hi := V_hi + V_hi*(1 - V_hi*D)
+// ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits
+//
+// V_lo := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ]
+// - V_hi*C_lo ) ...observe all order
+// ...V_hi + V_lo approximates 1/(cot(B) - tan(x))
+// ...to extra accuracy
+//
+// ... SC_inv(B) * (x + x*P)
+// ... tan(B) + ------------------------- + CORR
+// ... cot(B) - (x + x*P)
+// ...
+// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
+// ...
+//
+// Sx := SC_inv * x
+// CORR := sgn_r * c * SC_inv * T_hi
+//
+// ...put the ingredients together to compute
+// ... SC_inv(B) * (x + x*P)
+// ... tan(B) + ------------------------- + CORR
+// ... cot(B) - (x + x*P)
+// ...
+// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
+// ...
+// ... = T_hi + T_lo + CORR +
+// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
+//
+// CORR := CORR + T_lo
+// tail := V_lo + P*(V_hi + V_lo)
+// tail := Sx * tail + CORR
+// tail := Sx * V_hi + tail
+// T_hi := sgn_r * T_hi
+//
+// ...T_hi + sgn_r*tail now approximate
+// ...sgn_r*(tan(B+x) + CORR) accurately
+//
+// Result := T_hi + sgn_r*tail ...in user-defined
+// ...rounding control
+// ...It is crucial that independent paths be fully
+// ...exploited for performance's sake.
+//
+//
+// Next, we consider the computation of -cot( r + c ). As
+// presented in the previous section,
+//
+// -cot( r + c ) = -cot(r) + c * csc^2(r)
+// = sgn_r * [ -cot(B+x) + CORR ]
+// CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)]
+//
+// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits.
+//
+// -cot( r + c ) =
+// / (1/[sin(B)*cos(B)]) * tan(x)
+// sgn_r * | -cot(B) + -------------------------------- +
+// \ tan(B) + tan(x)
+// \
+// CORR |
+
+// /
+//
+// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
+// calculated beforehand and stored in a table. Specifically,
+// the table values are
+//
+// tan(B) as T_hi + T_lo;
+// cot(B) as C_hi + C_lo;
+// 1/[sin(B)*cos(B)] as SC_inv
+//
+// T_hi, C_hi are in double-precision memory format;
+// T_lo, C_lo are in single-precision memory format;
+// SC_inv is in extended-precision memory format.
+//
+// The value of tan(x) will be approximated by a short polynomial of
+// the form
+//
+// tan(x) as x + x * P, where
+// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
+//
+// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x)
+// to a relative accuracy better than 2^(-18). Thus, a good
+// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative
+// division is:
+//
+// 1/(tan(B) + tan(x)) is approximately
+// 1/(tan(B) + x) is
+// cot(B)/(1 + x*cot(B)) is approximately
+// C_hi / ( 1 + C_hi * x ) is approximately
+//
+// C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ]
+//
+// The calculation of -cot(r+c) therefore proceed as follows:
+//
+// Cx := C_hi * x
+// xsq := x * x
+//
+// V_hi := C_hi*(1 - Cx*(1 - Cx))
+// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
+// ...V_hi serves as an initial guess of 1/(tan(B) + tan(x))
+// ...good to about 18 bits of accuracy
+//
+// tanx := x + x*P
+// D := T_hi + tanx
+// ...D is a double precision denominator: tan(B) + tan(x)
+//
+// V_hi := V_hi + V_hi*(1 - V_hi*D)
+// ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits
+//
+// V_lo := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ]
+// - V_hi*T_lo ) ...observe all order
+// ...V_hi + V_lo approximates 1/(tan(B) + tan(x))
+// ...to extra accuracy
+//
+// ... SC_inv(B) * (x + x*P)
+// ... -cot(B) + ------------------------- + CORR
+// ... tan(B) + (x + x*P)
+// ...
+// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
+// ...
+//
+// Sx := SC_inv * x
+// CORR := sgn_r * c * SC_inv * C_hi
+//
+// ...put the ingredients together to compute
+// ... SC_inv(B) * (x + x*P)
+// ... -cot(B) + ------------------------- + CORR
+// ... tan(B) + (x + x*P)
+// ...
+// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
+// ...
+// ... =-C_hi - C_lo + CORR +
+// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
+//
+// CORR := CORR - C_lo
+// tail := V_lo + P*(V_hi + V_lo)
+// tail := Sx * tail + CORR
+// tail := Sx * V_hi + tail
+// C_hi := -sgn_r * C_hi
+//
+// ...C_hi + sgn_r*tail now approximates
+// ...sgn_r*(-cot(B+x) + CORR) accurately
+//
+// Result := C_hi + sgn_r*tail in user-defined rounding control
+// ...It is crucial that independent paths be fully
+// ...exploited for performance's sake.
+//
+// 3. Implementation Notes
+// =======================
+//
+// Table entries T_hi, T_lo; C_hi, C_lo; SC_inv
+//
+// Recall that 2^(-2) <= |r| <= pi/4;
+//
+// r = sgn_r * 2^k * 1.b_1 b_2 ... b_63
+//
+// and
+//
+// B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1
+//
+// Thus, for k = -2, possible values of B are
+//
+// B = 2^(-2) * ( 1 + index/32 + 1/64 ),
+// index ranges from 0 to 31
+//
+// For k = -1, however, since |r| <= pi/4 = 0.78...
+// possible values of B are
+//
+// B = 2^(-1) * ( 1 + index/32 + 1/64 )
+// index ranges from 0 to 19.
+//
+//
+
+RODATA
+.align 16
+
+LOCAL_OBJECT_START(TANL_BASE_CONSTANTS)
+
+tanl_table_1:
+data8 0xA2F9836E4E44152A, 0x00003FFE // two_by_pi
+data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
+data8 0xC90FDAA22168C235, 0x00003FFF // P_1
+data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
+data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
+LOCAL_OBJECT_END(TANL_BASE_CONSTANTS)
+
+LOCAL_OBJECT_START(tanl_table_2)
+data8 0xC90FDAA22168C234, 0x00003FFE // PI_BY_4
+data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
+data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
+data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
+data4 0x3E800000 // two**-2
+data4 0xBE800000 // -two**-2
+data4 0x00000000 // pad
+data4 0x00000000 // pad
+LOCAL_OBJECT_END(tanl_table_2)
+
+LOCAL_OBJECT_START(tanl_table_p1)
+data8 0xAAAAAAAAAAAAAABD, 0x00003FFD // P1_1
+data8 0x8888888888882E6A, 0x00003FFC // P1_2
+data8 0xDD0DD0DD0F0177B6, 0x00003FFA // P1_3
+data8 0xB327A440646B8C6D, 0x00003FF9 // P1_4
+data8 0x91371B251D5F7D20, 0x00003FF8 // P1_5
+data8 0xEB69A5F161C67914, 0x00003FF6 // P1_6
+data8 0xBEDD37BE019318D2, 0x00003FF5 // P1_7
+data8 0x9979B1463C794015, 0x00003FF4 // P1_8
+data8 0x8EBD21A38C6EB58A, 0x00003FF3 // P1_9
+LOCAL_OBJECT_END(tanl_table_p1)
+
+LOCAL_OBJECT_START(tanl_table_q1)
+data8 0xAAAAAAAAAAAAAAB4, 0x00003FFD // Q1_1
+data8 0xB60B60B60B5FC93E, 0x00003FF9 // Q1_2
+data8 0x8AB355E00C9BBFBF, 0x00003FF6 // Q1_3
+data8 0xDDEBBC89CBEE3D4C, 0x00003FF2 // Q1_4
+data8 0xB3548A685F80BBB6, 0x00003FEF // Q1_5
+data8 0x913625604CED5BF1, 0x00003FEC // Q1_6
+data8 0xF189D95A8EE92A83, 0x00003FE8 // Q1_7
+LOCAL_OBJECT_END(tanl_table_q1)
+
+LOCAL_OBJECT_START(tanl_table_p2)
+data8 0xAAAAAAAAAAAB362F, 0x00003FFD // P2_1
+data8 0x88888886E97A6097, 0x00003FFC // P2_2
+data8 0xDD108EE025E716A1, 0x00003FFA // P2_3
+LOCAL_OBJECT_END(tanl_table_p2)
+
+LOCAL_OBJECT_START(tanl_table_tm2)
+//
+// Entries T_hi double-precision memory format
+// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
+// Entries T_lo single-precision memory format
+// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
+//
+data8 0x3FD09BC362400794
+data4 0x23A05C32, 0x00000000
+data8 0x3FD124A9DFFBC074
+data4 0x240078B2, 0x00000000
+data8 0x3FD1AE235BD4920F
+data4 0x23826B8E, 0x00000000
+data8 0x3FD2383515E2701D
+data4 0x22D31154, 0x00000000
+data8 0x3FD2C2E463739C2D
+data4 0x2265C9E2, 0x00000000
+data8 0x3FD34E36AFEEA48B
+data4 0x245C05EB, 0x00000000
+data8 0x3FD3DA317DBB35D1
+data4 0x24749F2D, 0x00000000
+data8 0x3FD466DA67321619
+data4 0x2462CECE, 0x00000000
+data8 0x3FD4F4371F94A4D5
+data4 0x246D0DF1, 0x00000000
+data8 0x3FD5824D740C3E6D
+data4 0x240A85B5, 0x00000000
+data8 0x3FD611234CB1E73D
+data4 0x23F96E33, 0x00000000
+data8 0x3FD6A0BEAD9EA64B
+data4 0x247C5393, 0x00000000
+data8 0x3FD73125B804FD01
+data4 0x241F3B29, 0x00000000
+data8 0x3FD7C25EAB53EE83
+data4 0x2479989B, 0x00000000
+data8 0x3FD8546FE6640EED
+data4 0x23B343BC, 0x00000000
+data8 0x3FD8E75FE8AF1892
+data4 0x241454D1, 0x00000000
+data8 0x3FD97B3553928BDA
+data4 0x238613D9, 0x00000000
+data8 0x3FDA0FF6EB9DE4DE
+data4 0x22859FA7, 0x00000000
+data8 0x3FDAA5AB99ECF92D
+data4 0x237A6D06, 0x00000000
+data8 0x3FDB3C5A6D8F1796
+data4 0x23952F6C, 0x00000000
+data8 0x3FDBD40A9CFB8BE4
+data4 0x2280FC95, 0x00000000
+data8 0x3FDC6CC387943100
+data4 0x245D2EC0, 0x00000000
+data8 0x3FDD068CB736C500
+data4 0x23C4AD7D, 0x00000000
+data8 0x3FDDA16DE1DDBC31
+data4 0x23D076E6, 0x00000000
+data8 0x3FDE3D6EEB515A93
+data4 0x244809A6, 0x00000000
+data8 0x3FDEDA97E6E9E5F1
+data4 0x220856C8, 0x00000000
+data8 0x3FDF78F11963CE69
+data4 0x244BE993, 0x00000000
+data8 0x3FE00C417D635BCE
+data4 0x23D21799, 0x00000000
+data8 0x3FE05CAB1C302CD3
+data4 0x248A1B1D, 0x00000000
+data8 0x3FE0ADB9DB6A1FA0
+data4 0x23D53E33, 0x00000000
+data8 0x3FE0FF724A20BA81
+data4 0x24DB9ED5, 0x00000000
+data8 0x3FE151D9153FA6F5
+data4 0x24E9E451, 0x00000000
+LOCAL_OBJECT_END(tanl_table_tm2)
+
+LOCAL_OBJECT_START(tanl_table_tm1)
+//
+// Entries T_hi double-precision memory format
+// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
+// Entries T_lo single-precision memory format
+// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
+//
+data8 0x3FE1CEC4BA1BE39E
+data4 0x24B60F9E, 0x00000000
+data8 0x3FE277E45ABD9B2D
+data4 0x248C2474, 0x00000000
+data8 0x3FE324180272B110
+data4 0x247B8311, 0x00000000
+data8 0x3FE3D38B890E2DF0
+data4 0x24C55751, 0x00000000
+data8 0x3FE4866D46236871
+data4 0x24E5BC34, 0x00000000
+data8 0x3FE53CEE45E044B0
+data4 0x24001BA4, 0x00000000
+data8 0x3FE5F74282EC06E4
+data4 0x24B973DC, 0x00000000
+data8 0x3FE6B5A125DF43F9
+data4 0x24895440, 0x00000000
+data8 0x3FE77844CAFD348C
+data4 0x240021CA, 0x00000000
+data8 0x3FE83F6BCEED6B92
+data4 0x24C45372, 0x00000000
+data8 0x3FE90B58A34F3665
+data4 0x240DAD33, 0x00000000
+data8 0x3FE9DC522C1E56B4
+data4 0x24F846CE, 0x00000000
+data8 0x3FEAB2A427041578
+data4 0x2323FB6E, 0x00000000
+data8 0x3FEB8E9F9DD8C373
+data4 0x24B3090B, 0x00000000
+data8 0x3FEC709B65C9AA7B
+data4 0x2449F611, 0x00000000
+data8 0x3FED58F4ACCF8435
+data4 0x23616A7E, 0x00000000
+data8 0x3FEE480F97635082
+data4 0x24C2FEAE, 0x00000000
+data8 0x3FEF3E57F0ACC544
+data4 0x242CE964, 0x00000000
+data8 0x3FF01E20F7E06E4B
+data4 0x2480D3EE, 0x00000000
+data8 0x3FF0A1258A798A69
+data4 0x24DB8967, 0x00000000
+LOCAL_OBJECT_END(tanl_table_tm1)
+
+LOCAL_OBJECT_START(tanl_table_cm2)
+//
+// Entries C_hi double-precision memory format
+// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
+// Entries C_lo single-precision memory format
+// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
+//
+data8 0x400ED3E2E63EFBD0
+data4 0x259D94D4, 0x00000000
+data8 0x400DDDB4C515DAB5
+data4 0x245F0537, 0x00000000
+data8 0x400CF57ABE19A79F
+data4 0x25D4EA9F, 0x00000000
+data8 0x400C1A06D15298ED
+data4 0x24AE40A0, 0x00000000
+data8 0x400B4A4C164B2708
+data4 0x25A5AAB6, 0x00000000
+data8 0x400A855A5285B068
+data4 0x25524F18, 0x00000000
+data8 0x4009CA5A3FFA549F
+data4 0x24C999C0, 0x00000000
+data8 0x4009188A646AF623
+data4 0x254FD801, 0x00000000
+data8 0x40086F3C6084D0E7
+data4 0x2560F5FD, 0x00000000
+data8 0x4007CDD2A29A76EE
+data4 0x255B9D19, 0x00000000
+data8 0x400733BE6C8ECA95
+data4 0x25CB021B, 0x00000000
+data8 0x4006A07E1F8DDC52
+data4 0x24AB4722, 0x00000000
+data8 0x4006139BC298AD58
+data4 0x252764E2, 0x00000000
+data8 0x40058CABBAD7164B
+data4 0x24DAF5DB, 0x00000000
+data8 0x40050B4BAE31A5D3
+data4 0x25EA20F4, 0x00000000
+data8 0x40048F2189F85A8A
+data4 0x2583A3E8, 0x00000000
+data8 0x400417DAA862380D
+data4 0x25DCC4CC, 0x00000000
+data8 0x4003A52B1088FCFE
+data4 0x2430A492, 0x00000000
+data8 0x400336CCCD3527D5
+data4 0x255F77CF, 0x00000000
+data8 0x4002CC7F5760766D
+data4 0x25DA0BDA, 0x00000000
+data8 0x4002660711CE02E3
+data4 0x256FF4A2, 0x00000000
+data8 0x4002032CD37BBE04
+data4 0x25208AED, 0x00000000
+data8 0x4001A3BD7F050775
+data4 0x24B72DD6, 0x00000000
+data8 0x40014789A554848A
+data4 0x24AB4DAA, 0x00000000
+data8 0x4000EE65323E81B7
+data4 0x2584C440, 0x00000000
+data8 0x4000982721CF1293
+data4 0x25C9428D, 0x00000000
+data8 0x400044A93D415EEB
+data4 0x25DC8482, 0x00000000
+data8 0x3FFFE78FBD72C577
+data4 0x257F5070, 0x00000000
+data8 0x3FFF4AC375EFD28E
+data4 0x23EBBF7A, 0x00000000
+data8 0x3FFEB2AF60B52DDE
+data4 0x22EECA07, 0x00000000
+data8 0x3FFE1F1935204180
+data4 0x24191079, 0x00000000
+data8 0x3FFD8FCA54F7E60A
+data4 0x248D3058, 0x00000000
+LOCAL_OBJECT_END(tanl_table_cm2)
+
+LOCAL_OBJECT_START(tanl_table_cm1)
+//
+// Entries C_hi double-precision memory format
+// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
+// Entries C_lo single-precision memory format
+// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
+//
+data8 0x3FFCC06A79F6FADE
+data4 0x239C7886, 0x00000000
+data8 0x3FFBB91F891662A6
+data4 0x250BD191, 0x00000000
+data8 0x3FFABFB6529F155D
+data4 0x256CC3E6, 0x00000000
+data8 0x3FF9D3002E964AE9
+data4 0x250843E3, 0x00000000
+data8 0x3FF8F1EF89DCB383
+data4 0x2277C87E, 0x00000000
+data8 0x3FF81B937C87DBD6
+data4 0x256DA6CF, 0x00000000
+data8 0x3FF74F141042EDE4
+data4 0x2573D28A, 0x00000000
+data8 0x3FF68BAF1784B360
+data4 0x242E489A, 0x00000000
+data8 0x3FF5D0B57C923C4C
+data4 0x2532D940, 0x00000000
+data8 0x3FF51D88F418EF20
+data4 0x253C7DD6, 0x00000000
+data8 0x3FF4719A02F88DAE
+data4 0x23DB59BF, 0x00000000
+data8 0x3FF3CC6649DA0788
+data4 0x252B4756, 0x00000000
+data8 0x3FF32D770B980DB8
+data4 0x23FE585F, 0x00000000
+data8 0x3FF2945FE56C987A
+data4 0x25378A63, 0x00000000
+data8 0x3FF200BDB16523F6
+data4 0x247BB2E0, 0x00000000
+data8 0x3FF172358CE27778
+data4 0x24446538, 0x00000000
+data8 0x3FF0E873FDEFE692
+data4 0x2514638F, 0x00000000
+data8 0x3FF0632C33154062
+data4 0x24A7FC27, 0x00000000
+data8 0x3FEFC42EB3EF115F
+data4 0x248FD0FE, 0x00000000
+data8 0x3FEEC9E8135D26F6
+data4 0x2385C719, 0x00000000
+LOCAL_OBJECT_END(tanl_table_cm1)
+
+LOCAL_OBJECT_START(tanl_table_scim2)
+//
+// Entries SC_inv in Swapped IEEE format (extended)
+// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
+//
+data8 0x839D6D4A1BF30C9E, 0x00004001
+data8 0x80092804554B0EB0, 0x00004001
+data8 0xF959F94CA1CF0DE9, 0x00004000
+data8 0xF3086BA077378677, 0x00004000
+data8 0xED154515CCD4723C, 0x00004000
+data8 0xE77909441C27CF25, 0x00004000
+data8 0xE22D037D8DDACB88, 0x00004000
+data8 0xDD2B2D8A89C73522, 0x00004000
+data8 0xD86E1A23BB2C1171, 0x00004000
+data8 0xD3F0E288DFF5E0F9, 0x00004000
+data8 0xCFAF16B1283BEBD5, 0x00004000
+data8 0xCBA4AFAA0D88DD53, 0x00004000
+data8 0xC7CE03CCCA67C43D, 0x00004000
+data8 0xC427BC820CA0DDB0, 0x00004000
+data8 0xC0AECD57F13D8CAB, 0x00004000
+data8 0xBD606C3871ECE6B1, 0x00004000
+data8 0xBA3A0A96A44C4929, 0x00004000
+data8 0xB7394F6FE5CCCEC1, 0x00004000
+data8 0xB45C12039637D8BC, 0x00004000
+data8 0xB1A0552892CB051B, 0x00004000
+data8 0xAF04432B6BA2FFD0, 0x00004000
+data8 0xAC862A237221235F, 0x00004000
+data8 0xAA2478AF5F00A9D1, 0x00004000
+data8 0xA7DDBB0C81E082BF, 0x00004000
+data8 0xA5B0987D45684FEE, 0x00004000
+data8 0xA39BD0F5627A8F53, 0x00004000
+data8 0xA19E3B036EC5C8B0, 0x00004000
+data8 0x9FB6C1F091CD7C66, 0x00004000
+data8 0x9DE464101FA3DF8A, 0x00004000
+data8 0x9C263139A8F6B888, 0x00004000
+data8 0x9A7B4968C27B0450, 0x00004000
+data8 0x98E2DB7E5EE614EE, 0x00004000
+LOCAL_OBJECT_END(tanl_table_scim2)
+
+LOCAL_OBJECT_START(tanl_table_scim1)
+//
+// Entries SC_inv in Swapped IEEE format (extended)
+// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
+//
+data8 0x969F335C13B2B5BA, 0x00004000
+data8 0x93D446D9D4C0F548, 0x00004000
+data8 0x9147094F61B798AF, 0x00004000
+data8 0x8EF317CC758787AC, 0x00004000
+data8 0x8CD498B3B99EEFDB, 0x00004000
+data8 0x8AE82A7DDFF8BC37, 0x00004000
+data8 0x892AD546E3C55D42, 0x00004000
+data8 0x8799FEA9D15573C1, 0x00004000
+data8 0x86335F88435A4B4C, 0x00004000
+data8 0x84F4FB6E3E93A87B, 0x00004000
+data8 0x83DD195280A382FB, 0x00004000
+data8 0x82EA3D7FA4CB8C9E, 0x00004000
+data8 0x821B247C6861D0A8, 0x00004000
+data8 0x816EBED163E8D244, 0x00004000
+data8 0x80E42D9127E4CFC6, 0x00004000
+data8 0x807ABF8D28E64AFD, 0x00004000
+data8 0x8031EF26863B4FD8, 0x00004000
+data8 0x800960ADAE8C11FD, 0x00004000
+data8 0x8000E1475FDBEC21, 0x00004000
+data8 0x80186650A07791FA, 0x00004000
+LOCAL_OBJECT_END(tanl_table_scim1)
+
+Arg = f8
+Save_Norm_Arg = f8 // For input to reduction routine
+Result = f8
+r = f8 // For output from reduction routine
+c = f9 // For output from reduction routine
+U_2 = f10
+rsq = f11
+C_hi = f12
+C_lo = f13
+T_hi = f14
+T_lo = f15
+
+d_1 = f33
+N_0 = f34
+tail = f35
+tanx = f36
+Cx = f37
+Sx = f38
+sgn_r = f39
+CORR = f40
+P = f41
+D = f42
+ArgPrime = f43
+P_0 = f44
+
+P2_1 = f45
+P2_2 = f46
+P2_3 = f47
+
+P1_1 = f45
+P1_2 = f46
+P1_3 = f47
+
+P1_4 = f48
+P1_5 = f49
+P1_6 = f50
+P1_7 = f51
+P1_8 = f52
+P1_9 = f53
+
+x = f56
+xsq = f57
+Tx = f58
+Tx1 = f59
+Set = f60
+poly1 = f61
+poly2 = f62
+Poly = f63
+Poly1 = f64
+Poly2 = f65
+r_to_the_8 = f66
+B = f67
+SC_inv = f68
+Pos_r = f69
+N_0_fix = f70
+d_2 = f71
+PI_BY_4 = f72
+TWO_TO_NEG14 = f74
+TWO_TO_NEG33 = f75
+NEGTWO_TO_NEG14 = f76
+NEGTWO_TO_NEG33 = f77
+two_by_PI = f78
+N = f79
+N_fix = f80
+P_1 = f81
+P_2 = f82
+P_3 = f83
+s_val = f84
+w = f85
+B_mask1 = f86
+B_mask2 = f87
+w2 = f88
+A = f89
+a = f90
+t = f91
+U_1 = f92
+NEGTWO_TO_NEG2 = f93
+TWO_TO_NEG2 = f94
+Q1_1 = f95
+Q1_2 = f96
+Q1_3 = f97
+Q1_4 = f98
+Q1_5 = f99
+Q1_6 = f100
+Q1_7 = f101
+Q1_8 = f102
+S_hi = f103
+S_lo = f104
+V_hi = f105
+V_lo = f106
+U_hi = f107
+U_lo = f108
+U_hiabs = f109
+V_hiabs = f110
+V = f111
+Inv_P_0 = f112
+
+FR_inv_pi_2to63 = f113
+FR_rshf_2to64 = f114
+FR_2tom64 = f115
+FR_rshf = f116
+Norm_Arg = f117
+Abs_Arg = f118
+TWO_TO_NEG65 = f119
+fp_tmp = f120
+mOne = f121
+
+GR_SAVE_B0 = r33
+GR_SAVE_GP = r34
+GR_SAVE_PFS = r35
+table_base = r36
+table_ptr1 = r37
+table_ptr2 = r38
+table_ptr3 = r39
+lookup = r40
+N_fix_gr = r41
+GR_exp_2tom2 = r42
+GR_exp_2tom65 = r43
+exp_r = r44
+sig_r = r45
+bmask1 = r46
+table_offset = r47
+bmask2 = r48
+gr_tmp = r49
+cot_flag = r50
+
+GR_sig_inv_pi = r51
+GR_rshf_2to64 = r52
+GR_exp_2tom64 = r53
+GR_rshf = r54
+GR_exp_2_to_63 = r55
+GR_exp_2_to_24 = r56
+GR_signexp_x = r57
+GR_exp_x = r58
+GR_exp_mask = r59
+GR_exp_2tom14 = r60
+GR_exp_m2tom14 = r61
+GR_exp_2tom33 = r62
+GR_exp_m2tom33 = r63
+
+GR_SAVE_B0 = r64
+GR_SAVE_PFS = r65
+GR_SAVE_GP = r66
+
+GR_Parameter_X = r67
+GR_Parameter_Y = r68
+GR_Parameter_RESULT = r69
+GR_Parameter_Tag = r70
+
+
+.section .text
+.global __libm_tanl#
+.global __libm_cotl#
+
+.proc __libm_cotl#
+__libm_cotl:
+.endp __libm_cotl#
+LOCAL_LIBM_ENTRY(cotl)
+
+{ .mlx
+ alloc r32 = ar.pfs, 0,35,4,0
+ movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
+}
+{ .mlx
+ mov GR_exp_mask = 0x1ffff // Exponent mask
+ movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+}
+;;
+
+// Check for NatVals, Infs , NaNs, and Zeros
+{ .mfi
+ getf.exp GR_signexp_x = Arg // Get sign and exponent of x
+ fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
+ mov cot_flag = 0x1
+}
+{ .mfb
+ addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
+ fnorm.s1 Norm_Arg = Arg // Normalize x
+ br.cond.sptk COMMON_PATH
+};;
+
+LOCAL_LIBM_END(cotl)
+
+
+.proc __libm_tanl#
+__libm_tanl:
+.endp __libm_tanl#
+GLOBAL_IEEE754_ENTRY(tanl)
+
+{ .mlx
+ alloc r32 = ar.pfs, 0,35,4,0
+ movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
+}
+{ .mlx
+ mov GR_exp_mask = 0x1ffff // Exponent mask
+ movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+}
+;;
+
+// Check for NatVals, Infs , NaNs, and Zeros
+{ .mfi
+ getf.exp GR_signexp_x = Arg // Get sign and exponent of x
+ fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
+ mov cot_flag = 0x0
+}
+{ .mfi
+ addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
+ fnorm.s1 Norm_Arg = Arg // Normalize x
+ nop.i 0
+};;
+
+// Common path for both tanl and cotl
+COMMON_PATH:
+{ .mfi
+ setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
+ fclass.m p9, p0 = Arg, 0x0b // Test x denormal
+ mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
+}
+{ .mlx
+ setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
+ movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
+}
+;;
+
+// Check for everything - if false, then must be pseudo-zero or pseudo-nan.
+// Branch out to deal with special values.
+{ .mfi
+ addl gr_tmp = -1,r0
+ fclass.nm p7,p0 = Arg, 0x1FF // Test x unsupported
+ mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
+}
+{ .mfb
+ ld8 table_base = [table_base] // Get pointer to constant table
+ fms.s1 mOne = f0, f0, f1
+(p6) br.cond.spnt TANL_SPECIAL // Branch if x natval, nan, inf, zero
+}
+;;
+
+{ .mmb
+ setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact
+ mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
+(p9) br.cond.spnt TANL_DENORMAL // Branch if x denormal
+}
+;;
+
+TANL_COMMON:
+// Return to here if x denormal
+//
+// Do fcmp to generate Denormal exception
+// - can't do FNORM (will generate Underflow when U is unmasked!)
+// Branch out to deal with unsupporteds values.
+{ .mfi
+ setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
+ fcmp.eq.s0 p0, p6 = Arg, f1 // Dummy to flag denormals
+ add table_ptr1 = 0, table_base // Point to tanl_table_1
+}
+{ .mib
+ setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
+ add table_ptr2 = 80, table_base // Point to tanl_table_2
+(p7) br.cond.spnt TANL_UNSUPPORTED // Branch if x unsupported type
+}
+;;
+
+{ .mfi
+ and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
+ fmpy.s1 Save_Norm_Arg = Norm_Arg, f1 // Save x if large arg reduction
+ dep.z bmask1 = 0x7c, 56, 8 // Form mask to get 5 msb of r
+ // bmask1 = 0x7c00000000000000
+}
+;;
+
+//
+// Decide about the paths to take:
+// Set PR_6 if |Arg| >= 2**63
+// Set PR_9 if |Arg| < 2**24 - CASE 1 OR 2
+// OTHERWISE Set PR_8 - CASE 3 OR 4
+//
+// Branch out if the magnitude of the input argument is >= 2^63
+// - do this branch before the next.
+{ .mfi
+ ldfe two_by_PI = [table_ptr1],16 // Load 2/pi
+ nop.f 999
+ dep.z bmask2 = 0x41, 57, 7 // Form mask to OR to produce B
+ // bmask2 = 0x8200000000000000
+}
+{ .mib
+ ldfe PI_BY_4 = [table_ptr2],16 // Load pi/4
+ cmp.ge p6,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
+(p6) br.cond.spnt TANL_ARG_TOO_LARGE // Branch if |x| >= 2^63
+}
+;;
+
+{ .mmi
+ ldfe P_0 = [table_ptr1],16 // Load P_0
+ ldfe Inv_P_0 = [table_ptr2],16 // Load Inv_P_0
+ nop.i 999
+}
+;;
+
+{ .mfi
+ ldfe P_1 = [table_ptr1],16 // Load P_1
+ fmerge.s Abs_Arg = f0, Norm_Arg // Get |x|
+ mov GR_exp_m2tom33 = 0x2ffff - 33 // Form signexp of -2^-33
+}
+{ .mfi
+ ldfe d_1 = [table_ptr2],16 // Load d_1 for 2^24 <= |x| < 2^63
+ nop.f 999
+ mov GR_exp_2tom33 = 0xffff - 33 // Form signexp of 2^-33
+}
+;;
+
+{ .mmi
+ ldfe P_2 = [table_ptr1],16 // Load P_2
+ ldfe d_2 = [table_ptr2],16 // Load d_2 for 2^24 <= |x| < 2^63
+ cmp.ge p8,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
+}
+;;
+
+// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
+// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
+{ .mfb
+ ldfe P_3 = [table_ptr1],16 // Load P_3
+ fma.s1 N_fix = Norm_Arg, FR_inv_pi_2to63, FR_rshf_2to64
+(p8) br.cond.spnt TANL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
+}
+;;
+
+// Here if 0 < |x| < 2^24
+// ARGUMENT REDUCTION CODE - CASE 1 and 2
+//
+{ .mmf
+ setf.exp TWO_TO_NEG33 = GR_exp_2tom33 // Form 2^-33
+ setf.exp NEGTWO_TO_NEG33 = GR_exp_m2tom33 // Form -2^-33
+ fmerge.s r = Norm_Arg,Norm_Arg // Assume r=x, ok if |x| < pi/4
+}
+;;
+
+//
+// If |Arg| < pi/4, set PR_8, else pi/4 <=|Arg| < 2^24 - set PR_9.
+//
+// Case 2: Convert integer N_fix back to normalized floating-point value.
+{ .mfi
+ getf.sig sig_r = Norm_Arg // Get sig_r if 1/4 <= |x| < pi/4
+ fcmp.lt.s1 p8,p9= Abs_Arg,PI_BY_4 // Test |x| < pi/4
+ mov GR_exp_2tom2 = 0xffff - 2 // Form signexp of 2^-2
+}
+{ .mfi
+ ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2] // Load 2^-2, -2^-2
+ fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
+ mov N_fix_gr = r0 // Assume N=0, ok if |x| < pi/4
+}
+;;
+
+//
+// Case 1: Is |r| < 2**(-2).
+// Arg is the same as r in this case.
+// r = Arg
+// c = 0
+//
+// Case 2: Place integer part of N in GP register.
+{ .mfi
+(p9) getf.sig N_fix_gr = N_fix
+ fmerge.s c = f0, f0 // Assume c=0, ok if |x| < pi/4
+ cmp.lt p10, p0 = GR_exp_x, GR_exp_2tom2 // Test if |x| < 1/4
+}
+;;
+
+{ .mfi
+ setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
+ nop.f 999
+ mov exp_r = GR_exp_x // Get exp_r if 1/4 <= |x| < pi/4
+}
+{ .mbb
+ setf.sig B_mask2 = bmask2 // Form mask to form B from r
+(p10) br.cond.spnt TANL_SMALL_R // Branch if 0 < |x| < 1/4
+(p8) br.cond.spnt TANL_NORMAL_R // Branch if 1/4 <= |x| < pi/4
+}
+;;
+
+// Here if pi/4 <= |x| < 2^24
+//
+// Case 1: PR_3 is only affected when PR_1 is set.
+//
+//
+// Case 2: w = N * P_2
+// Case 2: s_val = -N * P_1 + Arg
+//
+
+{ .mfi
+ nop.m 999
+ fnma.s1 s_val = N, P_1, Norm_Arg
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 w = N, P_2 // w = N * P_2 for |s| >= 2^-33
+ nop.i 999
+}
+;;
+
+// Case 2_reduce: w = N * P_3 (change sign)
+{ .mfi
+ nop.m 999
+ fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-33
+ nop.i 999
+}
+;;
+
+// Case 1_reduce: r = s + w (change sign)
+{ .mfi
+ nop.m 999
+ fsub.s1 r = s_val, w // r = s_val - w for |s| >= 2^-33
+ nop.i 999
+}
+;;
+
+// Case 2_reduce: U_1 = N * P_2 + w
+{ .mfi
+ nop.m 999
+ fma.s1 U_1 = N, P_2, w2 // U_1 = N * P_2 + w for |s| < 2^-33
+ nop.i 999
+}
+;;
+
+//
+// Decide between case_1 and case_2 reduce:
+// Case 1_reduce: |s| >= 2**(-33)
+// Case 2_reduce: |s| < 2**(-33)
+//
+{ .mfi
+ nop.m 999
+ fcmp.lt.s1 p9, p8 = s_val, TWO_TO_NEG33
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
+ nop.i 999
+}
+;;
+
+// Case 1_reduce: c = s - r
+{ .mfi
+ nop.m 999
+ fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-33
+ nop.i 999
+}
+;;
+
+// Case 2_reduce: r is complete here - continue to calculate c .
+// r = s - U_1
+{ .mfi
+ nop.m 999
+(p9) fsub.s1 r = s_val, U_1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p9) fms.s1 U_2 = N, P_2, U_1
+ nop.i 999
+}
+;;
+
+//
+// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
+// else set PR_13.
+//
+
+{ .mfi
+ nop.m 999
+ fand B = B_mask1, r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p8) fcmp.lt.unc.s1 p10, p13 = r, TWO_TO_NEG2
+ nop.i 999
+}
+;;
+
+{ .mfi
+(p8) getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
+ nop.f 999
+ nop.i 999
+}
+;;
+
+{ .mfi
+(p8) getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
+(p10) fcmp.gt.s1 p10, p13 = r, NEGTWO_TO_NEG2
+ nop.i 999
+}
+;;
+
+// Case 1_reduce: c is complete here.
+// Case 1: Branch to SMALL_R or NORMAL_R.
+// c = c + w (w has not been negated.)
+{ .mfi
+ nop.m 999
+(p8) fsub.s1 c = c, w // c = c - w for |s| >= 2^-33
+ nop.i 999
+}
+{ .mbb
+ nop.m 999
+(p10) br.cond.spnt TANL_SMALL_R // Branch if pi/4 < |x| < 2^24 and |r|<1/4
+(p13) br.cond.sptk TANL_NORMAL_R_A // Branch if pi/4 < |x| < 2^24 and |r|>=1/4
+}
+;;
+
+
+// Here if pi/4 < |x| < 2^24 and |s| < 2^-33
+//
+// Is i_1 = lsb of N_fix_gr even or odd?
+// if i_1 == 0, set p11, else set p12.
+//
+{ .mfi
+ nop.m 999
+ fsub.s1 s_val = s_val, r
+ add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+}
+{ .mfi
+ nop.m 999
+//
+// Case 2_reduce:
+// U_2 = N * P_2 - U_1
+// Not needed until later.
+//
+ fadd.s1 U_2 = U_2, w2
+//
+// Case 2_reduce:
+// s = s - r
+// U_2 = U_2 + w
+//
+ nop.i 999
+}
+;;
+
+//
+// Case 2_reduce:
+// c = c - U_2
+// c is complete here
+// Argument reduction ends here.
+//
+{ .mfi
+ nop.m 999
+ fmpy.s1 rsq = r, r
+ tbit.z p11, p12 = N_fix_gr, 0 ;; // Set p11 if N even, p12 if odd
+}
+
+{ .mfi
+ nop.m 999
+(p12) frcpa.s1 S_hi,p0 = f1, r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fsub.s1 c = s_val, U_1
+ nop.i 999
+}
+;;
+
+{ .mmi
+ add table_ptr1 = 160, table_base ;; // Point to tanl_table_p1
+ ldfe P1_1 = [table_ptr1],144
+ nop.i 999 ;;
+}
+//
+// Load P1_1 and point to Q1_1 .
+//
+{ .mfi
+ ldfe Q1_1 = [table_ptr1]
+//
+// N even: rsq = r * Z
+// N odd: S_hi = frcpa(r)
+//
+(p12) fmerge.ns S_hi = S_hi, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// Case 2_reduce:
+// c = s - U_1
+//
+(p9) fsub.s1 c = c, U_2
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: Change sign of S_hi
+//
+(p11) fmpy.s1 rsq = rsq, P1_1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: rsq = rsq * P1_1
+// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
+//
+(p11) fma.s1 Poly = r, rsq, c
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Poly = c + r * rsq
+// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
+//
+(p12) fma.s1 poly1 = S_hi, r, f1
+(p11) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Result = Poly + r
+// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
+//
+(p14) fadd.s0 Result = r, Poly // for tanl
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p15) fms.s0 Result = r, mOne, Poly // for cotl
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Result1 = Result + r
+// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
+//
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * r + 1.0 64 bits partial
+//
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * poly + 1.0 64 bits
+//
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * r + 1.0
+//
+(p12) fma.s1 poly1 = S_hi, c, poly1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * c + poly1
+//
+(p12) fmpy.s1 S_lo = S_hi, poly1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: S_lo = S_hi * poly1
+//
+(p12) fma.s1 S_lo = Q1_1, r, S_lo
+(p12) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: Result = S_hi + S_lo
+//
+ fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: S_lo = S_lo + Q1_1 * r
+//
+(p14) fadd.s0 Result = S_hi, S_lo // for tanl
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
+ br.ret.sptk b0 ;; // Exit for pi/4 <= |x| < 2^24 and |s| < 2^-33
+}
+
+
+TANL_LARGER_ARG:
+// Here if 2^24 <= |x| < 2^63
+//
+// ARGUMENT REDUCTION CODE - CASE 3 and 4
+//
+
+{ .mmf
+ mov GR_exp_2tom14 = 0xffff - 14 // Form signexp of 2^-14
+ mov GR_exp_m2tom14 = 0x2ffff - 14 // Form signexp of -2^-14
+ fmpy.s1 N_0 = Norm_Arg, Inv_P_0
+}
+;;
+
+{ .mmi
+ setf.exp TWO_TO_NEG14 = GR_exp_2tom14 // Form 2^-14
+ setf.exp NEGTWO_TO_NEG14 = GR_exp_m2tom14// Form -2^-14
+ nop.i 999
+}
+;;
+
+
+//
+// Adjust table_ptr1 to beginning of table.
+// N_0 = Arg * Inv_P_0
+//
+{ .mmi
+ add table_ptr2 = 144, table_base ;; // Point to 2^-2
+ ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
+ nop.i 999
+}
+;;
+
+//
+// N_0_fix = integer part of N_0 .
+//
+//
+// Make N_0 the integer part.
+//
+{ .mfi
+ nop.m 999
+ fcvt.fx.s1 N_0_fix = N_0
+ nop.i 999 ;;
+}
+{ .mfi
+ setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
+ fcvt.xf N_0 = N_0_fix
+ nop.i 999 ;;
+}
+{ .mfi
+ setf.sig B_mask2 = bmask2 // Form mask to form B from r
+ fnma.s1 ArgPrime = N_0, P_0, Norm_Arg
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 w = N_0, d_1
+ nop.i 999 ;;
+}
+//
+// ArgPrime = -N_0 * P_0 + Arg
+// w = N_0 * d_1
+//
+//
+// N = ArgPrime * 2/pi
+//
+// fcvt.fx.s1 N_fix = N
+// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
+// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
+{ .mfi
+ nop.m 999
+ fma.s1 N_fix = ArgPrime, FR_inv_pi_2to63, FR_rshf_2to64
+
+ nop.i 999 ;;
+}
+// Convert integer N_fix back to normalized floating-point value.
+{ .mfi
+ nop.m 999
+ fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
+ nop.i 999
+}
+;;
+
+//
+// N is the integer part of the reduced-reduced argument.
+// Put the integer in a GP register.
+//
+{ .mfi
+ getf.sig N_fix_gr = N_fix
+ nop.f 999
+ nop.i 999
+}
+;;
+
+//
+// s_val = -N*P_1 + ArgPrime
+// w = -N*P_2 + w
+//
+{ .mfi
+ nop.m 999
+ fnma.s1 s_val = N, P_1, ArgPrime
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fnma.s1 w = N, P_2, w
+ nop.i 999
+}
+;;
+
+// Case 4: V_hi = N * P_2
+// Case 4: U_hi = N_0 * d_1
+{ .mfi
+ nop.m 999
+ fmpy.s1 V_hi = N, P_2 // V_hi = N * P_2 for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 U_hi = N_0, d_1 // U_hi = N_0 * d_1 for |s| < 2^-14
+ nop.i 999
+}
+;;
+
+// Case 3: r = s_val + w (Z complete)
+// Case 4: w = N * P_3
+{ .mfi
+ nop.m 999
+ fadd.s1 r = s_val, w // r = s_val + w for |s| >= 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-14
+ nop.i 999
+}
+;;
+
+// Case 4: A = U_hi + V_hi
+// Note: Worry about switched sign of V_hi, so subtract instead of add.
+// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
+// Note: the (-) is still missing for V_hi.
+{ .mfi
+ nop.m 999
+ fsub.s1 A = U_hi, V_hi // A = U_hi - V_hi for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fnma.s1 V_lo = N, P_2, V_hi // V_lo = V_hi - N * P_2 for |s| < 2^-14
+ nop.i 999
+}
+;;
+
+// Decide between case 3 and 4:
+// Case 3: |s| >= 2**(-14) Set p10
+// Case 4: |s| < 2**(-14) Set p11
+//
+// Case 4: U_lo = N_0 * d_1 - U_hi
+{ .mfi
+ nop.m 999
+ fms.s1 U_lo = N_0, d_1, U_hi // U_lo = N_0*d_1 - U_hi for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fcmp.lt.s1 p11, p10 = s_val, TWO_TO_NEG14
+ nop.i 999
+}
+;;
+
+// Case 4: We need abs of both U_hi and V_hi - dont
+// worry about switched sign of V_hi.
+{ .mfi
+ nop.m 999
+ fabs V_hiabs = V_hi // |V_hi| for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
+ nop.i 999
+}
+;;
+
+// Case 3: c = s_val - r
+{ .mfi
+ nop.m 999
+ fabs U_hiabs = U_hi // |U_hi| for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-14
+ nop.i 999
+}
+;;
+
+// For Case 3, |s| >= 2^-14, determine if |r| < 1/4
+//
+// Case 4: C_hi = s_val + A
+//
+{ .mfi
+ nop.m 999
+(p11) fadd.s1 C_hi = s_val, A // C_hi = s_val + A for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
+ nop.i 999
+}
+;;
+
+{ .mfi
+ getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
+ fand B = B_mask1, r
+ nop.i 999
+}
+;;
+
+// Case 4: t = U_lo + V_lo
+{ .mfi
+ getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
+(p11) fadd.s1 t = U_lo, V_lo // t = U_lo + V_lo for |s| < 2^-14
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
+ nop.i 999
+}
+;;
+
+// Case 3: c = (s - r) + w (c complete)
+{ .mfi
+ nop.m 999
+(p10) fadd.s1 c = c, w // c = c + w for |s| >= 2^-14
+ nop.i 999
+}
+{ .mbb
+ nop.m 999
+(p14) br.cond.spnt TANL_SMALL_R // Branch if 2^24 <= |x| < 2^63 and |r|< 1/4
+(p15) br.cond.sptk TANL_NORMAL_R_A // Branch if 2^24 <= |x| < 2^63 and |r|>=1/4
+}
+;;
+
+
+// Here if 2^24 <= |x| < 2^63 and |s| < 2^-14 >>>>>>> Case 4.
+//
+// Case 4: Set P_12 if U_hiabs >= V_hiabs
+// Case 4: w = w + N_0 * d_2
+// Note: the (-) is now incorporated in w .
+{ .mfi
+ add table_ptr1 = 160, table_base // Point to tanl_table_p1
+ fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fms.s1 w2 = N_0, d_2, w2
+ nop.i 999
+}
+;;
+
+// Case 4: C_lo = s_val - C_hi
+{ .mfi
+ ldfe P1_1 = [table_ptr1], 16 // Load P1_1
+ fsub.s1 C_lo = s_val, C_hi
+ nop.i 999
+}
+;;
+
+//
+// Case 4: a = U_hi - A
+// a = V_hi - A (do an add to account for missing (-) on V_hi
+//
+{ .mfi
+ ldfe P1_2 = [table_ptr1], 128 // Load P1_2
+(p12) fsub.s1 a = U_hi, A
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p13) fadd.s1 a = V_hi, A
+ nop.i 999
+}
+;;
+
+// Case 4: t = U_lo + V_lo + w
+{ .mfi
+ ldfe Q1_1 = [table_ptr1], 16 // Load Q1_1
+ fadd.s1 t = t, w2
+ nop.i 999
+}
+;;
+
+// Case 4: a = (U_hi - A) + V_hi
+// a = (V_hi - A) + U_hi
+// In each case account for negative missing form V_hi .
+//
+{ .mfi
+ ldfe Q1_2 = [table_ptr1], 16 // Load Q1_2
+(p12) fsub.s1 a = a, V_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p13) fsub.s1 a = U_hi, a
+ nop.i 999
+}
+;;
+
+//
+// Case 4: C_lo = (s_val - C_hi) + A
+//
+{ .mfi
+ nop.m 999
+ fadd.s1 C_lo = C_lo, A
+ nop.i 999 ;;
+}
+//
+// Case 4: t = t + a
+//
+{ .mfi
+ nop.m 999
+ fadd.s1 t = t, a
+ nop.i 999
+}
+;;
+
+// Case 4: C_lo = C_lo + t
+// Case 4: r = C_hi + C_lo
+{ .mfi
+ nop.m 999
+ fadd.s1 C_lo = C_lo, t
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+ fadd.s1 r = C_hi, C_lo
+ nop.i 999
+}
+;;
+
+//
+// Case 4: c = C_hi - r
+//
+{ .mfi
+ nop.m 999
+ fsub.s1 c = C_hi, r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 rsq = r, r
+ add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+}
+;;
+
+// Case 4: c = c + C_lo finished.
+//
+// Is i_1 = lsb of N_fix_gr even or odd?
+// if i_1 == 0, set PR_11, else set PR_12.
+//
+{ .mfi
+ nop.m 999
+ fadd.s1 c = c , C_lo
+ tbit.z p11, p12 = N_fix_gr, 0
+}
+;;
+
+// r and c have been computed.
+{ .mfi
+ nop.m 999
+(p12) frcpa.s1 S_hi, p0 = f1, r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: Change sign of S_hi
+//
+(p11) fma.s1 Poly = rsq, P1_2, P1_1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 P = rsq, Q1_2, Q1_1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1)
+//
+ fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: rsq = r * r
+// N odd: S_hi = frcpa(r)
+//
+(p12) fmerge.ns S_hi = S_hi, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N even: rsq = rsq * P1_2 + P1_1
+// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
+//
+(p11) fmpy.s1 Poly = rsq, Poly
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r,f1
+(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Poly = Poly * rsq
+// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
+//
+(p11) fma.s1 Poly = r, Poly, c
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
+//
+(p14) fadd.s0 Result = r, Poly // for tanl
+ nop.i 999 ;;
+}
+
+.pred.rel "mutex",p15,p12
+{ .mfi
+ nop.m 999
+(p15) fms.s0 Result = r, mOne, Poly // for cotl
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Poly = Poly * r + c
+// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
+//
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Result = Poly + r (Rounding mode S0)
+// N odd: poly1 = S_hi * r + 1.0 64 bits partial
+//
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * poly + S_hi 64 bits
+//
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * r + 1.0
+//
+(p12) fma.s1 poly1 = S_hi, c, poly1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * c + poly1
+//
+(p12) fmpy.s1 S_lo = S_hi, poly1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: S_lo = S_hi * poly1
+//
+(p12) fma.s1 S_lo = P, r, S_lo
+(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
+}
+
+{ .mfi
+ nop.m 999
+(p14) fadd.s0 Result = S_hi, S_lo // for tanl
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+//
+// N odd: S_lo = S_lo + r * P
+//
+(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
+ br.ret.sptk b0 ;; // Exit for 2^24 <= |x| < 2^63 and |s| < 2^-14
+}
+
+
+TANL_SMALL_R:
+// Here if |r| < 1/4
+// r and c have been computed.
+// *****************************************************************
+// *****************************************************************
+// *****************************************************************
+// N odd: S_hi = frcpa(r)
+// Get [i_1] - lsb of N_fix_gr. Set p11 if N even, p12 if N odd.
+// N even: rsq = r * r
+{ .mfi
+ add table_ptr1 = 160, table_base // Point to tanl_table_p1
+ frcpa.s1 S_hi, p0 = f1, r // S_hi for N odd
+ add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+}
+{ .mfi
+ add table_ptr2 = 400, table_base // Point to Q1_7
+ fmpy.s1 rsq = r, r
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ldfe P1_1 = [table_ptr1], 16
+;;
+ ldfe P1_2 = [table_ptr1], 16
+ tbit.z p11, p12 = N_fix_gr, 0
+}
+;;
+
+
+{ .mfi
+ ldfe P1_3 = [table_ptr1], 96
+ nop.f 999
+ nop.i 999
+}
+;;
+
+{ .mfi
+(p11) ldfe P1_9 = [table_ptr1], -16
+(p12) fmerge.ns S_hi = S_hi, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fmpy.s1 r_to_the_8 = rsq, rsq
+ nop.i 999
+}
+;;
+
+//
+// N even: Poly2 = P1_7 + Poly2 * rsq
+// N odd: poly2 = Q1_5 + poly2 * rsq
+//
+{ .mfi
+(p11) ldfe P1_8 = [table_ptr1], -16
+(p11) fadd.s1 CORR = rsq, f1
+ nop.i 999
+}
+;;
+
+//
+// N even: Poly1 = P1_2 + P1_3 * rsq
+// N odd: poly1 = 1.0 + S_hi * r
+// 16 bits partial account for necessary (-1)
+//
+{ .mmi
+(p11) ldfe P1_7 = [table_ptr1], -16
+;;
+(p11) ldfe P1_6 = [table_ptr1], -16
+ nop.i 999
+}
+;;
+
+//
+// N even: Poly1 = P1_1 + Poly1 * rsq
+// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary
+//
+//
+// N even: Poly2 = P1_5 + Poly2 * rsq
+// N odd: poly2 = Q1_3 + poly2 * rsq
+//
+{ .mfi
+(p11) ldfe P1_5 = [table_ptr1], -16
+(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999
+}
+;;
+
+//
+// N even: Poly1 = Poly1 * rsq
+// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
+//
+
+//
+// N even: CORR = CORR * c
+// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
+//
+
+//
+// N even: Poly2 = P1_6 + Poly2 * rsq
+// N odd: poly2 = Q1_4 + poly2 * rsq
+//
+
+{ .mmf
+(p11) ldfe P1_4 = [table_ptr1], -16
+ nop.m 999
+(p11) fmpy.s1 CORR = CORR, c
+}
+;;
+
+{ .mfi
+ nop.m 999
+(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
+ nop.i 999 ;;
+}
+{ .mfi
+(p12) ldfe Q1_7 = [table_ptr2], -16
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
+}
+{ .mfi
+(p12) ldfe Q1_6 = [table_ptr2], -16
+(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
+ nop.i 999 ;;
+}
+{ .mmi
+(p12) ldfe Q1_5 = [table_ptr2], -16 ;;
+(p12) ldfe Q1_4 = [table_ptr2], -16
+ nop.i 999 ;;
+}
+{ .mfi
+(p12) ldfe Q1_3 = [table_ptr2], -16
+//
+// N even: Poly2 = P1_8 + P1_9 * rsq
+// N odd: poly2 = Q1_6 + Q1_7 * rsq
+//
+(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
+ nop.i 999 ;;
+}
+{ .mfi
+(p12) ldfe Q1_2 = [table_ptr2], -16
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
+{ .mfi
+(p12) ldfe Q1_1 = [table_ptr2], -16
+(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: CORR = rsq + 1
+// N even: r_to_the_8 = rsq * rsq
+//
+(p11) fmpy.s1 Poly1 = Poly1, rsq
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly2 = poly2, rsq, Q1_5
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p11) fma.s1 Poly2= Poly2, rsq, P1_5
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly2 = poly2, rsq, Q1_4
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: r_to_the_8 = r_to_the_8 * r_to_the_8
+// N odd: poly1 = S_hi * r + 1.0 64 bits partial
+//
+(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Poly = CORR + Poly * r
+// N odd: P = Q1_1 + poly2 * rsq
+//
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly2 = poly2, rsq, Q1_3
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Poly2 = P1_4 + Poly2 * rsq
+// N odd: poly2 = Q1_2 + poly2 * rsq
+//
+(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, c, poly1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 poly2 = poly2, rsq, Q1_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// N even: Poly = Poly1 + Poly2 * r_to_the_8
+// N odd: S_hi = S_hi * poly1 + S_hi 64 bits
+//
+(p11) fma.s1 Poly = Poly, r, CORR
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Result = r + Poly (User supplied rounding mode)
+// N odd: poly1 = S_hi * c + poly1
+//
+(p12) fmpy.s1 S_lo = S_hi, poly1
+(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+}
+{ .mfi
+ nop.m 999
+(p12) fma.s1 P = poly2, rsq, Q1_1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: poly1 = S_hi * r + 1.0
+//
+//
+// N odd: S_lo = S_hi * poly1
+//
+(p14) fadd.s0 Result = Poly, r // for tanl
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p15) fms.s0 Result = Poly, mOne, r // for cotl
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// N odd: S_lo = Q1_1 * c + S_lo
+//
+(p12) fma.s1 S_lo = Q1_1, c, S_lo
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: Result = S_lo + r * P
+//
+(p12) fma.s1 Result = P, r, S_lo
+(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
+}
+
+//
+// N odd: Result = Result + S_hi (user supplied rounding mode)
+//
+{ .mfi
+ nop.m 999
+(p14) fadd.s0 Result = Result, S_hi // for tanl
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p15) fms.s0 Result = Result, mOne, S_hi // for cotl
+ br.ret.sptk b0 ;; // Exit |r| < 1/4 path
+}
+
+
+TANL_NORMAL_R:
+// Here if 1/4 <= |x| < pi/4 or if |x| >= 2^63 and |r| >= 1/4
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+//
+// r and c have been computed.
+//
+{ .mfi
+ nop.m 999
+ fand B = B_mask1, r
+ nop.i 999
+}
+;;
+
+TANL_NORMAL_R_A:
+// Enter here if pi/4 <= |x| < 2^63 and |r| >= 1/4
+// Get the 5 bits or r for the lookup. 1.xxxxx ....
+{ .mmi
+ add table_ptr1 = 416, table_base // Point to tanl_table_p2
+ mov GR_exp_2tom65 = 0xffff - 65 // Scaling constant for B
+ extr.u lookup = sig_r, 58, 5
+}
+;;
+
+{ .mmi
+ ldfe P2_1 = [table_ptr1], 16
+ setf.exp TWO_TO_NEG65 = GR_exp_2tom65 // 2^-65 for scaling B if exp_r=-2
+ add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+}
+;;
+
+.pred.rel "mutex",p11,p12
+// B = 2^63 * 1.xxxxx 100...0
+{ .mfi
+ ldfe P2_2 = [table_ptr1], 16
+ for B = B_mask2, B
+ mov table_offset = 512 // Assume table offset is 512
+}
+;;
+
+{ .mfi
+ ldfe P2_3 = [table_ptr1], 16
+ fmerge.s Pos_r = f1, r
+ tbit.nz p8,p9 = exp_r, 0
+}
+;;
+
+// Is B = 2** -2 or B= 2** -1? If 2**-1, then
+// we want an offset of 512 for table addressing.
+{ .mii
+ add table_ptr2 = 1296, table_base // Point to tanl_table_cm2
+(p9) shladd table_offset = lookup, 4, table_offset
+(p8) shladd table_offset = lookup, 4, r0
+}
+;;
+
+{ .mmi
+ add table_ptr1 = table_ptr1, table_offset // Point to T_hi
+ add table_ptr2 = table_ptr2, table_offset // Point to C_hi
+ add table_ptr3 = 2128, table_base // Point to tanl_table_scim2
+}
+;;
+
+{ .mmi
+ ldfd T_hi = [table_ptr1], 8 // Load T_hi
+;;
+ ldfd C_hi = [table_ptr2], 8 // Load C_hi
+ add table_ptr3 = table_ptr3, table_offset // Point to SC_inv
+}
+;;
+
+//
+// x = |r| - B
+//
+// Convert B so it has the same exponent as Pos_r before subtracting
+{ .mfi
+ ldfs T_lo = [table_ptr1] // Load T_lo
+(p9) fnma.s1 x = B, FR_2tom64, Pos_r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p8) fnma.s1 x = B, TWO_TO_NEG65, Pos_r
+ nop.i 999
+}
+;;
+
+{ .mfi
+ ldfs C_lo = [table_ptr2] // Load C_lo
+ nop.f 999
+ nop.i 999
+}
+;;
+
+{ .mfi
+ ldfe SC_inv = [table_ptr3] // Load SC_inv
+ fmerge.s sgn_r = r, f1
+ tbit.z p11, p12 = N_fix_gr, 0 // p11 if N even, p12 if odd
+
+}
+;;
+
+//
+// xsq = x * x
+// N even: Tx = T_hi * x
+//
+// N even: Tx1 = Tx + 1
+// N odd: Cx1 = 1 - Cx
+//
+
+{ .mfi
+ nop.m 999
+ fmpy.s1 xsq = x, x
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fmpy.s1 Tx = T_hi, x
+ nop.i 999
+}
+;;
+
+//
+// N odd: Cx = C_hi * x
+//
+{ .mfi
+ nop.m 999
+(p12) fmpy.s1 Cx = C_hi, x
+ nop.i 999
+}
+;;
+//
+// N even and odd: P = P2_3 + P2_2 * xsq
+//
+{ .mfi
+ nop.m 999
+ fma.s1 P = P2_3, xsq, P2_2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fadd.s1 Tx1 = Tx, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: D = C_hi - tanx
+// N odd: D = T_hi + tanx
+//
+(p11) fmpy.s1 CORR = SC_inv, T_hi
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 Sx = SC_inv, x
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fmpy.s1 CORR = SC_inv, C_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fsub.s1 V_hi = f1, Cx
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+ fma.s1 P = P, xsq, P2_1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: P = P2_1 + P * xsq
+//
+(p11) fma.s1 V_hi = Tx, Tx1, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1)
+// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1)
+//
+ fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 CORR = CORR, c
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fnma.s1 V_hi = Cx,V_hi,f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: V_hi = Tx * Tx1 + 1
+// N odd: Cx1 = 1 - Cx * Cx1
+//
+ fmpy.s1 P = P, xsq
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: P = P * xsq
+//
+(p11) fmpy.s1 V_hi = V_hi, T_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: tail = P * tail + V_lo
+//
+(p11) fmpy.s1 T_hi = sgn_r, T_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+ fmpy.s1 CORR = CORR, sgn_r
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p12) fmpy.s1 V_hi = V_hi,C_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: V_hi = T_hi * V_hi
+// N odd: V_hi = C_hi * V_hi
+//
+ fma.s1 tanx = P, x, x
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fnmpy.s1 C_hi = sgn_r, C_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: V_lo = 1 - V_hi + C_hi
+// N odd: V_lo = 1 - V_hi + T_hi
+//
+(p11) fadd.s1 CORR = CORR, T_lo
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fsub.s1 CORR = CORR, C_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: tanx = x + x * P
+// N even and odd: Sx = SC_inv * x
+//
+(p11) fsub.s1 D = C_hi, tanx
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fadd.s1 D = T_hi, tanx
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N odd: CORR = SC_inv * C_hi
+// N even: CORR = SC_inv * T_hi
+//
+ fnma.s1 D = V_hi, D, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: D = 1 - V_hi * D
+// N even and odd: CORR = CORR * c
+//
+ fma.s1 V_hi = V_hi, D, V_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: V_hi = V_hi + V_hi * D
+// N even and odd: CORR = sgn_r * CORR
+//
+(p11) fnma.s1 V_lo = V_hi, C_hi, f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fnma.s1 V_lo = V_hi, T_hi, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: CORR = COOR + T_lo
+// N odd: CORR = CORR - C_lo
+//
+(p11) fma.s1 V_lo = tanx, V_hi, V_lo
+ tbit.nz p15, p0 = cot_flag, 0 // p15=1 if we compute cotl
+}
+{ .mfi
+ nop.m 999
+(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p15) fms.s1 T_hi = f0, f0, T_hi // to correct result's sign for cotl
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p15) fms.s1 C_hi = f0, f0, C_hi // to correct result's sign for cotl
+ nop.i 999
+};;
+
+{ .mfi
+ nop.m 999
+(p15) fms.s1 sgn_r = f0, f0, sgn_r // to correct result's sign for cotl
+ nop.i 999
+};;
+
+{ .mfi
+ nop.m 999
+//
+// N even: V_lo = V_lo + V_hi * tanx
+// N odd: V_lo = V_lo - V_hi * tanx
+//
+(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: V_lo = V_lo - V_hi * C_lo
+// N odd: V_lo = V_lo - V_hi * T_lo
+//
+ fmpy.s1 V_lo = V_hi, V_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: V_lo = V_lo * V_hi
+//
+ fadd.s1 tail = V_hi, V_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: tail = V_hi + V_lo
+//
+ fma.s1 tail = tail, P, V_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even: T_hi = sgn_r * T_hi
+// N odd : C_hi = -sgn_r * C_hi
+//
+ fma.s1 tail = tail, Sx, CORR
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even and odd: tail = Sx * tail + CORR
+//
+ fma.s1 tail = V_hi, Sx, tail
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// N even an odd: tail = Sx * V_hi + tail
+//
+(p11) fma.s0 Result = sgn_r, tail, T_hi
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p12) fma.s0 Result = sgn_r, tail, C_hi
+ br.ret.sptk b0 ;; // Exit for 1/4 <= |r| < pi/4
+}
+
+TANL_DENORMAL:
+// Here if x denormal
+{ .mfb
+ getf.exp GR_signexp_x = Norm_Arg // Get sign and exponent of x
+ nop.f 999
+ br.cond.sptk TANL_COMMON // Return to common code
+}
+;;
+
+
+TANL_SPECIAL:
+TANL_UNSUPPORTED:
+//
+// Code for NaNs, Unsupporteds, Infs, or +/- zero ?
+// Invalid raised for Infs and SNaNs.
+//
+
+{ .mfi
+ nop.m 999
+ fmerge.s f10 = f8, f8 // Save input for error call
+ tbit.nz p6, p7 = cot_flag, 0 // p6=1 if we compute cotl
+}
+;;
+
+{ .mfi
+ nop.m 999
+(p6) fclass.m p6, p7 = f8, 0x7 // Test for zero (cotl only)
+ nop.i 999
+}
+;;
+
+.pred.rel "mutex", p6, p7
+{ .mfi
+(p6) mov GR_Parameter_Tag = 225 // (cotl)
+(p6) frcpa.s0 f8, p0 = f1, f8 // cotl(+-0) = +-Inf
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p7) fmpy.s0 f8 = f8, f0
+(p7) br.ret.sptk b0
+}
+;;
+
+GLOBAL_IEEE754_END(tanl)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+
+// (1)
+{ .mfi
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+
+// (2)
+{ .mmi
+ stfe [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+
+.body
+// (3)
+{ .mib
+ stfe [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
+}
+{ .mib
+ stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+// (4)
+{ .mmi
+ ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+{ .mib
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
+
+
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+//
+// Special Code to handle very large argument case.
+// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
+// The interface is custom:
+// On input:
+// (Arg or x) is in f8
+// On output:
+// r is in f8
+// c is in f9
+// N is in r8
+// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
+// use this to eliminate save/restore of key fp registers in this calling
+// function.
+//
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+
+LOCAL_LIBM_ENTRY(__libm_callout)
+TANL_ARG_TOO_LARGE:
+.prologue
+{ .mfi
+ add table_ptr2 = 144, table_base // Point to 2^-2
+ nop.f 999
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+;;
+
+// Load 2^-2, -2^-2
+{ .mmi
+ ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
+ setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+
+.body
+//
+// Call argument reduction with x in f8
+// Returns with N in r8, r in f8, c in f9
+// Assumes f71-127 are preserved across the call
+//
+{ .mib
+ setf.sig B_mask2 = bmask2 // Form mask to form B from r
+ mov GR_SAVE_GP=gp // Save gp
+ br.call.sptk b0=__libm_pi_by_2_reduce#
+}
+;;
+
+//
+// Is |r| < 2**(-2)
+//
+{ .mfi
+ getf.sig sig_r = r // Extract significand of r
+ fcmp.lt.s1 p6, p0 = r, TWO_TO_NEG2
+ mov gp = GR_SAVE_GP // Restore gp
+}
+;;
+
+{ .mfi
+ getf.exp exp_r = r // Extract signexp of r
+ nop.f 999
+ mov b0 = GR_SAVE_B0 // Restore return address
+}
+;;
+
+//
+// Get N_fix_gr
+//
+{ .mfi
+ mov N_fix_gr = r8
+(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
+ mov ar.pfs = GR_SAVE_PFS // Restore pfs
+}
+;;
+
+{ .mbb
+ nop.m 999
+(p6) br.cond.spnt TANL_SMALL_R // Branch if |r| < 1/4
+ br.cond.sptk TANL_NORMAL_R // Branch if 1/4 <= |r| < pi/4
+}
+;;
+
+LOCAL_LIBM_END(__libm_callout)
+
+.type __libm_pi_by_2_reduce#,@function
+.global __libm_pi_by_2_reduce#