aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/acospif_sve.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/aarch64/fpu/acospif_sve.c')
-rw-r--r--sysdeps/aarch64/fpu/acospif_sve.c91
1 files changed, 91 insertions, 0 deletions
diff --git a/sysdeps/aarch64/fpu/acospif_sve.c b/sysdeps/aarch64/fpu/acospif_sve.c
new file mode 100644
index 0000000..ea4fc4a
--- /dev/null
+++ b/sysdeps/aarch64/fpu/acospif_sve.c
@@ -0,0 +1,91 @@
+/* Single-Precision vector (SVE) inverse cospi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "sv_math.h"
+
+static const struct data
+{
+ float32_t c0, c1, c2, c3, c4, inv_pi, half;
+} data = {
+ /* Coefficients of polynomial P such that asin(x)/pi~ x/pi + x^3 * poly(x^2)
+ on [ 0x1p-126 0x1p-2 ]. rel error: 0x1.ef9f94b1p-33. Generated using
+ iterative approach for minimisation of relative error. */
+ .c0 = 0x1.b29968p-5f, .c1 = 0x1.871424p-6f, .c2 = 0x1.d56e44p-7f,
+ .c3 = 0x1.149bb8p-7f, .c4 = 0x1.8e07fep-7f, .inv_pi = 0x1.45f306p-2f,
+ .half = 0.5f,
+};
+
+/* Single-precision SVE implementation of vector acospi(x).
+
+ For |x| in [0, 0.5], use order 5 polynomial P to approximate asinpi
+ such that the final approximation of acospi is:
+
+ acospi(x) ~ 1/2 - (x/pi + x^3 P(x^2)).
+
+ The largest observed error in this region is 1.3 ulps,
+ _ZGVsMxv_acospif(0x1.ffa9d2p-2) got 0x1.557504p-2
+ want 0x1.557502p-2.
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable
+
+ acospi(x) = y/pi + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 2.61 ulps,
+ _ZGVsMxv_acospif (0x1.6b232ep-1) got 0x1.fe04bap-3
+ want 0x1.fe04cp-3. */
+svfloat32_t SV_NAME_F1 (acospi) (svfloat32_t x, const svbool_t pg)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ svbool_t ptrue = svptrue_b32 ();
+
+ svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000);
+ svfloat32_t ax = svabs_x (pg, x);
+ svbool_t a_gt_half = svacgt (pg, x, 0.5f);
+
+ /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
+ z2 = x ^ 2 and z = |x| , if |x| < 0.5
+ z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
+ svfloat32_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f32 (0.5f), ax, 0.5f),
+ svmul_x (ptrue, x, x));
+ svfloat32_t z = svsqrt_m (ax, a_gt_half, z2);
+
+ /* Use a single polynomial approximation P for both intervals. */
+ svfloat32_t p = svmla_x (pg, sv_f32 (d->c3), z2, d->c4);
+ p = svmad_x (pg, z2, p, d->c2);
+ p = svmad_x (pg, z2, p, d->c1);
+ p = svmad_x (pg, z2, p, d->c0);
+ /* Add 1/pi as final coeff. */
+ p = svmla_x (pg, sv_f32 (d->inv_pi), z2, p);
+ /* Finalize polynomial: z * P(z^2). */
+ p = svmul_x (ptrue, z, p);
+
+ /* acospi(|x|)
+ = 1/2 - sign(x) * Q(|x|), for |x| < 0.5
+ = 2 Q(|x|) , for 0.5 < x < 1.0
+ = 1 - 2 Q(|x|) , for -1.0 < x < -0.5. */
+ svfloat32_t y
+ = svreinterpret_f32 (svorr_x (ptrue, svreinterpret_u32 (p), sign));
+ svfloat32_t mul = svsel (a_gt_half, sv_f32 (2.0f), sv_f32 (-1.0f));
+ svfloat32_t add = svreinterpret_f32 (
+ svorr_x (ptrue, sign, svreinterpret_u32 (sv_f32 (d->half))));
+ add = svsub_m (a_gt_half, sv_f32 (d->half), add);
+
+ return svmad_x (pg, y, mul, add);
+}