aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/asinpif_advsimd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/aarch64/fpu/asinpif_advsimd.c')
-rw-r--r--sysdeps/aarch64/fpu/asinpif_advsimd.c95
1 files changed, 95 insertions, 0 deletions
diff --git a/sysdeps/aarch64/fpu/asinpif_advsimd.c b/sysdeps/aarch64/fpu/asinpif_advsimd.c
new file mode 100644
index 0000000..1483ea8
--- /dev/null
+++ b/sysdeps/aarch64/fpu/asinpif_advsimd.c
@@ -0,0 +1,95 @@
+/* Single-Precision vector (Advanced SIMD) inverse sinpi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+
+static const struct data
+{
+ float32x4_t c0, c2, c4, inv_pi;
+ float c1, c3, c5, null;
+} data = {
+ /* Coefficients of polynomial P such that asin(x)/pi~ x/pi + x^3 * poly(x^2)
+ on [ 0x1p-126 0x1p-2 ]. rel error: 0x1.ef9f94b1p-33. Generated using
+ iterative approach for minimisation of relative error in Sollya file. */
+ .c0 = V4 (0x1.b2995ep-5f), .c1 = 0x1.8724ep-6f,
+ .c2 = V4 (0x1.d1301ep-7f), .c3 = 0x1.446d3cp-7f,
+ .c4 = V4 (0x1.654848p-8f), .c5 = 0x1.5fdaa8p-7f,
+ .inv_pi = V4 (0x1.45f306p-2f),
+};
+
+#define AbsMask 0x7fffffff
+
+/* Single-precision implementation of vector asinpi(x).
+
+ For |x| < 0.5, use order 5 polynomial P such that the final
+ approximation is an odd polynomial: asinpif(x) ~ x/pi + x^3 P(x^2).
+
+ The largest observed error in this region is 1.68 ulps,
+ _ZGVnN4v_asinpif (0x1.86e514p-2) got 0x1.fea8c8p-4 want 0x1.fea8ccp-4.
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable
+
+ asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 3.49 ulps,
+ _ZGVnN4v_asinpif(0x1.0d93fep-1) got 0x1.697aap-3 want 0x1.697a9ap-3. */
+float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (asinpi) (float32x4_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ uint32x4_t ix = vreinterpretq_u32_f32 (x);
+ uint32x4_t ia = vandq_u32 (ix, v_u32 (AbsMask));
+
+ float32x4_t ax = vreinterpretq_f32_u32 (ia);
+ uint32x4_t a_lt_half = vcaltq_f32 (x, v_f32 (0.5f));
+
+ /* Evaluate polynomial Q(x) = y/pi + y * z * P(z) with
+ z = x ^ 2 and y = |x| , if |x| < 0.5
+ z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
+ float32x4_t z2 = vbslq_f32 (a_lt_half, vmulq_f32 (x, x),
+ vfmsq_n_f32 (v_f32 (0.5f), ax, 0.5f));
+ float32x4_t z = vbslq_f32 (a_lt_half, ax, vsqrtq_f32 (z2));
+
+ /* Use a single polynomial approximation P for both intervals. */
+
+ /* Order-5 Estrin evaluation scheme. */
+ float32x4_t z4 = vmulq_f32 (z2, z2);
+ float32x4_t z8 = vmulq_f32 (z4, z4);
+ float32x4_t c135 = vld1q_f32 (&d->c1);
+ float32x4_t p01 = vfmaq_laneq_f32 (d->c0, z2, c135, 0);
+ float32x4_t p23 = vfmaq_laneq_f32 (d->c2, z2, c135, 1);
+ float32x4_t p03 = vfmaq_f32 (p01, z4, p23);
+ float32x4_t p45 = vfmaq_laneq_f32 (d->c4, z2, c135, 2);
+ float32x4_t p = vfmaq_f32 (p03, z8, p45);
+ /* Add 1/pi as final coeff. */
+ p = vfmaq_f32 (d->inv_pi, z2, p);
+
+ /* Finalize polynomial: z * P(z2). */
+ p = vmulq_f32 (z, p);
+
+ /* asinpi(|x|) = Q(|x|), for |x| < 0.5
+ = 1/2 - 2 Q(|x|), for |x| >= 0.5. */
+ float32x4_t y
+ = vbslq_f32 (a_lt_half, p, vfmsq_n_f32 (v_f32 (0.5f), p, 2.0f));
+
+ /* Copy sign. */
+ return vbslq_f32 (v_u32 (AbsMask), y, x);
+}
+libmvec_hidden_def (V_NAME_F1 (asinpi))
+HALF_WIDTH_ALIAS_F1 (asinpi)