diff options
-rw-r--r-- | ChangeLog | 15 | ||||
-rw-r--r-- | NEWS | 2 | ||||
-rw-r--r-- | sysdeps/aarch64/libm-test-ulps | 24 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_cosf.c | 161 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_sincosf.h | 171 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/s_sinf.c | 172 | ||||
-rw-r--r-- | sysdeps/x86_64/fpu/libm-test-ulps | 12 | ||||
-rw-r--r-- | sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c | 33 | ||||
-rw-r--r-- | sysdeps/x86_64/fpu/s_sincosf_data.c | 1 |
9 files changed, 207 insertions, 384 deletions
@@ -1,3 +1,18 @@ +2018-08-14 Wilco Dijkstra <wdijkstr@arm.com> + Szabolcs Nagy <szabolcs.nagy@arm.com> + + * NEWS: Mention sinf, cosf, sincosf. + * sysdeps/aarch64/libm-test-ulps: Update ULP for sinf, cosf, sincosf. + * sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sinf and cosf. + * sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Add definitions of + constants rather than including generic sincosf.h. + * sysdeps/x86_64/fpu/s_sincosf_data.c: Remove. + * sysdeps/ieee754/flt-32/s_cosf.c (cosf): Rewrite. + * sysdeps/ieee754/flt-32/s_sincosf.h (reduced_sin): Remove. + (reduced_cos): Remove. + (sinf_poly): New function. + * sysdeps/ieee754/flt-32/s_sinf.c (sinf): Rewrite. + 2018-08-14 Florian Weimer <fweimer@redhat.com> [BZ #23521] @@ -75,6 +75,8 @@ Major new features: transliteration tables are all updated to Unicode 11.0.0, using generator scripts contributed by Mike FABIAN (Red Hat). +* Optimized generic sinf, cosf and sincosf. + * <math.h> functions that round their results to a narrower type are added from TS 18661-1:2014 and TS 18661-3:2015: diff --git a/sysdeps/aarch64/libm-test-ulps b/sysdeps/aarch64/libm-test-ulps index be06085..6a89028 100644 --- a/sysdeps/aarch64/libm-test-ulps +++ b/sysdeps/aarch64/libm-test-ulps @@ -1021,9 +1021,9 @@ ldouble: 1 Function: "cos_downward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 3 ldouble: 3 @@ -1037,9 +1037,9 @@ ldouble: 1 Function: "cos_upward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 2 ldouble: 2 @@ -1981,9 +1981,9 @@ ldouble: 1 Function: "sin_downward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 3 ldouble: 3 @@ -1997,9 +1997,9 @@ ldouble: 2 Function: "sin_upward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 3 ldouble: 3 @@ -2013,9 +2013,9 @@ ldouble: 1 Function: "sincos_downward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 3 ldouble: 3 @@ -2029,9 +2029,9 @@ ldouble: 2 Function: "sincos_upward": double: 1 -float: 2 +float: 1 idouble: 1 -ifloat: 2 +ifloat: 1 ildouble: 3 ldouble: 3 diff --git a/sysdeps/ieee754/flt-32/s_cosf.c b/sysdeps/ieee754/flt-32/s_cosf.c index 061264d..13b5ffe 100644 --- a/sysdeps/ieee754/flt-32/s_cosf.c +++ b/sysdeps/ieee754/flt-32/s_cosf.c @@ -1,5 +1,5 @@ /* Compute cosine of argument. - Copyright (C) 2017-2018 Free Software Foundation, Inc. + Copyright (C) 2018 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or @@ -16,10 +16,11 @@ License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ -#include <errno.h> +#include <stdint.h> #include <math.h> -#include <math_private.h> +#include <math-barriers.h> #include <libm-alias-float.h> +#include "math_config.h" #include "s_sincosf.h" #ifndef COSF @@ -28,121 +29,57 @@ # define COSF_FUNC COSF #endif +/* Fast cosf implementation. Worst-case ULP is 0.5607, maximum relative + error is 0.5303 * 2^-23. A single-step range reduction is used for + small values. Large inputs have their range reduced using fast integer + arithmetic. +*/ float -COSF_FUNC (float x) +COSF_FUNC (float y) { - double theta = x; - double abstheta = fabs (theta); - if (isless (abstheta, M_PI_4)) + double x = y; + double s; + int n; + const sincos_t *p = &__sincosf_table[0]; + + if (abstop12 (y) < abstop12 (pio4)) + { + double x2 = x * x; + + if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-12f))) + return 1.0f; + + return sinf_poly (x, x2, p, 1); + } + else if (__glibc_likely (abstop12 (y) < abstop12 (120.0f))) { - double cx; - if (abstheta >= 0x1p-5) - { - const double theta2 = theta * theta; - /* Chebyshev polynomial of the form for cos: - * 1 + x^2 (C0 + x^2 (C1 + x^2 (C2 + x^2 (C3 + x^2 * C4)))). */ - cx = C3 + theta2 * C4; - cx = C2 + theta2 * cx; - cx = C1 + theta2 * cx; - cx = C0 + theta2 * cx; - cx = 1. + theta2 * cx; - return cx; - } - else if (abstheta >= 0x1p-27) - { - /* A simpler Chebyshev approximation is close enough for this range: - * 1 + x^2 (CC0 + x^3 * CC1). */ - const double theta2 = theta * theta; - cx = CC0 + theta * theta2 * CC1; - cx = 1.0 + theta2 * cx; - return cx; - } - else - { - /* For small enough |theta|, this is close enough. */ - return 1.0 - abstheta; - } + x = reduce_fast (x, p, &n); + + /* Setup the signs for sin and cos. */ + s = p->sign[n & 3]; + + if (n & 2) + p = &__sincosf_table[1]; + + return sinf_poly (x * s, x * x, p, n ^ 1); } - else /* |theta| >= Pi/4. */ + else if (abstop12 (y) < abstop12 (INFINITY)) { - if (isless (abstheta, 9 * M_PI_4)) - { - /* There are cases where FE_UPWARD rounding mode can - produce a result of abstheta * inv_PI_4 == 9, - where abstheta < 9pi/4, so the domain for - pio2_table must go to 5 (9 / 2 + 1). */ - unsigned int n = (abstheta * inv_PI_4) + 1; - theta = abstheta - pio2_table[n / 2]; - return reduced_cos (theta, n); - } - else if (isless (abstheta, INFINITY)) - { - if (abstheta < 0x1p+23) - { - unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; - double x = n / 2; - theta = (abstheta - x * PI_2_hi) - x * PI_2_lo; - /* Argument reduction needed. */ - return reduced_cos (theta, n); - } - else /* |theta| >= 2^23. */ - { - x = fabsf (x); - int exponent; - GET_FLOAT_WORD (exponent, x); - exponent = (exponent >> FLOAT_EXPONENT_SHIFT) - - FLOAT_EXPONENT_BIAS; - exponent += 3; - exponent /= 28; - double a = invpio4_table[exponent] * x; - double b = invpio4_table[exponent + 1] * x; - double c = invpio4_table[exponent + 2] * x; - double d = invpio4_table[exponent + 3] * x; - uint64_t l = a; - l &= ~0x7; - a -= l; - double e = a + b; - l = e; - e = a - l; - if (l & 1) - { - e -= 1.0; - e += b; - e += c; - e += d; - e *= M_PI_4; - return reduced_cos (e, l + 1); - } - else - { - e += b; - e += c; - e += d; - if (e <= 1.0) - { - e *= M_PI_4; - return reduced_cos (e, l + 1); - } - else - { - l++; - e -= 2.0; - e *= M_PI_4; - return reduced_cos (e, l + 1); - } - } - } - } - else - { - int32_t ix; - GET_FLOAT_WORD (ix, abstheta); - /* cos(Inf or NaN) is NaN. */ - if (ix == 0x7f800000) /* Inf. */ - __set_errno (EDOM); - return x - x; - } + uint32_t xi = asuint (y); + int sign = xi >> 31; + + x = reduce_large (xi, &n); + + /* Setup signs for sin and cos - include original sign. */ + s = p->sign[(n + sign) & 3]; + + if ((n + sign) & 2) + p = &__sincosf_table[1]; + + return sinf_poly (x * s, x * x, p, n ^ 1); } + else + return __math_invalidf (y); } #ifndef COSF diff --git a/sysdeps/ieee754/flt-32/s_sincosf.h b/sysdeps/ieee754/flt-32/s_sincosf.h index d3d7b4d..1dcb04f 100644 --- a/sysdeps/ieee754/flt-32/s_sincosf.h +++ b/sysdeps/ieee754/flt-32/s_sincosf.h @@ -1,5 +1,5 @@ /* Used by sinf, cosf and sincosf functions. - Copyright (C) 2017-2018 Free Software Foundation, Inc. + Copyright (C) 2018 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or @@ -20,145 +20,6 @@ #include <math.h> #include "math_config.h" -/* Chebyshev constants for cos, range -PI/4 - PI/4. */ -static const double C0 = -0x1.ffffffffe98aep-2; -static const double C1 = 0x1.55555545c50c7p-5; -static const double C2 = -0x1.6c16b348b6874p-10; -static const double C3 = 0x1.a00eb9ac43ccp-16; -static const double C4 = -0x1.23c97dd8844d7p-22; - -/* Chebyshev constants for sin, range -PI/4 - PI/4. */ -static const double S0 = -0x1.5555555551cd9p-3; -static const double S1 = 0x1.1111110c2688bp-7; -static const double S2 = -0x1.a019f8b4bd1f9p-13; -static const double S3 = 0x1.71d7264e6b5b4p-19; -static const double S4 = -0x1.a947e1674b58ap-26; - -/* Chebyshev constants for sin, range 2^-27 - 2^-5. */ -static const double SS0 = -0x1.555555543d49dp-3; -static const double SS1 = 0x1.110f475cec8c5p-7; - -/* Chebyshev constants for cos, range 2^-27 - 2^-5. */ -static const double CC0 = -0x1.fffffff5cc6fdp-2; -static const double CC1 = 0x1.55514b178dac5p-5; - -/* PI/2 with 98 bits of accuracy. */ -static const double PI_2_hi = 0x1.921fb544p+0; -static const double PI_2_lo = 0x1.0b4611a626332p-34; - -static const double SMALL = 0x1p-50; /* 2^-50. */ -static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */ - -#define FLOAT_EXPONENT_SHIFT 23 -#define FLOAT_EXPONENT_BIAS 127 - -static const double pio2_table[] = { - 0 * M_PI_2, - 1 * M_PI_2, - 2 * M_PI_2, - 3 * M_PI_2, - 4 * M_PI_2, - 5 * M_PI_2 -}; - -static const double invpio4_table[] = { - 0x0p+0, - 0x1.45f306cp+0, - 0x1.c9c882ap-28, - 0x1.4fe13a8p-58, - 0x1.f47d4dp-85, - 0x1.bb81b6cp-112, - 0x1.4acc9ep-142, - 0x1.0e4107cp-169 -}; - -static const double ones[] = { 1.0, -1.0 }; - -/* Compute the sine value using Chebyshev polynomials where - THETA is the range reduced absolute value of the input - and it is less than Pi/4, - N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide - whether a sine or cosine approximation is more accurate and - SIGNBIT is used to add the correct sign after the Chebyshev - polynomial is computed. */ -static inline float -reduced_sin (const double theta, const unsigned int n, - const unsigned int signbit) -{ - double sx; - const double theta2 = theta * theta; - /* We are operating on |x|, so we need to add back the original - signbit for sinf. */ - double sign; - /* Determine positive or negative primary interval. */ - sign = ones[((n >> 2) & 1) ^ signbit]; - /* Are we in the primary interval of sin or cos? */ - if ((n & 2) == 0) - { - /* Here sinf() is calculated using sin Chebyshev polynomial: - x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ - sx = S3 + theta2 * S4; /* S3+x^2*S4. */ - sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */ - sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */ - sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */ - sx = theta + theta * theta2 * sx; - } - else - { - /* Here sinf() is calculated using cos Chebyshev polynomial: - 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */ - sx = C3 + theta2 * C4; /* C3+x^2*C4. */ - sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */ - sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */ - sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */ - sx = 1.0 + theta2 * sx; - } - - /* Add in the signbit and assign the result. */ - return sign * sx; -} - -/* Compute the cosine value using Chebyshev polynomials where - THETA is the range reduced absolute value of the input - and it is less than Pi/4, - N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide - whether a sine or cosine approximation is more accurate and - the sign of the result. */ -static inline float -reduced_cos (double theta, unsigned int n) -{ - double sign, cx; - const double theta2 = theta * theta; - - /* Determine positive or negative primary interval. */ - n += 2; - sign = ones[(n >> 2) & 1]; - - /* Are we in the primary interval of sin or cos? */ - if ((n & 2) == 0) - { - /* Here cosf() is calculated using sin Chebyshev polynomial: - x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ - cx = S3 + theta2 * S4; - cx = S2 + theta2 * cx; - cx = S1 + theta2 * cx; - cx = S0 + theta2 * cx; - cx = theta + theta * theta2 * cx; - } - else - { - /* Here cosf() is calculated using cos Chebyshev polynomial: - 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */ - cx = C3 + theta2 * C4; - cx = C2 + theta2 * cx; - cx = C1 + theta2 * cx; - cx = C0 + theta2 * cx; - cx = 1. + theta2 * cx; - } - return sign * cx; -} - - /* 2PI * 2^-64. */ static const double pi63 = 0x1.921FB54442D18p-62; /* PI / 4. */ @@ -217,6 +78,36 @@ sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp, *cosp = c + x6 * c2; } +/* Return the sine of inputs X and X2 (X squared) using the polynomial P. + N is the quadrant, and if odd the cosine polynomial is used. */ +static inline float +sinf_poly (double x, double x2, const sincos_t *p, int n) +{ + double x3, x4, x6, x7, s, c, c1, c2, s1; + + if ((n & 1) == 0) + { + x3 = x * x2; + s1 = p->s2 + x2 * p->s3; + + x7 = x3 * x2; + s = x + x3 * p->s1; + + return s + x7 * s1; + } + else + { + x4 = x2 * x2; + c2 = p->c3 + x2 * p->c4; + c1 = p->c0 + x2 * p->c1; + + x6 = x4 * x2; + c = c1 + x4 * p->c2; + + return c + x6 * c2; + } +} + /* Fast range reduction using single multiply-subtract. Return the modulo of X as a value between -PI/4 and PI/4 and store the quadrant in NP. The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double diff --git a/sysdeps/ieee754/flt-32/s_sinf.c b/sysdeps/ieee754/flt-32/s_sinf.c index 138e318..f6964e6 100644 --- a/sysdeps/ieee754/flt-32/s_sinf.c +++ b/sysdeps/ieee754/flt-32/s_sinf.c @@ -1,5 +1,5 @@ /* Compute sine of argument. - Copyright (C) 2017-2018 Free Software Foundation, Inc. + Copyright (C) 2018 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or @@ -16,10 +16,11 @@ License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ -#include <errno.h> +#include <stdint.h> #include <math.h> -#include <math_private.h> +#include <math-barriers.h> #include <libm-alias-float.h> +#include "math_config.h" #include "s_sincosf.h" #ifndef SINF @@ -28,127 +29,62 @@ # define SINF_FUNC SINF #endif +/* Fast sinf implementation. Worst-case ULP is 0.5607, maximum relative + error is 0.5303 * 2^-23. A single-step range reduction is used for + small values. Large inputs have their range reduced using fast integer + arithmetic. +*/ float -SINF_FUNC (float x) +SINF_FUNC (float y) { - double cx; - double theta = x; - double abstheta = fabs (theta); - /* If |x|< Pi/4. */ - if (isless (abstheta, M_PI_4)) + double x = y; + double s; + int n; + const sincos_t *p = &__sincosf_table[0]; + + if (abstop12 (y) < abstop12 (pio4)) + { + s = x * x; + + if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-12f))) + { + /* Force underflow for tiny y. */ + if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-126f))) + math_force_eval ((float)s); + return y; + } + + return sinf_poly (x, s, p, 0); + } + else if (__glibc_likely (abstop12 (y) < abstop12 (120.0f))) { - if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */ - { - const double theta2 = theta * theta; - /* Chebyshev polynomial of the form for sin - x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ - cx = S3 + theta2 * S4; - cx = S2 + theta2 * cx; - cx = S1 + theta2 * cx; - cx = S0 + theta2 * cx; - cx = theta + theta * theta2 * cx; - return cx; - } - else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */ - { - /* A simpler Chebyshev approximation is close enough for this range: - for sin: x+x^3*(SS0+x^2*SS1). */ - const double theta2 = theta * theta; - cx = SS0 + theta2 * SS1; - cx = theta + theta * theta2 * cx; - return cx; - } - else - { - /* Handle some special cases. */ - if (theta) - return theta - (theta * SMALL); - else - return theta; - } + x = reduce_fast (x, p, &n); + + /* Setup the signs for sin and cos. */ + s = p->sign[n & 3]; + + if (n & 2) + p = &__sincosf_table[1]; + + return sinf_poly (x * s, x * x, p, n); } - else /* |x| >= Pi/4. */ + else if (abstop12 (y) < abstop12 (INFINITY)) { - unsigned int signbit = isless (x, 0); - if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */ - { - /* There are cases where FE_UPWARD rounding mode can - produce a result of abstheta * inv_PI_4 == 9, - where abstheta < 9pi/4, so the domain for - pio2_table must go to 5 (9 / 2 + 1). */ - unsigned int n = (abstheta * inv_PI_4) + 1; - theta = abstheta - pio2_table[n / 2]; - return reduced_sin (theta, n, signbit); - } - else if (isless (abstheta, INFINITY)) - { - if (abstheta < 0x1p+23) /* |x| < 2^23. */ - { - unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; - double x = n / 2; - theta = (abstheta - x * PI_2_hi) - x * PI_2_lo; - /* Argument reduction needed. */ - return reduced_sin (theta, n, signbit); - } - else /* |x| >= 2^23. */ - { - x = fabsf (x); - int exponent; - GET_FLOAT_WORD (exponent, x); - exponent - = (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS; - exponent += 3; - exponent /= 28; - double a = invpio4_table[exponent] * x; - double b = invpio4_table[exponent + 1] * x; - double c = invpio4_table[exponent + 2] * x; - double d = invpio4_table[exponent + 3] * x; - uint64_t l = a; - l &= ~0x7; - a -= l; - double e = a + b; - l = e; - e = a - l; - if (l & 1) - { - e -= 1.0; - e += b; - e += c; - e += d; - e *= M_PI_4; - return reduced_sin (e, l + 1, signbit); - } - else - { - e += b; - e += c; - e += d; - if (e <= 1.0) - { - e *= M_PI_4; - return reduced_sin (e, l + 1, signbit); - } - else - { - l++; - e -= 2.0; - e *= M_PI_4; - return reduced_sin (e, l + 1, signbit); - } - } - } - } - else - { - int32_t ix; - /* High word of x. */ - GET_FLOAT_WORD (ix, abstheta); - /* Sin(Inf or NaN) is NaN. */ - if (ix == 0x7f800000) - __set_errno (EDOM); - return x - x; - } + uint32_t xi = asuint (y); + int sign = xi >> 31; + + x = reduce_large (xi, &n); + + /* Setup signs for sin and cos - include original sign. */ + s = p->sign[(n + sign) & 3]; + + if ((n + sign) & 2) + p = &__sincosf_table[1]; + + return sinf_poly (x * s, x * x, p, n); } + else + return __math_invalidf (y); } #ifndef SINF diff --git a/sysdeps/x86_64/fpu/libm-test-ulps b/sysdeps/x86_64/fpu/libm-test-ulps index 912db31..a51faec 100644 --- a/sysdeps/x86_64/fpu/libm-test-ulps +++ b/sysdeps/x86_64/fpu/libm-test-ulps @@ -1271,24 +1271,30 @@ ldouble: 1 Function: "cos_downward": double: 1 +float: 1 float128: 3 idouble: 1 +ifloat: 1 ifloat128: 3 ildouble: 3 ldouble: 3 Function: "cos_towardzero": double: 1 +float: 1 float128: 1 idouble: 1 +ifloat: 1 ifloat128: 1 ildouble: 2 ldouble: 2 Function: "cos_upward": double: 1 +float: 1 float128: 2 idouble: 1 +ifloat: 1 ifloat128: 2 ildouble: 2 ldouble: 2 @@ -2539,24 +2545,30 @@ ldouble: 1 Function: "sin_downward": double: 1 +float: 1 float128: 3 idouble: 1 +ifloat:1 ifloat128: 3 ildouble: 3 ldouble: 3 Function: "sin_towardzero": double: 1 +float:1 float128: 2 idouble: 1 +ifloat: 1 ifloat128: 2 ildouble: 2 ldouble: 2 Function: "sin_upward": double: 1 +float:1 float128: 3 idouble: 1 +ifloat: 1 ifloat128: 3 ildouble: 3 ldouble: 3 diff --git a/sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c b/sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c index 64abe7a..0b80c4f 100644 --- a/sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c +++ b/sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c @@ -21,7 +21,6 @@ #include <math_private.h> #include <x86intrin.h> #include <libm-alias-float.h> -#include "s_sincosf.h" #define SINCOSF __sincosf_fma @@ -31,6 +30,38 @@ # define SINCOSF_FUNC SINCOSF #endif +/* PI/2 with 98 bits of accuracy. */ +static const double PI_2_hi = 0x1.921fb544p+0; +static const double PI_2_lo = 0x1.0b4611a626332p-34; + +static const double SMALL = 0x1p-50; /* 2^-50. */ +static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */ + +#define FLOAT_EXPONENT_SHIFT 23 +#define FLOAT_EXPONENT_BIAS 127 + +static const double pio2_table[] = { + 0 * M_PI_2, + 1 * M_PI_2, + 2 * M_PI_2, + 3 * M_PI_2, + 4 * M_PI_2, + 5 * M_PI_2 +}; + +static const double invpio4_table[] = { + 0x0p+0, + 0x1.45f306cp+0, + 0x1.c9c882ap-28, + 0x1.4fe13a8p-58, + 0x1.f47d4dp-85, + 0x1.bb81b6cp-112, + 0x1.4acc9ep-142, + 0x1.0e4107cp-169 +}; + +static const double ones[] = { 1.0, -1.0 }; + /* Chebyshev constants for sin and cos, range -PI/4 - PI/4. */ static const __v2df V0 = { -0x1.5555555551cd9p-3, -0x1.ffffffffe98aep-2}; static const __v2df V1 = { 0x1.1111110c2688bp-7, 0x1.55555545c50c7p-5 }; diff --git a/sysdeps/x86_64/fpu/s_sincosf_data.c b/sysdeps/x86_64/fpu/s_sincosf_data.c deleted file mode 100644 index 1cc8931..0000000 --- a/sysdeps/x86_64/fpu/s_sincosf_data.c +++ /dev/null @@ -1 +0,0 @@ -/* Not needed. */ |