aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_acoshl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_acoshl.S')
-rw-r--r--sysdeps/ia64/fpu/e_acoshl.S1712
1 files changed, 1712 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_acoshl.S b/sysdeps/ia64/fpu/e_acoshl.S
new file mode 100644
index 0000000..9bd5563
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_acoshl.S
@@ -0,0 +1,1712 @@
+.file "acoshl.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+//*********************************************************************
+//
+// History:
+// 10/01/01 Initial version
+// 10/10/01 Performance inproved
+// 12/11/01 Changed huges_logp to not be global
+// 01/02/02 Corrected .restore syntax
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 08/14/02 Changed mli templates to mlx
+// 02/06/03 Reorganized data tables
+// 03/31/05 Reformatted delimiters between data tables
+//
+//*********************************************************************
+//
+// API
+//==============================================================
+// long double acoshl(long double);
+//
+// Overview of operation
+//==============================================================
+//
+// There are 6 paths:
+// 1. x = 1
+// Return acoshl(x) = 0;
+//
+// 2. x < 1
+// Return acoshl(x) = Nan (Domain error, error handler call with tag 135);
+//
+// 3. x = [S,Q]Nan or +INF
+// Return acoshl(x) = x + x;
+//
+// 4. 'Near 1': 1 < x < 1+1/8
+// Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
+// where y = 1, P(y)/Q(y) - rational approximation
+//
+// 5. 'Huges': x > 0.5*2^64
+// Return acoshl(x) = (logl(2*x-1));
+//
+// 6. 'Main path': 1+1/8 < x < 0.5*2^64
+// b_hi + b_lo = x + sqrt(x^2 - 1);
+// acoshl(x) = logl_special(b_hi, b_lo);
+//
+// Algorithm description
+//==============================================================
+//
+// I. Near 1 path algorithm
+// **************************************************************
+// The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
+// where y = 1, P(y)/Q(y) - rational approximation
+//
+// 1) y = x - 1, y2 = 2 * y
+//
+// 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y)
+// a) sqrtl computation method described below (main path algorithm, item 2))
+// As result we obtain (gg+gl) - multiprecision result
+// as pair of double extended values
+// b) P(y) and Q(y) calculated without any extra precision manipulations
+// c) P/Q division:
+// y = frcpa(Q) initial approximation of 1/Q
+// z = P*y initial approximation of P/Q
+//
+// e = 1 - b*y
+// e2 = e + e^2
+// e1 = e^2
+// y1 = y + y*e2 = y + y*(e+e^2)
+//
+// e3 = e + e1^2
+// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
+//
+// r = P - Q*z
+// e = 1 - Q*y2
+// xx = z + r*y2 high part of a/b
+//
+// y3 = y2 + y2*e4
+// r1 = P - Q*xx
+// xl = r1*y3 low part of a/b
+//
+// 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) =
+// = (gg+gl) - (gg + gl)*(xx+xl);
+//
+// a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl;
+// b) res = ((((gl + ll) + lh) + hl) + hh) + gg;
+// (exactly in this order)
+//
+// II. Main path algorithm
+// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
+// **********************************************************************
+//
+// There are 3 parts of x+sqrt(x^2-1) computation:
+//
+// 1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining
+// ------------------------------------
+// m2_hi = x2_hi - 1, where x2_hi = x * x;
+// m2_lo = x2_lo + p1_lo, where
+// x2_lo = FMS(x*x-x2_hi),
+// p1_lo = (1 + m2_hi) - x2_hi;
+//
+// 2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo)
+// ----------------------------------------------
+// r = invsqrt(m2_hi) (8-bit reciprocal square root approximation);
+// g = m2_hi * r (first 8 bit-approximation of sqrt);
+//
+// h = 0.5 * r;
+// e = 0.5 - g * h;
+// g = g * e + g (second 16 bit-approximation of sqrt);
+//
+// h = h * e + h;
+// e = 0.5 - g * h;
+// g = g * e + g (third 32 bit-approximation of sqrt);
+//
+// h = h * e + h;
+// e = 0.5 - g * h;
+// g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
+//
+// Remainder computation:
+// h = h * e + h;
+// d = (m2_hi - g_hi * g_hi) + m2_lo;
+// g_lo = d * h;
+//
+// 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1)
+// -------------------------------------------------------------------
+// b_hi = (g_hi + x) + gl;
+// b_lo = (x - b_hi) + g_hi + gl;
+//
+// Now we pass b presented as sum b_hi + b_lo to special version
+// of logl function which accept a pair of arguments as
+// mutiprecision value.
+//
+// Special log algorithm overview
+// ================================
+// Here we use a table lookup method. The basic idea is that in
+// order to compute logl(Arg) for an argument Arg in [1,2),
+// we construct a value G such that G*Arg is close to 1 and that
+// logl(1/G) is obtainable easily from a table of values calculated
+// beforehand. Thus
+//
+// logl(Arg) = logl(1/G) + logl((G*Arg - 1))
+//
+// Because |G*Arg - 1| is small, the second term on the right hand
+// side can be approximated by a short polynomial. We elaborate
+// this method in four steps.
+//
+// Step 0: Initialization
+//
+// We need to calculate logl( X+1 ). Obtain N, S_hi such that
+//
+// X = 2^N * ( S_hi + S_lo ) exactly
+//
+// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
+// that |S_lo| <= ulp(S_hi).
+//
+// For the special version of logl: S_lo = b_lo
+// !-----------------------------------------------!
+//
+// Step 1: Argument Reduction
+//
+// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
+//
+// G := G_1 * G_2 * G_3
+// r := (G * S_hi - 1) + G * S_lo
+//
+// These G_j's have the property that the product is exactly
+// representable and that |r| < 2^(-12) as a result.
+//
+// Step 2: Approximation
+//
+// logl(1 + r) is approximated by a short polynomial poly(r).
+//
+// Step 3: Reconstruction
+//
+// Finally, logl( X ) = logl( X+1 ) is given by
+//
+// logl( X ) = logl( 2^N * (S_hi + S_lo) )
+// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
+// ~=~ N*logl(2) + logl(1/G) + poly(r).
+//
+// For detailed description see logl or log1pl function, regular path.
+//
+// Registers used
+//==============================================================
+// Floating Point registers used:
+// f8, input
+// f32 -> f95 (64 registers)
+
+// General registers used:
+// r32 -> r67 (36 registers)
+
+// Predicate registers used:
+// p7 -> p11
+// p7 for 'NaNs, Inf' path
+// p8 for 'near 1' path
+// p9 for 'huges' path
+// p10 for x = 1
+// p11 for x < 1
+//
+//*********************************************************************
+// IEEE Special Conditions:
+//
+// acoshl(+inf) = +inf
+// acoshl(-inf) = QNaN
+// acoshl(1) = 0
+// acoshl(x<1) = QNaN
+// acoshl(SNaN) = QNaN
+// acoshl(QNaN) = QNaN
+//
+
+// Data tables
+//==============================================================
+
+RODATA
+.align 64
+
+// Near 1 path rational approximation coefficients
+LOCAL_OBJECT_START(Poly_P)
+data8 0xB0978143F695D40F, 0x3FF1 // .84205539791447100108478906277453574946e-4
+data8 0xB9800D841A8CAD29, 0x3FF6 // .28305085180397409672905983082168721069e-2
+data8 0xC889F455758C1725, 0x3FF9 // .24479844297887530847660233111267222945e-1
+data8 0x9BE1DFF006F45F12, 0x3FFB // .76114415657565879842941751209926938306e-1
+data8 0x9E34AF4D372861E0, 0x3FFB // .77248925727776366270605984806795850504e-1
+data8 0xF3DC502AEE14C4AE, 0x3FA6 // .3077953476682583606615438814166025592e-26
+LOCAL_OBJECT_END(Poly_P)
+
+//
+LOCAL_OBJECT_START(Poly_Q)
+data8 0xF76E3FD3C7680357, 0x3FF1 // .11798413344703621030038719253730708525e-3
+data8 0xD107D2E7273263AE, 0x3FF7 // .63791065024872525660782716786703188820e-2
+data8 0xB609BE5CDE206AEF, 0x3FFB // .88885771950814004376363335821980079985e-1
+data8 0xF7DEACAC28067C8A, 0x3FFD // .48412074662702495416825113623936037072302
+data8 0x8F9BE5890CEC7E38, 0x3FFF // 1.1219450873557867470217771071068369729526
+data8 0xED4F06F3D2BC92D1, 0x3FFE // .92698710873331639524734537734804056798748
+LOCAL_OBJECT_END(Poly_Q)
+
+// Q coeffs
+LOCAL_OBJECT_START(Constants_Q)
+data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
+data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+LOCAL_OBJECT_END(Constants_Q)
+
+// Z1 - 16 bit fixed
+LOCAL_OBJECT_START(Constants_Z_1)
+data4 0x00008000
+data4 0x00007879
+data4 0x000071C8
+data4 0x00006BCB
+data4 0x00006667
+data4 0x00006187
+data4 0x00005D18
+data4 0x0000590C
+data4 0x00005556
+data4 0x000051EC
+data4 0x00004EC5
+data4 0x00004BDB
+data4 0x00004925
+data4 0x0000469F
+data4 0x00004445
+data4 0x00004211
+LOCAL_OBJECT_END(Constants_Z_1)
+
+// G1 and H1 - IEEE single and h1 - IEEE double
+LOCAL_OBJECT_START(Constants_G_H_h1)
+data4 0x3F800000,0x00000000
+data8 0x0000000000000000
+data4 0x3F70F0F0,0x3D785196
+data8 0x3DA163A6617D741C
+data4 0x3F638E38,0x3DF13843
+data8 0x3E2C55E6CBD3D5BB
+data4 0x3F579430,0x3E2FF9A0
+data8 0xBE3EB0BFD86EA5E7
+data4 0x3F4CCCC8,0x3E647FD6
+data8 0x3E2E6A8C86B12760
+data4 0x3F430C30,0x3E8B3AE7
+data8 0x3E47574C5C0739BA
+data4 0x3F3A2E88,0x3EA30C68
+data8 0x3E20E30F13E8AF2F
+data4 0x3F321640,0x3EB9CEC8
+data8 0xBE42885BF2C630BD
+data4 0x3F2AAAA8,0x3ECF9927
+data8 0x3E497F3497E577C6
+data4 0x3F23D708,0x3EE47FC5
+data8 0x3E3E6A6EA6B0A5AB
+data4 0x3F1D89D8,0x3EF8947D
+data8 0xBDF43E3CD328D9BE
+data4 0x3F17B420,0x3F05F3A1
+data8 0x3E4094C30ADB090A
+data4 0x3F124920,0x3F0F4303
+data8 0xBE28FBB2FC1FE510
+data4 0x3F0D3DC8,0x3F183EBF
+data8 0x3E3A789510FDE3FA
+data4 0x3F088888,0x3F20EC80
+data8 0x3E508CE57CC8C98F
+data4 0x3F042108,0x3F29516A
+data8 0xBE534874A223106C
+LOCAL_OBJECT_END(Constants_G_H_h1)
+
+// Z2 - 16 bit fixed
+LOCAL_OBJECT_START(Constants_Z_2)
+data4 0x00008000
+data4 0x00007F81
+data4 0x00007F02
+data4 0x00007E85
+data4 0x00007E08
+data4 0x00007D8D
+data4 0x00007D12
+data4 0x00007C98
+data4 0x00007C20
+data4 0x00007BA8
+data4 0x00007B31
+data4 0x00007ABB
+data4 0x00007A45
+data4 0x000079D1
+data4 0x0000795D
+data4 0x000078EB
+LOCAL_OBJECT_END(Constants_Z_2)
+
+// G2 and H2 - IEEE single and h2 - IEEE double
+LOCAL_OBJECT_START(Constants_G_H_h2)
+data4 0x3F800000,0x00000000
+data8 0x0000000000000000
+data4 0x3F7F00F8,0x3B7F875D
+data8 0x3DB5A11622C42273
+data4 0x3F7E03F8,0x3BFF015B
+data8 0x3DE620CF21F86ED3
+data4 0x3F7D08E0,0x3C3EE393
+data8 0xBDAFA07E484F34ED
+data4 0x3F7C0FC0,0x3C7E0586
+data8 0xBDFE07F03860BCF6
+data4 0x3F7B1880,0x3C9E75D2
+data8 0x3DEA370FA78093D6
+data4 0x3F7A2328,0x3CBDC97A
+data8 0x3DFF579172A753D0
+data4 0x3F792FB0,0x3CDCFE47
+data8 0x3DFEBE6CA7EF896B
+data4 0x3F783E08,0x3CFC15D0
+data8 0x3E0CF156409ECB43
+data4 0x3F774E38,0x3D0D874D
+data8 0xBE0B6F97FFEF71DF
+data4 0x3F766038,0x3D1CF49B
+data8 0xBE0804835D59EEE8
+data4 0x3F757400,0x3D2C531D
+data8 0x3E1F91E9A9192A74
+data4 0x3F748988,0x3D3BA322
+data8 0xBE139A06BF72A8CD
+data4 0x3F73A0D0,0x3D4AE46F
+data8 0x3E1D9202F8FBA6CF
+data4 0x3F72B9D0,0x3D5A1756
+data8 0xBE1DCCC4BA796223
+data4 0x3F71D488,0x3D693B9D
+data8 0xBE049391B6B7C239
+LOCAL_OBJECT_END(Constants_G_H_h2)
+
+// G3 and H3 - IEEE single and h3 - IEEE double
+LOCAL_OBJECT_START(Constants_G_H_h3)
+data4 0x3F7FFC00,0x38800100
+data8 0x3D355595562224CD
+data4 0x3F7FF400,0x39400480
+data8 0x3D8200A206136FF6
+data4 0x3F7FEC00,0x39A00640
+data8 0x3DA4D68DE8DE9AF0
+data4 0x3F7FE400,0x39E00C41
+data8 0xBD8B4291B10238DC
+data4 0x3F7FDC00,0x3A100A21
+data8 0xBD89CCB83B1952CA
+data4 0x3F7FD400,0x3A300F22
+data8 0xBDB107071DC46826
+data4 0x3F7FCC08,0x3A4FF51C
+data8 0x3DB6FCB9F43307DB
+data4 0x3F7FC408,0x3A6FFC1D
+data8 0xBD9B7C4762DC7872
+data4 0x3F7FBC10,0x3A87F20B
+data8 0xBDC3725E3F89154A
+data4 0x3F7FB410,0x3A97F68B
+data8 0xBD93519D62B9D392
+data4 0x3F7FAC18,0x3AA7EB86
+data8 0x3DC184410F21BD9D
+data4 0x3F7FA420,0x3AB7E101
+data8 0xBDA64B952245E0A6
+data4 0x3F7F9C20,0x3AC7E701
+data8 0x3DB4B0ECAABB34B8
+data4 0x3F7F9428,0x3AD7DD7B
+data8 0x3D9923376DC40A7E
+data4 0x3F7F8C30,0x3AE7D474
+data8 0x3DC6E17B4F2083D3
+data4 0x3F7F8438,0x3AF7CBED
+data8 0x3DAE314B811D4394
+data4 0x3F7F7C40,0x3B03E1F3
+data8 0xBDD46F21B08F2DB1
+data4 0x3F7F7448,0x3B0BDE2F
+data8 0xBDDC30A46D34522B
+data4 0x3F7F6C50,0x3B13DAAA
+data8 0x3DCB0070B1F473DB
+data4 0x3F7F6458,0x3B1BD766
+data8 0xBDD65DDC6AD282FD
+data4 0x3F7F5C68,0x3B23CC5C
+data8 0xBDCDAB83F153761A
+data4 0x3F7F5470,0x3B2BC997
+data8 0xBDDADA40341D0F8F
+data4 0x3F7F4C78,0x3B33C711
+data8 0x3DCD1BD7EBC394E8
+data4 0x3F7F4488,0x3B3BBCC6
+data8 0xBDC3532B52E3E695
+data4 0x3F7F3C90,0x3B43BAC0
+data8 0xBDA3961EE846B3DE
+data4 0x3F7F34A0,0x3B4BB0F4
+data8 0xBDDADF06785778D4
+data4 0x3F7F2CA8,0x3B53AF6D
+data8 0x3DCC3ED1E55CE212
+data4 0x3F7F24B8,0x3B5BA620
+data8 0xBDBA31039E382C15
+data4 0x3F7F1CC8,0x3B639D12
+data8 0x3D635A0B5C5AF197
+data4 0x3F7F14D8,0x3B6B9444
+data8 0xBDDCCB1971D34EFC
+data4 0x3F7F0CE0,0x3B7393BC
+data8 0x3DC7450252CD7ADA
+data4 0x3F7F04F0,0x3B7B8B6D
+data8 0xBDB68F177D7F2A42
+LOCAL_OBJECT_END(Constants_G_H_h3)
+
+// Assembly macros
+//==============================================================
+
+// Floating Point Registers
+
+FR_Arg = f8
+FR_Res = f8
+
+
+FR_PP0 = f32
+FR_PP1 = f33
+FR_PP2 = f34
+FR_PP3 = f35
+FR_PP4 = f36
+FR_PP5 = f37
+FR_QQ0 = f38
+FR_QQ1 = f39
+FR_QQ2 = f40
+FR_QQ3 = f41
+FR_QQ4 = f42
+FR_QQ5 = f43
+
+FR_Q1 = f44
+FR_Q2 = f45
+FR_Q3 = f46
+FR_Q4 = f47
+
+FR_Half = f48
+FR_Two = f49
+
+FR_log2_hi = f50
+FR_log2_lo = f51
+
+
+FR_X2 = f52
+FR_M2 = f53
+FR_M2L = f54
+FR_Rcp = f55
+FR_GG = f56
+FR_HH = f57
+FR_EE = f58
+FR_DD = f59
+FR_GL = f60
+FR_Tmp = f61
+
+
+FR_XM1 = f62
+FR_2XM1 = f63
+FR_XM12 = f64
+
+
+
+ // Special logl registers
+FR_XLog_Hi = f65
+FR_XLog_Lo = f66
+
+FR_Y_hi = f67
+FR_Y_lo = f68
+
+FR_S_hi = f69
+FR_S_lo = f70
+
+FR_poly_lo = f71
+FR_poly_hi = f72
+
+FR_G = f73
+FR_H = f74
+FR_h = f75
+
+FR_G2 = f76
+FR_H2 = f77
+FR_h2 = f78
+
+FR_r = f79
+FR_rsq = f80
+FR_rcub = f81
+
+FR_float_N = f82
+
+FR_G3 = f83
+FR_H3 = f84
+FR_h3 = f85
+
+FR_2_to_minus_N = f86
+
+
+ // Near 1 registers
+FR_PP = f65
+FR_QQ = f66
+
+
+FR_PV6 = f69
+FR_PV4 = f70
+FR_PV3 = f71
+FR_PV2 = f72
+
+FR_QV6 = f73
+FR_QV4 = f74
+FR_QV3 = f75
+FR_QV2 = f76
+
+FR_Y0 = f77
+FR_Q0 = f78
+FR_E0 = f79
+FR_E2 = f80
+FR_E1 = f81
+FR_Y1 = f82
+FR_E3 = f83
+FR_Y2 = f84
+FR_R0 = f85
+FR_E4 = f86
+FR_Y3 = f87
+FR_R1 = f88
+FR_X_Hi = f89
+FR_X_lo = f90
+
+FR_HH = f91
+FR_LL = f92
+FR_HL = f93
+FR_LH = f94
+
+
+
+ // Error handler registers
+FR_Arg_X = f95
+FR_Arg_Y = f0
+
+
+// General Purpose Registers
+
+ // General prolog registers
+GR_PFS = r32
+GR_OneP125 = r33
+GR_TwoP63 = r34
+GR_Arg = r35
+GR_Half = r36
+
+ // Near 1 path registers
+GR_Poly_P = r37
+GR_Poly_Q = r38
+
+ // Special logl registers
+GR_Index1 = r39
+GR_Index2 = r40
+GR_signif = r41
+GR_X_0 = r42
+GR_X_1 = r43
+GR_X_2 = r44
+GR_minus_N = r45
+GR_Z_1 = r46
+GR_Z_2 = r47
+GR_N = r48
+GR_Bias = r49
+GR_M = r50
+GR_Index3 = r51
+GR_exp_2tom80 = r52
+GR_exp_mask = r53
+GR_exp_2tom7 = r54
+GR_ad_ln10 = r55
+GR_ad_tbl_1 = r56
+GR_ad_tbl_2 = r57
+GR_ad_tbl_3 = r58
+GR_ad_q = r59
+GR_ad_z_1 = r60
+GR_ad_z_2 = r61
+GR_ad_z_3 = r62
+
+//
+// Added for unwind support
+//
+GR_SAVE_PFS = r32
+GR_SAVE_B0 = r33
+GR_SAVE_GP = r34
+
+GR_Parameter_X = r64
+GR_Parameter_Y = r65
+GR_Parameter_RESULT = r66
+GR_Parameter_TAG = r67
+
+
+
+.section .text
+GLOBAL_LIBM_ENTRY(acoshl)
+
+{ .mfi
+ alloc GR_PFS = ar.pfs,0,32,4,0 // Local frame allocation
+ fcmp.lt.s1 p11, p0 = FR_Arg, f1 // if arg is less than 1
+ mov GR_Half = 0xfffe // 0.5's exp
+}
+{ .mfi
+ addl GR_Poly_Q = @ltoff(Poly_Q), gp // Address of Q-coeff table
+ fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2
+ addl GR_Poly_P = @ltoff(Poly_P), gp // Address of P-coeff table
+};;
+
+{ .mfi
+ getf.d GR_Arg = FR_Arg // get argument as double (int64)
+ fma.s0 FR_Two = f1, f1, f1 // construct 2.0
+ addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp // logl tables
+}
+{ .mlx
+ nop.m 0
+ movl GR_TwoP63 = 0x43E8000000000000 // 0.5*2^63 (huge arguments)
+};;
+
+{ .mfi
+ ld8 GR_Poly_P = [GR_Poly_P] // get actual P-coeff table address
+ fcmp.eq.s1 p10, p0 = FR_Arg, f1 // if arg == 1 (return 0)
+ nop.i 0
+}
+{ .mlx
+ ld8 GR_Poly_Q = [GR_Poly_Q] // get actual Q-coeff table address
+ movl GR_OneP125 = 0x3FF2000000000000 // 1.125 (near 1 path bound)
+};;
+
+{ .mfi
+ ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
+ fclass.m p7,p0 = FR_Arg, 0xe3 // if arg NaN inf
+ cmp.le p9, p0 = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges')
+}
+{ .mfb
+ cmp.ge p8, p0 = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path
+ fms.s1 FR_XM1 = FR_Arg, f1, f1 // X0 = X-1 (for near 1 path)
+(p11) br.cond.spnt acoshl_lt_pone // error branch (less than 1)
+};;
+
+{ .mmi
+ setf.exp FR_Half = GR_Half // construct 0.5
+(p9) setf.s FR_XLog_Lo = r0 // Low of logl arg=0 (Huges path)
+ mov GR_exp_mask = 0x1FFFF // Create exponent mask
+};;
+
+{ .mmf
+(p8) ldfe FR_PP5 = [GR_Poly_P],16 // Load P5
+(p8) ldfe FR_QQ5 = [GR_Poly_Q],16 // Load Q5
+ fms.s1 FR_M2 = FR_X2, f1, f1 // m2 = x^2 - 1
+};;
+
+{ .mfi
+(p8) ldfe FR_QQ4 = [GR_Poly_Q],16 // Load Q4
+ fms.s1 FR_M2L = FR_Arg, FR_Arg, FR_X2 // low part of
+ // m2 = fma(X*X - m2)
+ add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
+}
+{ .mfb
+(p8) ldfe FR_PP4 = [GR_Poly_P],16 // Load P4
+(p7) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a (Nan, Inf)
+(p7) br.ret.spnt b0 // return (Nan, Inf)
+};;
+
+{ .mfi
+(p8) ldfe FR_PP3 = [GR_Poly_P],16 // Load P3
+ nop.f 0
+ add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
+}
+{ .mfb
+(p8) ldfe FR_QQ3 = [GR_Poly_Q],16 // Load Q3
+(p9) fms.s1 FR_XLog_Hi = FR_Two, FR_Arg, f1 // Hi of log arg = 2*X-1
+(p9) br.cond.spnt huges_logl // special version of log
+}
+;;
+
+{ .mfi
+(p8) ldfe FR_PP2 = [GR_Poly_P],16 // Load P2
+(p8) fma.s1 FR_2XM1 = FR_Two, FR_XM1, f0 // 2X0 = 2 * X0
+ add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
+}
+{ .mfb
+(p8) ldfe FR_QQ2 = [GR_Poly_Q],16 // Load Q2
+(p10) fma.s0 FR_Res = f0,f1,f0 // r = 0 (arg = 1)
+(p10) br.ret.spnt b0 // return (arg = 1)
+};;
+
+{ .mmi
+(p8) ldfe FR_PP1 = [GR_Poly_P],16 // Load P1
+(p8) ldfe FR_QQ1 = [GR_Poly_Q],16 // Load Q1
+ add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
+}
+;;
+
+{ .mfi
+(p8) ldfe FR_PP0 = [GR_Poly_P] // Load P0
+ fma.s1 FR_Tmp = f1, f1, FR_M2 // Tmp = 1 + m2
+ add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
+}
+{ .mfb
+(p8) ldfe FR_QQ0 = [GR_Poly_Q]
+ nop.f 0
+(p8) br.cond.spnt near_1 // near 1 path
+};;
+{ .mfi
+ ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
+ nop.f 0
+ mov GR_Bias = 0x0FFFF // Create exponent bias
+};;
+{ .mfi
+ nop.m 0
+ frsqrta.s1 FR_Rcp, p0 = FR_M2 // Rcp = 1/m2 reciprocal appr.
+ nop.i 0
+};;
+
+{ .mfi
+ ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
+ fms.s1 FR_Tmp = FR_X2, f1, FR_Tmp // Tmp = x^2 - Tmp
+ nop.i 0
+};;
+
+{ .mfi
+ ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
+ fma.s1 FR_GG = FR_Rcp, FR_M2, f0 // g = Rcp * m2
+ // 8 bit Newton Raphson iteration
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp
+ nop.i 0
+};;
+{ .mfi
+ ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_M2L = FR_Tmp, f1, FR_M2L // low part of m2 = Tmp+m2l
+ nop.i 0
+};;
+
+{ .mfi
+ ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
+ fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
+ // 16 bit Newton Raphson iteration
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
+ nop.i 0
+};;
+
+{ .mfi
+ ldfe FR_Q1 = [GR_ad_q] // Load Q1
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
+ nop.i 0
+};;
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
+ // 32 bit Newton Raphson iteration
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
+ // 64 bit Newton Raphson iteration
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_DD = FR_GG, FR_GG, FR_M2 // Remainder d = g * g - p2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_XLog_Hi = FR_Arg, f1, FR_GG // bh = z + gh
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_DD = FR_DD, f1, FR_M2L // add p2l: d = d + p2l
+ nop.i 0
+};;
+
+{ .mfi
+ getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
+ nop.f 0
+ mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h
+ extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl
+ nop.i 0
+};;
+
+
+
+{ .mmi
+ shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
+ shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
+ extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
+};;
+
+{ .mmi
+ ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
+ nop.m 0
+ nop.i 0
+};;
+
+{ .mmi
+ ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
+ nop.m 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_XLog_Lo = FR_Arg, f1, FR_XLog_Hi // bl = x - bh
+ pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
+};;
+
+// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// "DEAD" ZONE!
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
+ nop.i 0
+};;
+
+
+{ .mmi
+ getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
+ ldfd FR_h = [GR_ad_tbl_1] // Load h_1
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
+};;
+
+{ .mfi
+ shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
+ fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GG // bl = bl + gg
+ mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
+}
+{ .mfi
+ shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
+ nop.f 0
+ sub GR_N = GR_N, GR_Bias // sub bias from exp
+};;
+
+{ .mmi
+ ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
+ ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
+ sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
+};;
+
+{ .mmi
+ ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
+ nop.m 0
+ nop.i 0
+};;
+
+{ .mmi
+ setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
+ setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
+ pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
+};;
+
+// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
+// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// (Just nops added - nothing to do here)
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
+ nop.i 0
+};;
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
+};;
+
+{ .mfi
+ shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
+ fcvt.xf FR_float_N = FR_float_N
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N)
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1)
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo
+ // Y_lo=poly_hi+poly_lo
+ nop.i 0
+};;
+
+{ .mfb
+ nop.m 0
+ fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
+ br.ret.sptk b0 // Common exit for 2^-7 < x < inf
+};;
+
+
+huges_logl:
+{ .mmi
+ getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
+ mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
+ nop.i 0
+};;
+
+{ .mfi
+ add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
+ nop.f 0
+ add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
+}
+{ .mfi
+ add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
+ nop.f 0
+ add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
+};;
+
+{ .mfi
+ add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
+ nop.f 0
+ extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
+};;
+
+{ .mfi
+ shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
+ nop.f 0
+ extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
+};;
+
+{ .mfi
+ ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
+ nop.f 0
+ mov GR_exp_mask = 0x1FFFF // Create exponent mask
+}
+{ .mfi
+ shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
+ nop.f 0
+ mov GR_Bias = 0x0FFFF // Create exponent bias
+};;
+
+{ .mfi
+ ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
+ fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x|
+ nop.i 0
+};;
+
+{ .mmi
+ getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
+ ldfd FR_h = [GR_ad_tbl_1] // Load h_1
+ nop.i 0
+};;
+
+{ .mfi
+ ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
+ nop.f 0
+ pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
+};;
+
+{ .mmi
+ ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
+ sub GR_N = GR_N, GR_Bias
+ mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
+};;
+
+{ .mfi
+ ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
+ nop.f 0
+ sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
+};;
+
+{ .mmf
+ ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
+ setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
+ nop.f 0
+};;
+
+{ .mmi
+ ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
+ nop.m 0
+ extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
+};;
+
+{ .mmi
+ ldfe FR_Q1 = [GR_ad_q] // Load Q1
+ shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
+ nop.i 0
+};;
+
+{ .mmi
+ ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
+ shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
+ nop.i 0
+};;
+
+{ .mmi
+ ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
+ nop.m 0
+ nop.i 0
+};;
+
+{ .mmf
+ ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
+ setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
+ nop.f 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1*Z_2
+};;
+
+// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
+// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// (Just nops added - nothing to do here)
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
+};;
+
+{ .mfi
+ shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
+ fcvt.xf FR_float_N = FR_float_N
+ nop.i 0
+};;
+
+{ .mfi
+ ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
+ nop.f 0
+ nop.i 0
+};;
+
+{ .mfi
+ ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
+ fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
+ nop.i 0
+};;
+
+{ .mmf
+ nop.m 0
+ nop.m 0
+ fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
+};;
+
+{ .mfi
+ nop.m 0
+ fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2)*G_3
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2)+H_3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N*log2_lo+h
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
+ nop.i 0
+};;
+{ .mfi
+ nop.m 0
+ fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo
+ nop.i 0
+};;
+{ .mfb
+ nop.m 0
+ fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
+ br.ret.sptk b0 // Common exit
+};;
+
+
+// NEAR ONE INTERVAL
+near_1:
+{ .mfi
+ nop.m 0
+ frsqrta.s1 FR_Rcp, p0 = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_PV6 = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_QV6 = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_PV4 = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_QV4 = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_XM12 = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_PV2 = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_QV2 = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT&
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT&
+ nop.i 0
+};;
+
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_PV3 = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_QV3 = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$
+ nop.i 0
+};;
+
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_PP = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_QQ = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ frcpa.s1 FR_Y0,p0 = f1,FR_QQ // y = frcpa(b) #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Q0 = FR_PP,FR_Y0,f0 // q = a*y #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_E0 = FR_Y0,FR_QQ,f1 // e = 1 - b*y #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2 #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GG = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT&
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_R0 = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_E4 = FR_QQ,FR_Y2,f1 // e4 = 1-b*y2 #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_X_Hi = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h &SQRT&
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV#
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 FR_R1 = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HH = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_LH = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV#
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 FR_LL = FR_GL, FR_X_lo, f0 // ll = gl*x_lo
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 FR_HL = FR_GG, FR_X_lo, f0 // hl = gg * x_lo
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_Res = FR_GL, f1, FR_LL // res = gl + ll
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_Res = FR_Res, f1, FR_LH // res = res + lh
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_Res = FR_Res, f1, FR_HL // res = res + hl
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fms.s1 FR_Res = FR_Res, f1, FR_HH // res = res + hh
+ nop.i 0
+};;
+
+{ .mfb
+ nop.m 0
+ fma.s0 FR_Res = FR_Res, f1, FR_GG // result = res + gg
+ br.ret.sptk b0 // Exit for near 1 path
+};;
+// NEAR ONE INTERVAL END
+
+
+
+
+acoshl_lt_pone:
+{ .mfi
+ nop.m 0
+ fmerge.s FR_Arg_X = FR_Arg, FR_Arg
+ nop.i 0
+};;
+{ .mfb
+ mov GR_Parameter_TAG = 135
+ frcpa.s0 FR_Res,p0 = f0,f0 // get QNaN,and raise invalid
+ br.cond.sptk __libm_error_region // exit if x < 1.0
+};;
+
+GLOBAL_LIBM_END(acoshl)
+
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+ add GR_Parameter_Y = -32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp = -64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP = gp // Save gp
+};;
+
+{ .mmi
+ stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Parameter 2 to stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0,GR_SAVE_B0
+ mov GR_SAVE_B0 = b0 // Save b0
+};;
+
+.body
+{ .mib
+ stfe [GR_Parameter_X] = FR_Arg_X // Parameter 1 to stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
+}
+{ .mib
+ stfe [GR_Parameter_Y] = FR_Res // Parameter 3 to stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0 = __libm_error_support# // Error handling function
+};;
+
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+{ .mmi
+ ldfe f8 = [GR_Parameter_RESULT] // Get return res
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+
+{ .mib
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region#)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#