aboutsummaryrefslogtreecommitdiff
path: root/sysdeps
diff options
context:
space:
mode:
authorJoseph Myers <joseph@codesourcery.com>2015-06-25 21:46:02 +0000
committerJoseph Myers <joseph@codesourcery.com>2015-06-25 21:46:02 +0000
commita8e2112ae3e57fae592d84af2936a61d6239a248 (patch)
treec9a07fad850af11667fffc681b0c5d96c9fe7e3a /sysdeps
parent037e4b993fe03d33055f92dddf7242abd9f6d1de (diff)
downloadglibc-a8e2112ae3e57fae592d84af2936a61d6239a248.zip
glibc-a8e2112ae3e57fae592d84af2936a61d6239a248.tar.gz
glibc-a8e2112ae3e57fae592d84af2936a61d6239a248.tar.bz2
Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
Some existing jn tests, if run in non-default rounding modes, produce errors above those accepted in glibc, which causes problems for moving tests of jn to use ALL_RM_TEST. This patch makes jn set rounding to-nearest internally, as was done for yn some time ago, then computes the appropriate underflowing value for results that underflowed to zero in to-nearest, and moves the tests to ALL_RM_TEST. It does nothing about the general inaccuracy of Bessel function implementations in glibc, though it should make jn more accurate on average in non-default rounding modes through reduced error accumulation. The recomputation of results that underflowed to zero should as a side-effect fix some cases of bug 16559, where jn just used an exact zero, but that is *not* the goal of this patch and other cases of that bug remain unfixed. (Most of the changes in the patch are reindentation to add new scopes for SET_RESTORE_ROUND*.) Tested for x86_64, x86, powerpc and mips64. [BZ #16559] [BZ #18602] * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set round-to-nearest internally then recompute results that underflowed to zero in the original rounding mode. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise * math/libm-test.inc (jn_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Diffstat (limited to 'sysdeps')
-rw-r--r--sysdeps/i386/fpu/libm-test-ulps24
-rw-r--r--sysdeps/ieee754/dbl-64/e_jn.c312
-rw-r--r--sysdeps/ieee754/flt-32/e_jnf.c11
-rw-r--r--sysdeps/ieee754/ldbl-128/e_jnl.c374
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_jnl.c374
-rw-r--r--sysdeps/ieee754/ldbl-96/e_jnl.c380
-rw-r--r--sysdeps/x86_64/fpu/libm-test-ulps24
7 files changed, 789 insertions, 710 deletions
diff --git a/sysdeps/i386/fpu/libm-test-ulps b/sysdeps/i386/fpu/libm-test-ulps
index c9b565f..5a2af00 100644
--- a/sysdeps/i386/fpu/libm-test-ulps
+++ b/sysdeps/i386/fpu/libm-test-ulps
@@ -1613,6 +1613,30 @@ ifloat: 3
ildouble: 4
ldouble: 4
+Function: "jn_downward":
+double: 2
+float: 3
+idouble: 2
+ifloat: 3
+ildouble: 4
+ldouble: 4
+
+Function: "jn_towardzero":
+double: 2
+float: 3
+idouble: 2
+ifloat: 3
+ildouble: 5
+ldouble: 5
+
+Function: "jn_upward":
+double: 2
+float: 3
+idouble: 2
+ifloat: 3
+ildouble: 5
+ldouble: 5
+
Function: "lgamma":
double: 1
float: 1
diff --git a/sysdeps/ieee754/dbl-64/e_jn.c b/sysdeps/ieee754/dbl-64/e_jn.c
index 900737c..b0ddd5e 100644
--- a/sysdeps/ieee754/dbl-64/e_jn.c
+++ b/sysdeps/ieee754/dbl-64/e_jn.c
@@ -52,7 +52,7 @@ double
__ieee754_jn (int n, double x)
{
int32_t i, hx, ix, lx, sgn;
- double a, b, temp, di;
+ double a, b, temp, di, ret;
double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
@@ -75,14 +75,16 @@ __ieee754_jn (int n, double x)
return (__ieee754_j1 (x));
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
x = fabs (x);
- if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
- /* if x is 0 or inf */
- b = zero;
- else if ((double) n <= x)
- {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if (ix >= 0x52D00000) /* x > 2**302 */
- { /* (x >> n**2)
+ {
+ SET_RESTORE_ROUND (FE_TONEAREST);
+ if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
+ /* if x is 0 or inf */
+ return sgn == 1 ? -zero : zero;
+ else if ((double) n <= x)
+ {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x52D00000) /* x > 2**302 */
+ { /* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
@@ -95,152 +97,156 @@ __ieee754_jn (int n, double x)
* 2 -s+c -c-s
* 3 s+c c-s
*/
- double s;
- double c;
- __sincos (x, &s, &c);
- switch (n & 3)
- {
- case 0: temp = c + s; break;
- case 1: temp = -c + s; break;
- case 2: temp = -c - s; break;
- case 3: temp = c - s; break;
- }
- b = invsqrtpi * temp / __ieee754_sqrt (x);
- }
- else
- {
- a = __ieee754_j0 (x);
- b = __ieee754_j1 (x);
- for (i = 1; i < n; i++)
- {
- temp = b;
- b = b * ((double) (i + i) / x) - a; /* avoid underflow */
- a = temp;
- }
- }
- }
- else
- {
- if (ix < 0x3e100000) /* x < 2**-29 */
- { /* x is tiny, return the first Taylor expansion of J(n,x)
+ double s;
+ double c;
+ __sincos (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0: temp = c + s; break;
+ case 1: temp = -c + s; break;
+ case 2: temp = -c - s; break;
+ case 3: temp = c - s; break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrt (x);
+ }
+ else
+ {
+ a = __ieee754_j0 (x);
+ b = __ieee754_j1 (x);
+ for (i = 1; i < n; i++)
+ {
+ temp = b;
+ b = b * ((double) (i + i) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ }
+ else
+ {
+ if (ix < 0x3e100000) /* x < 2**-29 */
+ { /* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
- if (n > 33) /* underflow */
- b = zero;
- else
- {
- temp = x * 0.5; b = temp;
- for (a = one, i = 2; i <= n; i++)
- {
- a *= (double) i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b / a;
- }
- }
- else
- {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- double t, v;
- double q0, q1, h, tmp; int32_t k, m;
- w = (n + n) / (double) x; h = 2.0 / (double) x;
- q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
- while (q1 < 1.0e9)
- {
- k += 1; z += h;
- tmp = z * q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n + n;
- for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
- t = one / (i / x - t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two / x;
- tmp = tmp * __ieee754_log (fabs (v * tmp));
- if (tmp < 7.09782712893383973096e+02)
- {
- for (i = n - 1, di = (double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- }
- }
- else
- {
- for (i = n - 1, di = (double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if (b > 1e100)
- {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- /* j0() and j1() suffer enormous loss of precision at and
- * near zero; however, we know that their zero points never
- * coincide, so just choose the one further away from zero.
- */
- z = __ieee754_j0 (x);
- w = __ieee754_j1 (x);
- if (fabs (z) >= fabs (w))
- b = (t * z / b);
- else
- b = (t * w / a);
- }
- }
- if (sgn == 1)
- return -b;
- else
- return b;
+ if (n > 33) /* underflow */
+ b = zero;
+ else
+ {
+ temp = x * 0.5; b = temp;
+ for (a = one, i = 2; i <= n; i++)
+ {
+ a *= (double) i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b / a;
+ }
+ }
+ else
+ {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ double t, v;
+ double q0, q1, h, tmp; int32_t k, m;
+ w = (n + n) / (double) x; h = 2.0 / (double) x;
+ q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
+ while (q1 < 1.0e9)
+ {
+ k += 1; z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n + n;
+ for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+ t = one / (i / x - t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two / x;
+ tmp = tmp * __ieee754_log (fabs (v * tmp));
+ if (tmp < 7.09782712893383973096e+02)
+ {
+ for (i = n - 1, di = (double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ }
+ }
+ else
+ {
+ for (i = n - 1, di = (double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if (b > 1e100)
+ {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ /* j0() and j1() suffer enormous loss of precision at and
+ * near zero; however, we know that their zero points never
+ * coincide, so just choose the one further away from zero.
+ */
+ z = __ieee754_j0 (x);
+ w = __ieee754_j1 (x);
+ if (fabs (z) >= fabs (w))
+ b = (t * z / b);
+ else
+ b = (t * w / a);
+ }
+ }
+ if (sgn == 1)
+ ret = -b;
+ else
+ ret = b;
+ }
+ if (ret == 0)
+ ret = __copysign (DBL_MIN, ret) * DBL_MIN;
+ return ret;
}
strong_alias (__ieee754_jn, __jn_finite)
diff --git a/sysdeps/ieee754/flt-32/e_jnf.c b/sysdeps/ieee754/flt-32/e_jnf.c
index dc4b371..ec5a81b 100644
--- a/sysdeps/ieee754/flt-32/e_jnf.c
+++ b/sysdeps/ieee754/flt-32/e_jnf.c
@@ -27,6 +27,8 @@ static const float zero = 0.0000000000e+00;
float
__ieee754_jnf(int n, float x)
{
+ float ret;
+ {
int32_t i,hx,ix, sgn;
float a, b, temp, di;
float z, w;
@@ -47,8 +49,9 @@ __ieee754_jnf(int n, float x)
if(n==1) return(__ieee754_j1f(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
+ SET_RESTORE_ROUNDF (FE_TONEAREST);
if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */
- b = zero;
+ return sgn == 1 ? -zero : zero;
else if((float)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
@@ -163,7 +166,11 @@ __ieee754_jnf(int n, float x)
b = (t * w / a);
}
}
- if(sgn==1) return -b; else return b;
+ if(sgn==1) ret = -b; else ret = b;
+ }
+ if (ret == 0)
+ ret = __copysignf (FLT_MIN, ret) * FLT_MIN;
+ return ret;
}
strong_alias (__ieee754_jnf, __jnf_finite)
diff --git a/sysdeps/ieee754/ldbl-128/e_jnl.c b/sysdeps/ieee754/ldbl-128/e_jnl.c
index 422623f..14d65ff 100644
--- a/sysdeps/ieee754/ldbl-128/e_jnl.c
+++ b/sysdeps/ieee754/ldbl-128/e_jnl.c
@@ -73,7 +73,7 @@ __ieee754_jnl (int n, long double x)
{
u_int32_t se;
int32_t i, ix, sgn;
- long double a, b, temp, di;
+ long double a, b, temp, di, ret;
long double z, w;
ieee854_long_double_shape_type u;
@@ -106,192 +106,198 @@ __ieee754_jnl (int n, long double x)
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
x = fabsl (x);
- if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
- b = zero;
- else if ((long double) n <= x)
- {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if (ix >= 0x412D0000)
- { /* x > 2**302 */
+ {
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
+ return sgn == 1 ? -zero : zero;
+ else if ((long double) n <= x)
+ {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x412D0000)
+ { /* x > 2**302 */
- /* ??? Could use an expansion for large x here. */
+ /* ??? Could use an expansion for large x here. */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- long double s;
- long double c;
- __sincosl (x, &s, &c);
- switch (n & 3)
- {
- case 0:
- temp = c + s;
- break;
- case 1:
- temp = -c + s;
- break;
- case 2:
- temp = -c - s;
- break;
- case 3:
- temp = c - s;
- break;
- }
- b = invsqrtpi * temp / __ieee754_sqrtl (x);
- }
- else
- {
- a = __ieee754_j0l (x);
- b = __ieee754_j1l (x);
- for (i = 1; i < n; i++)
- {
- temp = b;
- b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
- a = temp;
- }
- }
- }
- else
- {
- if (ix < 0x3fc60000)
- { /* x < 2**-57 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (n >= 400) /* underflow, result < 10^-4952 */
- b = zero;
- else
- {
- temp = x * 0.5;
- b = temp;
- for (a = one, i = 2; i <= n; i++)
- {
- a *= (long double) i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b / a;
- }
- }
- else
- {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- long double t, v;
- long double q0, q1, h, tmp;
- int32_t k, m;
- w = (n + n) / (long double) x;
- h = 2.0L / (long double) x;
- q0 = w;
- z = w + h;
- q1 = w * z - 1.0L;
- k = 1;
- while (q1 < 1.0e17L)
- {
- k += 1;
- z += h;
- tmp = z * q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n + n;
- for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
- t = one / (i / x - t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two / x;
- tmp = tmp * __ieee754_logl (fabsl (v * tmp));
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ long double s;
+ long double c;
+ __sincosl (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0:
+ temp = c + s;
+ break;
+ case 1:
+ temp = -c + s;
+ break;
+ case 2:
+ temp = -c - s;
+ break;
+ case 3:
+ temp = c - s;
+ break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrtl (x);
+ }
+ else
+ {
+ a = __ieee754_j0l (x);
+ b = __ieee754_j1l (x);
+ for (i = 1; i < n; i++)
+ {
+ temp = b;
+ b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ }
+ else
+ {
+ if (ix < 0x3fc60000)
+ { /* x < 2**-57 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (n >= 400) /* underflow, result < 10^-4952 */
+ b = zero;
+ else
+ {
+ temp = x * 0.5;
+ b = temp;
+ for (a = one, i = 2; i <= n; i++)
+ {
+ a *= (long double) i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b / a;
+ }
+ }
+ else
+ {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ long double t, v;
+ long double q0, q1, h, tmp;
+ int32_t k, m;
+ w = (n + n) / (long double) x;
+ h = 2.0L / (long double) x;
+ q0 = w;
+ z = w + h;
+ q1 = w * z - 1.0L;
+ k = 1;
+ while (q1 < 1.0e17L)
+ {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n + n;
+ for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+ t = one / (i / x - t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two / x;
+ tmp = tmp * __ieee754_logl (fabsl (v * tmp));
- if (tmp < 1.1356523406294143949491931077970765006170e+04L)
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- }
- }
- else
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if (b > 1e100L)
- {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- /* j0() and j1() suffer enormous loss of precision at and
- * near zero; however, we know that their zero points never
- * coincide, so just choose the one further away from zero.
- */
- z = __ieee754_j0l (x);
- w = __ieee754_j1l (x);
- if (fabsl (z) >= fabsl (w))
- b = (t * z / b);
- else
- b = (t * w / a);
- }
- }
- if (sgn == 1)
- return -b;
- else
- return b;
+ if (tmp < 1.1356523406294143949491931077970765006170e+04L)
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ }
+ }
+ else
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if (b > 1e100L)
+ {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ /* j0() and j1() suffer enormous loss of precision at and
+ * near zero; however, we know that their zero points never
+ * coincide, so just choose the one further away from zero.
+ */
+ z = __ieee754_j0l (x);
+ w = __ieee754_j1l (x);
+ if (fabsl (z) >= fabsl (w))
+ b = (t * z / b);
+ else
+ b = (t * w / a);
+ }
+ }
+ if (sgn == 1)
+ ret = -b;
+ else
+ ret = b;
+ }
+ if (ret == 0)
+ ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
+ return ret;
}
strong_alias (__ieee754_jnl, __jnl_finite)
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_jnl.c b/sysdeps/ieee754/ldbl-128ibm/e_jnl.c
index d2b9318..5d0a2b5 100644
--- a/sysdeps/ieee754/ldbl-128ibm/e_jnl.c
+++ b/sysdeps/ieee754/ldbl-128ibm/e_jnl.c
@@ -73,7 +73,7 @@ __ieee754_jnl (int n, long double x)
{
uint32_t se, lx;
int32_t i, ix, sgn;
- long double a, b, temp, di;
+ long double a, b, temp, di, ret;
long double z, w;
double xhi;
@@ -106,192 +106,198 @@ __ieee754_jnl (int n, long double x)
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
x = fabsl (x);
- if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
- b = zero;
- else if ((long double) n <= x)
- {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if (ix >= 0x52d00000)
- { /* x > 2**302 */
+ {
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
+ return sgn == 1 ? -zero : zero;
+ else if ((long double) n <= x)
+ {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x52d00000)
+ { /* x > 2**302 */
- /* ??? Could use an expansion for large x here. */
+ /* ??? Could use an expansion for large x here. */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- long double s;
- long double c;
- __sincosl (x, &s, &c);
- switch (n & 3)
- {
- case 0:
- temp = c + s;
- break;
- case 1:
- temp = -c + s;
- break;
- case 2:
- temp = -c - s;
- break;
- case 3:
- temp = c - s;
- break;
- }
- b = invsqrtpi * temp / __ieee754_sqrtl (x);
- }
- else
- {
- a = __ieee754_j0l (x);
- b = __ieee754_j1l (x);
- for (i = 1; i < n; i++)
- {
- temp = b;
- b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
- a = temp;
- }
- }
- }
- else
- {
- if (ix < 0x3e100000)
- { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (n >= 33) /* underflow, result < 10^-300 */
- b = zero;
- else
- {
- temp = x * 0.5;
- b = temp;
- for (a = one, i = 2; i <= n; i++)
- {
- a *= (long double) i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b / a;
- }
- }
- else
- {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- long double t, v;
- long double q0, q1, h, tmp;
- int32_t k, m;
- w = (n + n) / (long double) x;
- h = 2.0L / (long double) x;
- q0 = w;
- z = w + h;
- q1 = w * z - 1.0L;
- k = 1;
- while (q1 < 1.0e17L)
- {
- k += 1;
- z += h;
- tmp = z * q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n + n;
- for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
- t = one / (i / x - t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two / x;
- tmp = tmp * __ieee754_logl (fabsl (v * tmp));
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ long double s;
+ long double c;
+ __sincosl (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0:
+ temp = c + s;
+ break;
+ case 1:
+ temp = -c + s;
+ break;
+ case 2:
+ temp = -c - s;
+ break;
+ case 3:
+ temp = c - s;
+ break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrtl (x);
+ }
+ else
+ {
+ a = __ieee754_j0l (x);
+ b = __ieee754_j1l (x);
+ for (i = 1; i < n; i++)
+ {
+ temp = b;
+ b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ }
+ else
+ {
+ if (ix < 0x3e100000)
+ { /* x < 2**-29 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (n >= 33) /* underflow, result < 10^-300 */
+ b = zero;
+ else
+ {
+ temp = x * 0.5;
+ b = temp;
+ for (a = one, i = 2; i <= n; i++)
+ {
+ a *= (long double) i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b / a;
+ }
+ }
+ else
+ {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ long double t, v;
+ long double q0, q1, h, tmp;
+ int32_t k, m;
+ w = (n + n) / (long double) x;
+ h = 2.0L / (long double) x;
+ q0 = w;
+ z = w + h;
+ q1 = w * z - 1.0L;
+ k = 1;
+ while (q1 < 1.0e17L)
+ {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n + n;
+ for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+ t = one / (i / x - t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two / x;
+ tmp = tmp * __ieee754_logl (fabsl (v * tmp));
- if (tmp < 1.1356523406294143949491931077970765006170e+04L)
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- }
- }
- else
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if (b > 1e100L)
- {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- /* j0() and j1() suffer enormous loss of precision at and
- * near zero; however, we know that their zero points never
- * coincide, so just choose the one further away from zero.
- */
- z = __ieee754_j0l (x);
- w = __ieee754_j1l (x);
- if (fabsl (z) >= fabsl (w))
- b = (t * z / b);
- else
- b = (t * w / a);
- }
- }
- if (sgn == 1)
- return -b;
- else
- return b;
+ if (tmp < 1.1356523406294143949491931077970765006170e+04L)
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ }
+ }
+ else
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if (b > 1e100L)
+ {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ /* j0() and j1() suffer enormous loss of precision at and
+ * near zero; however, we know that their zero points never
+ * coincide, so just choose the one further away from zero.
+ */
+ z = __ieee754_j0l (x);
+ w = __ieee754_j1l (x);
+ if (fabsl (z) >= fabsl (w))
+ b = (t * z / b);
+ else
+ b = (t * w / a);
+ }
+ }
+ if (sgn == 1)
+ ret = -b;
+ else
+ ret = b;
+ }
+ if (ret == 0)
+ ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
+ return ret;
}
strong_alias (__ieee754_jnl, __jnl_finite)
diff --git a/sysdeps/ieee754/ldbl-96/e_jnl.c b/sysdeps/ieee754/ldbl-96/e_jnl.c
index a666808..49c9c42 100644
--- a/sysdeps/ieee754/ldbl-96/e_jnl.c
+++ b/sysdeps/ieee754/ldbl-96/e_jnl.c
@@ -71,7 +71,7 @@ __ieee754_jnl (int n, long double x)
{
u_int32_t se, i0, i1;
int32_t i, ix, sgn;
- long double a, b, temp, di;
+ long double a, b, temp, di, ret;
long double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
@@ -96,195 +96,201 @@ __ieee754_jnl (int n, long double x)
return (__ieee754_j1l (x));
sgn = (n & 1) & (se >> 15); /* even n -- 0, odd n -- sign(x) */
x = fabsl (x);
- if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
- /* if x is 0 or inf */
- b = zero;
- else if ((long double) n <= x)
- {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if (ix >= 0x412D)
- { /* x > 2**302 */
+ {
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
+ /* if x is 0 or inf */
+ return sgn == 1 ? -zero : zero;
+ else if ((long double) n <= x)
+ {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x412D)
+ { /* x > 2**302 */
- /* ??? This might be a futile gesture.
- If x exceeds X_TLOSS anyway, the wrapper function
- will set the result to zero. */
+ /* ??? This might be a futile gesture.
+ If x exceeds X_TLOSS anyway, the wrapper function
+ will set the result to zero. */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- long double s;
- long double c;
- __sincosl (x, &s, &c);
- switch (n & 3)
- {
- case 0:
- temp = c + s;
- break;
- case 1:
- temp = -c + s;
- break;
- case 2:
- temp = -c - s;
- break;
- case 3:
- temp = c - s;
- break;
- }
- b = invsqrtpi * temp / __ieee754_sqrtl (x);
- }
- else
- {
- a = __ieee754_j0l (x);
- b = __ieee754_j1l (x);
- for (i = 1; i < n; i++)
- {
- temp = b;
- b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
- a = temp;
- }
- }
- }
- else
- {
- if (ix < 0x3fde)
- { /* x < 2**-33 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (n >= 400) /* underflow, result < 10^-4952 */
- b = zero;
- else
- {
- temp = x * 0.5;
- b = temp;
- for (a = one, i = 2; i <= n; i++)
- {
- a *= (long double) i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b / a;
- }
- }
- else
- {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- long double t, v;
- long double q0, q1, h, tmp;
- int32_t k, m;
- w = (n + n) / (long double) x;
- h = 2.0L / (long double) x;
- q0 = w;
- z = w + h;
- q1 = w * z - 1.0L;
- k = 1;
- while (q1 < 1.0e11L)
- {
- k += 1;
- z += h;
- tmp = z * q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n + n;
- for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
- t = one / (i / x - t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two / x;
- tmp = tmp * __ieee754_logl (fabsl (v * tmp));
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ long double s;
+ long double c;
+ __sincosl (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0:
+ temp = c + s;
+ break;
+ case 1:
+ temp = -c + s;
+ break;
+ case 2:
+ temp = -c - s;
+ break;
+ case 3:
+ temp = c - s;
+ break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrtl (x);
+ }
+ else
+ {
+ a = __ieee754_j0l (x);
+ b = __ieee754_j1l (x);
+ for (i = 1; i < n; i++)
+ {
+ temp = b;
+ b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ }
+ else
+ {
+ if (ix < 0x3fde)
+ { /* x < 2**-33 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (n >= 400) /* underflow, result < 10^-4952 */
+ b = zero;
+ else
+ {
+ temp = x * 0.5;
+ b = temp;
+ for (a = one, i = 2; i <= n; i++)
+ {
+ a *= (long double) i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b / a;
+ }
+ }
+ else
+ {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ long double t, v;
+ long double q0, q1, h, tmp;
+ int32_t k, m;
+ w = (n + n) / (long double) x;
+ h = 2.0L / (long double) x;
+ q0 = w;
+ z = w + h;
+ q1 = w * z - 1.0L;
+ k = 1;
+ while (q1 < 1.0e11L)
+ {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n + n;
+ for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+ t = one / (i / x - t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two / x;
+ tmp = tmp * __ieee754_logl (fabsl (v * tmp));
- if (tmp < 1.1356523406294143949491931077970765006170e+04L)
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- }
- }
- else
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if (b > 1e100L)
- {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- /* j0() and j1() suffer enormous loss of precision at and
- * near zero; however, we know that their zero points never
- * coincide, so just choose the one further away from zero.
- */
- z = __ieee754_j0l (x);
- w = __ieee754_j1l (x);
- if (fabsl (z) >= fabsl (w))
- b = (t * z / b);
- else
- b = (t * w / a);
- }
- }
- if (sgn == 1)
- return -b;
- else
- return b;
+ if (tmp < 1.1356523406294143949491931077970765006170e+04L)
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ }
+ }
+ else
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if (b > 1e100L)
+ {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ /* j0() and j1() suffer enormous loss of precision at and
+ * near zero; however, we know that their zero points never
+ * coincide, so just choose the one further away from zero.
+ */
+ z = __ieee754_j0l (x);
+ w = __ieee754_j1l (x);
+ if (fabsl (z) >= fabsl (w))
+ b = (t * z / b);
+ else
+ b = (t * w / a);
+ }
+ }
+ if (sgn == 1)
+ ret = -b;
+ else
+ ret = b;
+ }
+ if (ret == 0)
+ ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
+ return ret;
}
strong_alias (__ieee754_jnl, __jnl_finite)
diff --git a/sysdeps/x86_64/fpu/libm-test-ulps b/sysdeps/x86_64/fpu/libm-test-ulps
index 48d11a6..12d0c5a 100644
--- a/sysdeps/x86_64/fpu/libm-test-ulps
+++ b/sysdeps/x86_64/fpu/libm-test-ulps
@@ -1767,6 +1767,30 @@ ifloat: 4
ildouble: 4
ldouble: 4
+Function: "jn_downward":
+double: 5
+float: 5
+idouble: 5
+ifloat: 5
+ildouble: 4
+ldouble: 4
+
+Function: "jn_towardzero":
+double: 5
+float: 5
+idouble: 5
+ifloat: 5
+ildouble: 5
+ldouble: 5
+
+Function: "jn_upward":
+double: 5
+float: 5
+idouble: 5
+ifloat: 5
+ildouble: 5
+ldouble: 5
+
Function: "lgamma":
double: 2
float: 2