diff options
Diffstat (limited to 'manual')
-rw-r--r-- | manual/math.texi | 103 |
1 files changed, 103 insertions, 0 deletions
diff --git a/manual/math.texi b/manual/math.texi index 5e7c90e..1527441 100644 --- a/manual/math.texi +++ b/manual/math.texi @@ -157,6 +157,7 @@ You can also compute the value of pi with the expression @code{acos @comment math.h @comment ISO @deftypefunx {long double} sinl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the sine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun @@ -170,6 +171,7 @@ radians. The return value is in the range @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefunx {long double} cosl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the cosine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun @@ -183,6 +185,7 @@ radians. The return value is in the range @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefunx {long double} tanl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the tangent of @var{x}, where @var{x} is given in radians. @@ -205,6 +208,7 @@ function to do that. @comment math.h @comment GNU @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the sine of @var{x} in @code{*@var{sinx}} and the cosine of @var{x} in @code{*@var{cos}}, where @var{x} is given in radians. Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in @@ -233,6 +237,9 @@ the implementation.) @comment complex.h @comment ISO @deftypefunx {complex long double} csinl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} +@c There are calls to nan* that could trigger @mtslocale if they didn't get +@c empty strings. These functions return the complex sine of @var{z}. The mathematical definition of the complex sine is @@ -253,6 +260,7 @@ $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$ @comment complex.h @comment ISO @deftypefunx {complex long double} ccosl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex cosine of @var{z}. The mathematical definition of the complex cosine is @@ -273,6 +281,7 @@ $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$ @comment complex.h @comment ISO @deftypefunx {complex long double} ctanl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex tangent of @var{z}. The mathematical definition of the complex tangent is @@ -307,6 +316,7 @@ respectively. @comment math.h @comment ISO @deftypefunx {long double} asinl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arc sine of @var{x}---that is, the value whose sine is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually returned is the @@ -326,6 +336,7 @@ domain, @code{asin} signals a domain error. @comment math.h @comment ISO @deftypefunx {long double} acosl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arc cosine of @var{x}---that is, the value whose cosine is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually @@ -345,6 +356,7 @@ domain, @code{acos} signals a domain error. @comment math.h @comment ISO @deftypefunx {long double} atanl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arc tangent of @var{x}---that is, the value whose tangent is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually @@ -360,6 +372,7 @@ returned is the one between @code{-pi/2} and @code{pi/2} (inclusive). @comment math.h @comment ISO @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} This function computes the arc tangent of @var{y}/@var{x}, but the signs of both arguments are used to determine the quadrant of the result, and @var{x} is permitted to be zero. The return value is given in radians @@ -388,6 +401,7 @@ If both @var{x} and @var{y} are zero, @code{atan2} returns zero. @comment complex.h @comment ISO @deftypefunx {complex long double} casinl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arc sine of @var{z}---that is, the value whose sine is @var{z}. The value returned is in radians. @@ -404,6 +418,7 @@ values of @var{z}. @comment complex.h @comment ISO @deftypefunx {complex long double} cacosl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arc cosine of @var{z}---that is, the value whose cosine is @var{z}. The value returned is in radians. @@ -421,6 +436,7 @@ values of @var{z}. @comment complex.h @comment ISO @deftypefunx {complex long double} catanl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arc tangent of @var{z}---that is, the value whose tangent is @var{z}. The value is in units of radians. @end deftypefun @@ -441,6 +457,7 @@ the value whose tangent is @var{z}. The value is in units of radians. @comment math.h @comment ISO @deftypefunx {long double} expl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{e} (the base of natural logarithms) raised to the power @var{x}. @@ -457,6 +474,7 @@ If the magnitude of the result is too large to be representable, @comment math.h @comment ISO @deftypefunx {long double} exp2l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{2} raised to the power @var{x}. Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}. @end deftypefun @@ -479,6 +497,7 @@ Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}. @comment math.h @comment GNU @deftypefunx {long double} pow10l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{10} raised to the power @var{x}. Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}. @@ -496,6 +515,7 @@ preferred, since it is analogous to @code{exp} and @code{exp2}. @comment math.h @comment ISO @deftypefunx {long double} logl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the natural logarithm of @var{x}. @code{exp (log (@var{x}))} equals @var{x}, exactly in mathematics and approximately in C. @@ -514,6 +534,7 @@ it may signal overflow. @comment math.h @comment ISO @deftypefunx {long double} log10l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base-10 logarithm of @var{x}. @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}. @@ -528,6 +549,7 @@ These functions return the base-10 logarithm of @var{x}. @comment math.h @comment ISO @deftypefunx {long double} log2l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base-2 logarithm of @var{x}. @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}. @end deftypefun @@ -541,6 +563,7 @@ These functions return the base-2 logarithm of @var{x}. @comment math.h @comment ISO @deftypefunx {long double} logbl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions extract the exponent of @var{x} and return it as a floating-point value. If @code{FLT_RADIX} is two, @code{logb} is equal to @code{floor (log2 (x))}, except it's probably faster. @@ -560,6 +583,7 @@ negative), @code{logb} returns @math{@infinity{}}. If @var{x} is zero, @comment math.h @comment ISO @deftypefunx int ilogbl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions are equivalent to the corresponding @code{logb} functions except that they return signed integer values. @end deftypefun @@ -619,6 +643,7 @@ if (i == FP_ILOGB0 || i == FP_ILOGBNAN) @comment math.h @comment ISO @deftypefunx {long double} powl (long double @var{base}, long double @var{power}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These are general exponentiation functions, returning @var{base} raised to @var{power}. @@ -638,6 +663,7 @@ underflow or overflow the destination type. @comment math.h @comment ISO @deftypefunx {long double} sqrtl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the nonnegative square root of @var{x}. If @var{x} is negative, @code{sqrt} signals a domain error. @@ -654,6 +680,7 @@ Mathematically, it should return a complex number. @comment math.h @comment BSD @deftypefunx {long double} cbrtl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the cube root of @var{x}. They cannot fail; every representable real value has a representable real cube root. @end deftypefun @@ -667,6 +694,7 @@ fail; every representable real value has a representable real cube root. @comment math.h @comment ISO @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @code{sqrt (@var{x}*@var{x} + @var{y}*@var{y})}. This is the length of the hypotenuse of a right triangle with sides of length @var{x} and @var{y}, or the distance @@ -684,6 +712,7 @@ much smaller. See also the function @code{cabs} in @ref{Absolute Value}. @comment math.h @comment ISO @deftypefunx {long double} expm1l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return a value equivalent to @code{exp (@var{x}) - 1}. They are computed in a way that is accurate even if @var{x} is near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing @@ -699,6 +728,7 @@ to subtraction of two numbers that are nearly equal. @comment math.h @comment ISO @deftypefunx {long double} log1pl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions returns a value equivalent to @w{@code{log (1 + @var{x})}}. They are computed in a way that is accurate even if @var{x} is near zero. @@ -719,6 +749,7 @@ logarithm functions. @comment complex.h @comment ISO @deftypefunx {complex long double} cexpl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @code{e} (the base of natural logarithms) raised to the power of @var{z}. Mathematically, this corresponds to the value @@ -740,6 +771,7 @@ $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$ @comment complex.h @comment ISO @deftypefunx {complex long double} clogl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the natural logarithm of @var{z}. Mathematically, this corresponds to the value @@ -766,6 +798,7 @@ or is very close to 0. It is well-defined for all other values of @comment complex.h @comment GNU @deftypefunx {complex long double} clog10l (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base 10 logarithm of the complex value @var{z}. Mathematically, this corresponds to the value @@ -788,6 +821,7 @@ These functions are GNU extensions. @comment complex.h @comment ISO @deftypefunx {complex long double} csqrtl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex square root of the argument @var{z}. Unlike the real-valued functions, they are defined for all values of @var{z}. @end deftypefun @@ -801,6 +835,7 @@ the real-valued functions, they are defined for all values of @var{z}. @comment complex.h @comment ISO @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @var{base} raised to the power of @var{power}. This is equivalent to @w{@code{cexp (y * clog (x))}} @end deftypefun @@ -821,6 +856,7 @@ see @ref{Exponents and Logarithms}. @comment math.h @comment ISO @deftypefunx {long double} sinhl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the hyperbolic sine of @var{x}, defined mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}. They may signal overflow if @var{x} is too large. @@ -835,6 +871,7 @@ may signal overflow if @var{x} is too large. @comment math.h @comment ISO @deftypefunx {long double} coshl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These function return the hyperbolic cosine of @var{x}, defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}. They may signal overflow if @var{x} is too large. @@ -849,6 +886,7 @@ They may signal overflow if @var{x} is too large. @comment math.h @comment ISO @deftypefunx {long double} tanhl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the hyperbolic tangent of @var{x}, defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}. They may signal overflow if @var{x} is too large. @@ -868,6 +906,7 @@ complex arguments. @comment complex.h @comment ISO @deftypefunx {complex long double} csinhl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic sine of @var{z}, defined mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}. @end deftypefun @@ -881,6 +920,7 @@ mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}. @comment complex.h @comment ISO @deftypefunx {complex long double} ccoshl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic cosine of @var{z}, defined mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}. @end deftypefun @@ -894,6 +934,7 @@ mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}. @comment complex.h @comment ISO @deftypefunx {complex long double} ctanhl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic tangent of @var{z}, defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}. @end deftypefun @@ -910,6 +951,7 @@ defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}. @comment math.h @comment ISO @deftypefunx {long double} asinhl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic sine of @var{x}---the value whose hyperbolic sine is @var{x}. @end deftypefun @@ -923,6 +965,7 @@ value whose hyperbolic sine is @var{x}. @comment math.h @comment ISO @deftypefunx {long double} acoshl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic cosine of @var{x}---the value whose hyperbolic cosine is @var{x}. If @var{x} is less than @code{1}, @code{acosh} signals a domain error. @@ -937,6 +980,7 @@ value whose hyperbolic cosine is @var{x}. If @var{x} is less than @comment math.h @comment ISO @deftypefunx {long double} atanhl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic tangent of @var{x}---the value whose hyperbolic tangent is @var{x}. If the absolute value of @var{x} is greater than @code{1}, @code{atanh} signals a domain error; @@ -954,6 +998,7 @@ if it is equal to 1, @code{atanh} returns infinity. @comment complex.h @comment ISO @deftypefunx {complex long double} casinhl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic sine of @var{z}---the value whose complex hyperbolic sine is @var{z}. @end deftypefun @@ -967,6 +1012,7 @@ These functions return the inverse complex hyperbolic sine of @comment complex.h @comment ISO @deftypefunx {complex long double} cacoshl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic cosine of @var{z}---the value whose complex hyperbolic cosine is @var{z}. Unlike the real-valued functions, there are no restrictions on the value of @var{z}. @@ -981,6 +1027,7 @@ the real-valued functions, there are no restrictions on the value of @var{z}. @comment complex.h @comment ISO @deftypefunx {complex long double} catanhl (complex long double @var{z}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic tangent of @var{z}---the value whose complex hyperbolic tangent is @var{z}. Unlike the real-valued functions, there are no restrictions on the value of @@ -1005,6 +1052,7 @@ useful. Currently they only have real-valued versions. @comment math.h @comment SVID @deftypefunx {long double} erfl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{erf} returns the error function of @var{x}. The error function is defined as @tex @@ -1026,6 +1074,7 @@ erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt @comment math.h @comment SVID @deftypefunx {long double} erfcl (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a fashion that avoids round-off error when @var{x} is large. @end deftypefun @@ -1039,6 +1088,7 @@ fashion that avoids round-off error when @var{x} is large. @comment math.h @comment SVID @deftypefunx {long double} lgammal (long double @var{x}) +@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}} @code{lgamma} returns the natural logarithm of the absolute value of the gamma function of @var{x}. The gamma function is defined as @tex @@ -1077,6 +1127,7 @@ singularity. @comment math.h @comment XPG @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of the intermediate result in the variable pointed to by @var{signp} instead of in the @var{signgam} global. This means it is reentrant. @@ -1091,6 +1142,7 @@ instead of in the @var{signgam} global. This means it is reentrant. @comment math.h @comment SVID @deftypefunx {long double} gammal (long double @var{x}) +@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}} These functions exist for compatibility reasons. They are equivalent to @code{lgamma} etc. It is better to use @code{lgamma} since for one the name reflects better the actual computation, moreover @code{lgamma} is @@ -1106,6 +1158,7 @@ standardized in @w{ISO C99} while @code{gamma} is not. @comment math.h @comment XPG, ISO @deftypefunx {long double} tgammal (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{tgamma} applies the gamma function to @var{x}. The gamma function is defined as @tex @@ -1129,6 +1182,7 @@ This function was introduced in @w{ISO C99}. @comment math.h @comment SVID @deftypefunx {long double} j0l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{j0} returns the Bessel function of the first kind of order 0 of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun @@ -1142,6 +1196,7 @@ This function was introduced in @w{ISO C99}. @comment math.h @comment SVID @deftypefunx {long double} j1l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{j1} returns the Bessel function of the first kind of order 1 of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun @@ -1155,6 +1210,7 @@ This function was introduced in @w{ISO C99}. @comment math.h @comment SVID @deftypefunx {long double} jnl (int @var{n}, long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{jn} returns the Bessel function of the first kind of order @var{n} of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun @@ -1168,6 +1224,7 @@ This function was introduced in @w{ISO C99}. @comment math.h @comment SVID @deftypefunx {long double} y0l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{y0} returns the Bessel function of the second kind of order 0 of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} is negative, @code{y0} signals a domain error; if it is zero, @@ -1183,6 +1240,7 @@ is negative, @code{y0} signals a domain error; if it is zero, @comment math.h @comment SVID @deftypefunx {long double} y1l (long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{y1} returns the Bessel function of the second kind of order 1 of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} is negative, @code{y1} signals a domain error; if it is zero, @@ -1198,6 +1256,7 @@ is negative, @code{y1} signals a domain error; if it is zero, @comment math.h @comment SVID @deftypefunx {long double} ynl (int @var{n}, long double @var{x}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{yn} returns the Bessel function of the second kind of order @var{n} of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} is negative, @code{yn} signals a domain error; if it is zero, @@ -1384,6 +1443,8 @@ value the @code{rand} function can return. In @theglibc{}, it is @comment stdlib.h @comment ISO @deftypefun int rand (void) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} +@c Just calls random. The @code{rand} function returns the next pseudo-random number in the series. The value ranges from @code{0} to @code{RAND_MAX}. @end deftypefun @@ -1391,6 +1452,8 @@ series. The value ranges from @code{0} to @code{RAND_MAX}. @comment stdlib.h @comment ISO @deftypefun void srand (unsigned int @var{seed}) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} +@c Alias to srandom. This function establishes @var{seed} as the seed for a new series of pseudo-random numbers. If you call @code{rand} before a seed has been established with @code{srand}, it uses the value @code{1} as a default @@ -1407,6 +1470,7 @@ designed and unsuitable for serious work. @comment stdlib.h @comment POSIX.1 @deftypefun int rand_r (unsigned int *@var{seed}) +@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} This function returns a random number in the range 0 to @code{RAND_MAX} just as @code{rand} does. However, all its state is stored in the @var{seed} argument. This means the RNG's state can only have as many @@ -1433,6 +1497,9 @@ The prototypes for these functions are in @file{stdlib.h}. @comment stdlib.h @comment BSD @deftypefun {long int} random (void) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} +@c Takes a lock and calls random_r with an automatic variable and the +@c global state, while holding a lock. This function returns the next pseudo-random number in the sequence. The value returned ranges from @code{0} to @code{2147483647}. @@ -1446,6 +1513,11 @@ though. @comment stdlib.h @comment BSD @deftypefun void srandom (unsigned int @var{seed}) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} +@c Takes a lock and calls srandom_r with an automatic variable and a +@c static buffer. There's no MT-safety issue because the static buffer +@c is internally protected by a lock, although other threads may modify +@c the set state before it is used. The @code{srandom} function sets the state of the random number generator based on the integer @var{seed}. If you supply a @var{seed} value of @code{1}, this will cause @code{random} to reproduce the default set @@ -1458,6 +1530,7 @@ program runs, do @code{srandom (time (0))}. @comment stdlib.h @comment BSD @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size}) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} The @code{initstate} function is used to initialize the random number generator state. The argument @var{state} is an array of @var{size} bytes, used to hold the state information. It is initialized based on @@ -1472,6 +1545,7 @@ restore that state. @comment stdlib.h @comment BSD @deftypefun {char *} setstate (char *@var{state}) +@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} The @code{setstate} function restores the random number state information @var{state}. The argument must have been the result of a previous call to @var{initstate} or @var{setstate}. @@ -1512,6 +1586,7 @@ functions. @comment stdlib.h @comment GNU @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{random_r} function behaves exactly like the @code{random} function except that it uses and modifies the state in the object pointed to by the first parameter instead of the global state. @@ -1520,6 +1595,7 @@ pointed to by the first parameter instead of the global state. @comment stdlib.h @comment GNU @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf}) +@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{srandom_r} function behaves exactly like the @code{srandom} function except that it uses and modifies the state in the object pointed to by the second parameter instead of the global state. @@ -1528,6 +1604,7 @@ pointed to by the second parameter instead of the global state. @comment stdlib.h @comment GNU @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf}) +@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{initstate_r} function behaves exactly like the @code{initstate} function except that it uses and modifies the state in the object pointed to by the fourth parameter instead of the global state. @@ -1536,6 +1613,7 @@ pointed to by the fourth parameter instead of the global state. @comment stdlib.h @comment GNU @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf}) +@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{setstate_r} function behaves exactly like the @code{setstate} function except that it uses and modifies the state in the object pointed to by the first parameter instead of the global state. @@ -1582,6 +1660,12 @@ The prototypes for these functions are in @file{stdlib.h}. @comment stdlib.h @comment SVID @deftypefun double drand48 (void) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} +@c Uses of the static state buffer are not guarded by a lock (thus +@c @mtasurace:drand48), so they may be found or left at a +@c partially-updated state in case of calls from within signal handlers +@c or cancellation. None of this will break safety rules or invoke +@c undefined behavior, but it may affect randomness. This function returns a @code{double} value in the range of @code{0.0} to @code{1.0} (exclusive). The random bits are determined by the global state of the random number generator in the C library. @@ -1595,6 +1679,9 @@ bits and they are initialized to @code{0}. @comment stdlib.h @comment SVID @deftypefun double erand48 (unsigned short int @var{xsubi}[3]) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} +@c The static buffer is just initialized with default parameters, which +@c are later read to advance the state held in xsubi. This function returns a @code{double} value in the range of @code{0.0} to @code{1.0} (exclusive), similarly to @code{drand48}. The argument is an array describing the state of the random number generator. @@ -1607,6 +1694,7 @@ initial use to obtain reproducible results. @comment stdlib.h @comment SVID @deftypefun {long int} lrand48 (void) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{lrand48} function returns an integer value in the range of @code{0} to @code{2^31} (exclusive). Even if the size of the @code{long int} type can take more than 32 bits, no higher numbers are returned. @@ -1617,6 +1705,7 @@ generator in the C library. @comment stdlib.h @comment SVID @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3]) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} This function is similar to the @code{lrand48} function in that it returns a number in the range of @code{0} to @code{2^31} (exclusive) but the state of the random number generator used to produce the random bits @@ -1631,6 +1720,7 @@ first call to obtain reproducible results. @comment stdlib.h @comment SVID @deftypefun {long int} mrand48 (void) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{mrand48} function is similar to @code{lrand48}. The only difference is that the numbers returned are in the range @code{-2^31} to @code{2^31} (exclusive). @@ -1639,6 +1729,7 @@ difference is that the numbers returned are in the range @code{-2^31} to @comment stdlib.h @comment SVID @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3]) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{jrand48} function is similar to @code{nrand48}. The only difference is that the numbers returned are in the range @code{-2^31} to @code{2^31} (exclusive). For the @code{xsubi} parameter the same @@ -1652,6 +1743,7 @@ information provided. @comment stdlib.h @comment SVID @deftypefun void srand48 (long int @var{seedval}) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{srand48} function sets the most significant 32 bits of the internal state of the random number generator to the least significant 32 bits of the @var{seedval} parameter. The lower 16 bits @@ -1671,6 +1763,7 @@ the user has called the @code{lcong48} function (see below). @comment stdlib.h @comment SVID @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3]) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{seed48} function initializes all 48 bits of the state of the internal random number generator from the contents of the parameter @var{seed16v}. Here the lower 16 bits of the first element of @@ -1698,6 +1791,7 @@ change the parameters in the congruential formula. @comment stdlib.h @comment SVID @deftypefun void lcong48 (unsigned short int @var{param}[7]) +@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{lcong48} function allows the user to change the complete state of the random number generator. Unlike @code{srand48} and @code{seed48}, this function also changes the constants in the @@ -1730,6 +1824,7 @@ This type should be regarded as opaque and not manipulated directly. @comment stdlib.h @comment GNU @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is equivalent to the @code{drand48} function with the difference that it does not modify the global random number generator parameters but instead the parameters in the buffer supplied through the @@ -1747,6 +1842,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{erand48_r} function works like @code{erand48}, but in addition it takes an argument @var{buffer} which describes the random number generator. The state of the random number generator is taken from the @@ -1763,6 +1859,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{lrand48}, but in addition it takes a pointer to a buffer describing the state of the random number generator just like @code{drand48}. @@ -1777,6 +1874,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{nrand48_r} function works like @code{nrand48} in that it produces a random number in the range @code{0} to @code{2^31}. But instead of using the global parameters for the congruential formula it uses the @@ -1793,6 +1891,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{mrand48} but like the other reentrant functions it uses the random number generator described by the value in the buffer pointed to by @var{buffer}. @@ -1807,6 +1906,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{jrand48_r} function is similar to @code{jrand48}. Like the other reentrant functions of this function family it uses the congruential formula parameters from the buffer pointed to by @@ -1841,6 +1941,7 @@ what you expect. @comment stdlib.h @comment GNU @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The description of the random number generator represented by the information in @var{buffer} is initialized similarly to what the function @code{srand48} does. The state is initialized from the parameter @@ -1856,6 +1957,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{srand48_r} but like @code{seed48} it initializes all 48 bits of the state from the parameter @var{seed16v}. @@ -1872,6 +1974,7 @@ programs. @comment stdlib.h @comment GNU @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer}) +@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function initializes all aspects of the random number generator described in @var{buffer} with the data in @var{param}. Here it is especially true that the function does more than just copying the |