aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/powerpc/fpu
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-05-26 04:47:00 +0000
committerUlrich Drepper <drepper@redhat.com>2004-05-26 04:47:00 +0000
commitffdd5e50e18b0cb212acad135e421d932cf3d3a2 (patch)
tree0a2b8dfc93270b99dbbb314cc68152ea2c5b230a /sysdeps/powerpc/fpu
parenta752d0cc542a891a086d486654a43212f1821360 (diff)
downloadglibc-ffdd5e50e18b0cb212acad135e421d932cf3d3a2.zip
glibc-ffdd5e50e18b0cb212acad135e421d932cf3d3a2.tar.gz
glibc-ffdd5e50e18b0cb212acad135e421d932cf3d3a2.tar.bz2
Update.
2004-05-25 Steven Munroe <sjmunroe@us.ibm.com> * sysdeps/powerpc/fpu/Makefile: Make ld.so a dependency of libm.so. * sysdeps/powerpc/fpu/bits/mathinline.h [__LIBC_INERNAL_MATH_INLINES] (__ieee754_sqrt): Define as __MATH_INLINE using fsqrt instruction. (__ieee754_sqrtf): Define as __MATH_INLINE using fsqrts instruction. * sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Moved implementation from w_sqrt.c. * sysdeps/powerpc/fpu/e_sqrtf.c (__slow_ieee754_sqrtf): Moved implementation from w_sqrtf.c. * sysdeps/powerpc/fpu/w_sqrt.c (__sqrt): Wrapper implementation using inline __ieee754_sqrt(). * sysdeps/powerpc/fpu/w_sqrtf.c (__sqrtf): Wrapper implementation using inline __ieee754_sqrtf(). * sysdeps/powerpc/powerpc32/sysdep.h [__ASSEMBLER__]: Include <sysdeps/powerpc/sysdep.h> independent of __ASSEMBLER__. * sysdeps/powerpc/sysdep.h [__ASSEMBLER__] (PPC_FEATURE_*): Define PPC_FEATURE_* independent of __ASSEMBLER__. 2004-05-25 Jakub Jelinek <jakub@redhat.com> * sysdeps/pthread/aio_notify.c: Use <> instead of "" for aio_misc.h include. (aio_start_notify_thread): Define if not defined. (notify_func_wrapper): Use it. * sysdeps/pthread/aio_misc.c: Use <> instead of "" for aio_misc.h include. (aio_create_helper_thread): Define if not defined. (__aio_create_helper_thread): New function. (__aio_enqueue_request): Use aio_create_helper_thread. * nis/ypclnt.c (ypall_data, ypall_foreach): Remove. (struct ypresp_all_data): New type. (__xdr_ypresp_all): Change second argument to struct ypresp_all_data *. Replace ypall_foreach and ypall_data with objp->foreach and objp->data. (yp_all): Remove status variable, add data. Replace all uses of status with data.status. Initialize data.foreach and data.data instead of ypall_foreach and ypall_data. 2004-05-24 Jakub Jelinek <jakub@redhat.com> * elf/dl-lookup.c (add_dependency): Set DF_1_NODELETE bit in l_flags_1, not in l_flags.
Diffstat (limited to 'sysdeps/powerpc/fpu')
-rw-r--r--sysdeps/powerpc/fpu/Makefile3
-rw-r--r--sysdeps/powerpc/fpu/bits/mathinline.h52
-rw-r--r--sysdeps/powerpc/fpu/e_sqrt.c186
-rw-r--r--sysdeps/powerpc/fpu/e_sqrtf.c163
-rw-r--r--sysdeps/powerpc/fpu/w_sqrt.c143
-rw-r--r--sysdeps/powerpc/fpu/w_sqrtf.c138
6 files changed, 454 insertions, 231 deletions
diff --git a/sysdeps/powerpc/fpu/Makefile b/sysdeps/powerpc/fpu/Makefile
index bf2ed92..d0fe4a8 100644
--- a/sysdeps/powerpc/fpu/Makefile
+++ b/sysdeps/powerpc/fpu/Makefile
@@ -1,3 +1,6 @@
ifeq ($(subdir),math)
libm-support += fenv_const fe_nomask t_sqrt
+
+# libm needs ld.so to access dl_hwcap
+$(objpfx)libm.so: $(elfobjdir)/ld.so
endif
diff --git a/sysdeps/powerpc/fpu/bits/mathinline.h b/sysdeps/powerpc/fpu/bits/mathinline.h
index e692df9..d9206d4 100644
--- a/sysdeps/powerpc/fpu/bits/mathinline.h
+++ b/sysdeps/powerpc/fpu/bits/mathinline.h
@@ -121,4 +121,56 @@ fdimf (float __x, float __y) __THROW
#endif /* __USE_ISOC99 */
#endif /* !__NO_MATH_INLINES && __OPTIMIZE__ */
+
+/* This code is used internally in the GNU libc. */
+# ifdef __LIBC_INTERNAL_MATH_INLINES
+
+#include <sysdep.h>
+#include <ldsodefs.h>
+#include <dl-procinfo.h>
+
+extern double __slow_ieee754_sqrt (double);
+__MATH_INLINE double
+__ieee754_sqrt (double __x)
+{
+ double __z;
+
+ /* If the CPU is 64-bit we can use the optional FP instructions we. */
+ if ((GLRO(dl_hwcap) & PPC_FEATURE_64) != 0)
+ {
+ /* Volatile is required to prevent the compiler from moving the
+ fsqrt instruction above the branch. */
+ __asm __volatile (
+ " fsqrt %0,%1\n"
+ : "=f" (__z)
+ : "f" (__x));
+ }
+ else
+ __z = __slow_ieee754_sqrt(__x);
+
+ return __z;
+}
+
+extern float __slow_ieee754_sqrtf (float);
+__MATH_INLINE float
+__ieee754_sqrtf (float __x)
+{
+ float __z;
+
+ /* If the CPU is 64-bit we can use the optional FP instructions we. */
+ if ((GLRO(dl_hwcap) & PPC_FEATURE_64) != 0)
+ {
+ /* Volatile is required to prevent the compiler from moving the
+ fsqrts instruction above the branch. */
+ __asm __volatile (
+ " fsqrts %0,%1\n"
+ : "=f" (__z)
+ : "f" (__x));
+ }
+ else
+ __z = __slow_ieee754_sqrtf(__x);
+
+ return __z;
+}
+# endif /* __LIBC_INTERNAL_MATH_INLINES */
#endif /* __GNUC__ && !_SOFT_FLOAT */
diff --git a/sysdeps/powerpc/fpu/e_sqrt.c b/sysdeps/powerpc/fpu/e_sqrt.c
index 9416ea6..eb9984d 100644
--- a/sysdeps/powerpc/fpu/e_sqrt.c
+++ b/sysdeps/powerpc/fpu/e_sqrt.c
@@ -1 +1,185 @@
-/* __ieee754_sqrt is in w_sqrt.c */
+/* Double-precision floating point square root.
+ Copyright (C) 1997, 2002, 2003, 2004 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <math.h>
+#include <math_private.h>
+#include <fenv_libc.h>
+#include <inttypes.h>
+
+#include <sysdep.h>
+#include <ldsodefs.h>
+#include <dl-procinfo.h>
+
+static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
+static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
+static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
+static const float two108 = 3.245185536584267269e+32;
+static const float twom54 = 5.551115123125782702e-17;
+extern const float __t_sqrt[1024];
+
+/* The method is based on a description in
+ Computation of elementary functions on the IBM RISC System/6000 processor,
+ P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
+ Basically, it consists of two interleaved Newton-Rhapson approximations,
+ one to find the actual square root, and one to find its reciprocal
+ without the expense of a division operation. The tricky bit here
+ is the use of the POWER/PowerPC multiply-add operation to get the
+ required accuracy with high speed.
+
+ The argument reduction works by a combination of table lookup to
+ obtain the initial guesses, and some careful modification of the
+ generated guesses (which mostly runs on the integer unit, while the
+ Newton-Rhapson is running on the FPU). */
+
+#ifdef __STDC__
+double
+__slow_ieee754_sqrt (double x)
+#else
+double
+__slow_ieee754_sqrt (x)
+ double x;
+#endif
+{
+ const float inf = a_inf.value;
+
+ if (x > 0)
+ {
+ /* schedule the EXTRACT_WORDS to get separation between the store
+ and the load. */
+ ieee_double_shape_type ew_u;
+ ieee_double_shape_type iw_u;
+ ew_u.value = (x);
+ if (x != inf)
+ {
+ /* Variables named starting with 's' exist in the
+ argument-reduced space, so that 2 > sx >= 0.5,
+ 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
+ Variables named ending with 'i' are integer versions of
+ floating-point values. */
+ double sx; /* The value of which we're trying to find the
+ square root. */
+ double sg, g; /* Guess of the square root of x. */
+ double sd, d; /* Difference between the square of the guess and x. */
+ double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
+ double sy2; /* 2*sy */
+ double e; /* Difference between y*g and 1/2 (se = e * fsy). */
+ double shx; /* == sx * fsg */
+ double fsg; /* sg*fsg == g. */
+ fenv_t fe; /* Saved floating-point environment (stores rounding
+ mode and whether the inexact exception is
+ enabled). */
+ uint32_t xi0, xi1, sxi, fsgi;
+ const float *t_sqrt;
+
+ fe = fegetenv_register ();
+ /* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
+ xi0 = ew_u.parts.msw;
+ xi1 = ew_u.parts.lsw;
+ relax_fenv_state ();
+ sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
+ /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
+ between the store and the load. */
+ iw_u.parts.msw = sxi;
+ iw_u.parts.lsw = xi1;
+ t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
+ sg = t_sqrt[0];
+ sy = t_sqrt[1];
+ /* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
+ sx = iw_u.value;
+
+ /* Here we have three Newton-Rhapson iterations each of a
+ division and a square root and the remainder of the
+ argument reduction, all interleaved. */
+ sd = -(sg * sg - sx);
+ fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
+ sy2 = sy + sy;
+ sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
+
+ /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
+ between the store and the load. */
+ INSERT_WORDS (fsg, fsgi, 0);
+ iw_u.parts.msw = fsgi;
+ iw_u.parts.lsw = (0);
+ e = -(sy * sg - almost_half);
+ sd = -(sg * sg - sx);
+ if ((xi0 & 0x7ff00000) == 0)
+ goto denorm;
+ sy = sy + e * sy2;
+ sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx). */
+ sy2 = sy + sy;
+ /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
+ fsg = iw_u.value;
+ e = -(sy * sg - almost_half);
+ sd = -(sg * sg - sx);
+ sy = sy + e * sy2;
+ shx = sx * fsg;
+ sg = sg + sy * sd; /* 64-bit approximation to sqrt(sx),
+ but perhaps rounded incorrectly. */
+ sy2 = sy + sy;
+ g = sg * fsg;
+ e = -(sy * sg - almost_half);
+ d = -(g * sg - shx);
+ sy = sy + e * sy2;
+ fesetenv_register (fe);
+ return g + sy * d;
+ denorm:
+ /* For denormalised numbers, we normalise, calculate the
+ square root, and return an adjusted result. */
+ fesetenv_register (fe);
+ return __slow_ieee754_sqrt (x * two108) * twom54;
+ }
+ }
+ else if (x < 0)
+ {
+ /* For some reason, some PowerPC32 processors don't implement
+ FE_INVALID_SQRT. */
+#ifdef FE_INVALID_SQRT
+ feraiseexcept (FE_INVALID_SQRT);
+ if (!fetestexcept (FE_INVALID))
+#endif
+ feraiseexcept (FE_INVALID);
+ x = a_nan.value;
+ }
+ return f_wash (x);
+}
+
+#ifdef __STDC__
+double
+__ieee754_sqrt (double x)
+#else
+double
+__ieee754_sqrt (x)
+ double x;
+#endif
+{
+ double z;
+
+ /* If the CPU is 64-bit we can use the optional FP instructions we. */
+ if ((GLRO (dl_hwcap) & PPC_FEATURE_64) != 0)
+ {
+ /* Volatile is required to prevent the compiler from moving the
+ fsqrt instruction above the branch. */
+ __asm __volatile (" fsqrt %0,%1\n"
+ :"=f" (z):"f" (x));
+ }
+ else
+ z = __slow_ieee754_sqrt (x);
+
+ return z;
+}
diff --git a/sysdeps/powerpc/fpu/e_sqrtf.c b/sysdeps/powerpc/fpu/e_sqrtf.c
index 01c76d6..9b70101 100644
--- a/sysdeps/powerpc/fpu/e_sqrtf.c
+++ b/sysdeps/powerpc/fpu/e_sqrtf.c
@@ -1 +1,162 @@
-/* __ieee754_sqrtf is in w_sqrtf.c */
+/* Single-precision floating point square root.
+ Copyright (C) 1997, 2003, 2004 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <math.h>
+#include <math_private.h>
+#include <fenv_libc.h>
+#include <inttypes.h>
+
+#include <sysdep.h>
+#include <ldsodefs.h>
+#include <dl-procinfo.h>
+
+static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
+static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
+static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
+static const float two48 = 281474976710656.0;
+static const float twom24 = 5.9604644775390625e-8;
+extern const float __t_sqrt[1024];
+
+/* The method is based on a description in
+ Computation of elementary functions on the IBM RISC System/6000 processor,
+ P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
+ Basically, it consists of two interleaved Newton-Rhapson approximations,
+ one to find the actual square root, and one to find its reciprocal
+ without the expense of a division operation. The tricky bit here
+ is the use of the POWER/PowerPC multiply-add operation to get the
+ required accuracy with high speed.
+
+ The argument reduction works by a combination of table lookup to
+ obtain the initial guesses, and some careful modification of the
+ generated guesses (which mostly runs on the integer unit, while the
+ Newton-Rhapson is running on the FPU). */
+
+#ifdef __STDC__
+float
+__slow_ieee754_sqrtf (float x)
+#else
+float
+__slow_ieee754_sqrtf (x)
+ float x;
+#endif
+{
+ const float inf = a_inf.value;
+
+ if (x > 0)
+ {
+ if (x != inf)
+ {
+ /* Variables named starting with 's' exist in the
+ argument-reduced space, so that 2 > sx >= 0.5,
+ 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
+ Variables named ending with 'i' are integer versions of
+ floating-point values. */
+ float sx; /* The value of which we're trying to find the square
+ root. */
+ float sg, g; /* Guess of the square root of x. */
+ float sd, d; /* Difference between the square of the guess and x. */
+ float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
+ float sy2; /* 2*sy */
+ float e; /* Difference between y*g and 1/2 (note that e==se). */
+ float shx; /* == sx * fsg */
+ float fsg; /* sg*fsg == g. */
+ fenv_t fe; /* Saved floating-point environment (stores rounding
+ mode and whether the inexact exception is
+ enabled). */
+ uint32_t xi, sxi, fsgi;
+ const float *t_sqrt;
+
+ GET_FLOAT_WORD (xi, x);
+ fe = fegetenv_register ();
+ relax_fenv_state ();
+ sxi = (xi & 0x3fffffff) | 0x3f000000;
+ SET_FLOAT_WORD (sx, sxi);
+ t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
+ sg = t_sqrt[0];
+ sy = t_sqrt[1];
+
+ /* Here we have three Newton-Rhapson iterations each of a
+ division and a square root and the remainder of the
+ argument reduction, all interleaved. */
+ sd = -(sg * sg - sx);
+ fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
+ sy2 = sy + sy;
+ sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
+ e = -(sy * sg - almost_half);
+ SET_FLOAT_WORD (fsg, fsgi);
+ sd = -(sg * sg - sx);
+ sy = sy + e * sy2;
+ if ((xi & 0x7f800000) == 0)
+ goto denorm;
+ shx = sx * fsg;
+ sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx),
+ but perhaps rounded incorrectly. */
+ sy2 = sy + sy;
+ g = sg * fsg;
+ e = -(sy * sg - almost_half);
+ d = -(g * sg - shx);
+ sy = sy + e * sy2;
+ fesetenv_register (fe);
+ return g + sy * d;
+ denorm:
+ /* For denormalised numbers, we normalise, calculate the
+ square root, and return an adjusted result. */
+ fesetenv_register (fe);
+ return __slow_ieee754_sqrtf (x * two48) * twom24;
+ }
+ }
+ else if (x < 0)
+ {
+ /* For some reason, some PowerPC32 processors don't implement
+ FE_INVALID_SQRT. */
+#ifdef FE_INVALID_SQRT
+ feraiseexcept (FE_INVALID_SQRT);
+ if (!fetestexcept (FE_INVALID))
+#endif
+ feraiseexcept (FE_INVALID);
+ x = a_nan.value;
+ }
+ return f_washf (x);
+}
+
+
+#ifdef __STDC__
+float
+__ieee754_sqrtf (float x)
+#else
+float
+__ieee754_sqrtf (x)
+ float x;
+#endif
+{
+ double z;
+
+ /* If the CPU is 64-bit we can use the optional FP instructions we. */
+ if ((GLRO (dl_hwcap) & PPC_FEATURE_64) != 0)
+ {
+ /* Volatile is required to prevent the compiler from moving the
+ fsqrt instruction above the branch. */
+ __asm __volatile (" fsqrts %0,%1\n"
+ :"=f" (z):"f" (x));
+ }
+ else
+ z = __slow_ieee754_sqrtf (x);
+
+ return z;
+}
diff --git a/sysdeps/powerpc/fpu/w_sqrt.c b/sysdeps/powerpc/fpu/w_sqrt.c
index ff03317..806d8e4 100644
--- a/sysdeps/powerpc/fpu/w_sqrt.c
+++ b/sysdeps/powerpc/fpu/w_sqrt.c
@@ -1,5 +1,5 @@
-/* Double-precision floating point square root.
- Copyright (C) 1997, 2002, 2003 Free Software Foundation, Inc.
+/* Double-precision floating point square root wrapper.
+ Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@@ -17,130 +17,35 @@
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
-#include <math.h>
-#include <math_private.h>
+#include "math.h"
+#include "math_private.h"
#include <fenv_libc.h>
-#include <inttypes.h>
-static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
-static const ieee_float_shape_type a_nan = { .word = 0x7fc00000 };
-static const ieee_float_shape_type a_inf = { .word = 0x7f800000 };
-static const float two108 = 3.245185536584267269e+32;
-static const float twom54 = 5.551115123125782702e-17;
-extern const float __t_sqrt[1024];
-
-/* The method is based on a description in
- Computation of elementary functions on the IBM RISC System/6000 processor,
- P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
- Basically, it consists of two interleaved Newton-Rhapson approximations,
- one to find the actual square root, and one to find its reciprocal
- without the expense of a division operation. The tricky bit here
- is the use of the POWER/PowerPC multiply-add operation to get the
- required accuracy with high speed.
-
- The argument reduction works by a combination of table lookup to
- obtain the initial guesses, and some careful modification of the
- generated guesses (which mostly runs on the integer unit, while the
- Newton-Rhapson is running on the FPU). */
+#ifdef __STDC__
double
-__sqrt(double x)
-{
- const float inf = a_inf.value;
- /* x = f_wash(x); *//* This ensures only one exception for SNaN. */
- if (x > 0)
- {
- if (x != inf)
- {
- /* Variables named starting with 's' exist in the
- argument-reduced space, so that 2 > sx >= 0.5,
- 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
- Variables named ending with 'i' are integer versions of
- floating-point values. */
- double sx; /* The value of which we're trying to find the
- square root. */
- double sg,g; /* Guess of the square root of x. */
- double sd,d; /* Difference between the square of the guess and x. */
- double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
- double sy2; /* 2*sy */
- double e; /* Difference between y*g and 1/2 (se = e * fsy). */
- double shx; /* == sx * fsg */
- double fsg; /* sg*fsg == g. */
- fenv_t fe; /* Saved floating-point environment (stores rounding
- mode and whether the inexact exception is
- enabled). */
- uint32_t xi0, xi1, sxi, fsgi;
- const float *t_sqrt;
-
- fe = fegetenv_register();
- EXTRACT_WORDS (xi0,xi1,x);
- relax_fenv_state();
- sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
- INSERT_WORDS (sx, sxi, xi1);
- t_sqrt = __t_sqrt + (xi0 >> (52-32-8-1) & 0x3fe);
- sg = t_sqrt[0];
- sy = t_sqrt[1];
-
- /* Here we have three Newton-Rhapson iterations each of a
- division and a square root and the remainder of the
- argument reduction, all interleaved. */
- sd = -(sg*sg - sx);
- fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
- sy2 = sy + sy;
- sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */
- INSERT_WORDS (fsg, fsgi, 0);
- e = -(sy*sg - almost_half);
- sd = -(sg*sg - sx);
- if ((xi0 & 0x7ff00000) == 0)
- goto denorm;
- sy = sy + e*sy2;
- sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx). */
- sy2 = sy + sy;
- e = -(sy*sg - almost_half);
- sd = -(sg*sg - sx);
- sy = sy + e*sy2;
- shx = sx * fsg;
- sg = sg + sy*sd; /* 64-bit approximation to sqrt(sx),
- but perhaps rounded incorrectly. */
- sy2 = sy + sy;
- g = sg * fsg;
- e = -(sy*sg - almost_half);
- d = -(g*sg - shx);
- sy = sy + e*sy2;
- fesetenv_register (fe);
- return g + sy*d;
- denorm:
- /* For denormalised numbers, we normalise, calculate the
- square root, and return an adjusted result. */
- fesetenv_register (fe);
- return __sqrt(x * two108) * twom54;
- }
- }
- else if (x < 0)
- {
-#ifdef FE_INVALID_SQRT
- feraiseexcept (FE_INVALID_SQRT);
- /* For some reason, some PowerPC processors don't implement
- FE_INVALID_SQRT. I guess no-one ever thought they'd be
- used for square roots... :-) */
- if (!fetestexcept (FE_INVALID))
+__sqrt (double x) /* wrapper sqrt */
+#else
+double
+__sqrt (x) /* wrapper sqrt */
+ double x;
#endif
- feraiseexcept (FE_INVALID);
-#ifndef _IEEE_LIBM
- if (_LIB_VERSION != _IEEE_)
- x = __kernel_standard(x,x,26);
- else
+{
+#ifdef _IEEE_LIBM
+ return __ieee754_sqrt (x);
+#else
+ double z;
+ z = __ieee754_sqrt (x);
+ if (_LIB_VERSION == _IEEE_ || (x != x))
+ return z;
+
+ if (x < 0.0)
+ return __kernel_standard (x, x, 26); /* sqrt(negative) */
+ else
+ return z;
#endif
- x = a_nan.value;
- }
- return f_wash(x);
}
weak_alias (__sqrt, sqrt)
-/* Strictly, this is wrong, but the only places where _ieee754_sqrt is
- used will not pass in a negative result. */
-strong_alias(__sqrt,__ieee754_sqrt)
-
#ifdef NO_LONG_DOUBLE
-weak_alias (__sqrt, __sqrtl)
-weak_alias (__sqrt, sqrtl)
+ strong_alias (__sqrt, __sqrtl) weak_alias (__sqrt, sqrtl)
#endif
diff --git a/sysdeps/powerpc/fpu/w_sqrtf.c b/sysdeps/powerpc/fpu/w_sqrtf.c
index 8eb94d8..e3f3c99 100644
--- a/sysdeps/powerpc/fpu/w_sqrtf.c
+++ b/sysdeps/powerpc/fpu/w_sqrtf.c
@@ -1,5 +1,5 @@
-/* Single-precision floating point square root.
- Copyright (C) 1997, 2003 Free Software Foundation, Inc.
+/* Single-precision floating point square root wrapper.
+ Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@@ -17,120 +17,38 @@
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
-#include <math.h>
-#include <math_private.h>
+#include "math.h"
+#include "math_private.h"
#include <fenv_libc.h>
-#include <inttypes.h>
-static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
-static const ieee_float_shape_type a_nan = { .word = 0x7fc00000 };
-static const ieee_float_shape_type a_inf = { .word = 0x7f800000 };
-static const float two48 = 281474976710656.0;
-static const float twom24 = 5.9604644775390625e-8;
-extern const float __t_sqrt[1024];
+#include <sysdep.h>
+#include <ldsodefs.h>
+#include <dl-procinfo.h>
-/* The method is based on a description in
- Computation of elementary functions on the IBM RISC System/6000 processor,
- P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
- Basically, it consists of two interleaved Newton-Rhapson approximations,
- one to find the actual square root, and one to find its reciprocal
- without the expense of a division operation. The tricky bit here
- is the use of the POWER/PowerPC multiply-add operation to get the
- required accuracy with high speed.
-
- The argument reduction works by a combination of table lookup to
- obtain the initial guesses, and some careful modification of the
- generated guesses (which mostly runs on the integer unit, while the
- Newton-Rhapson is running on the FPU). */
+#ifdef __STDC__
float
-__sqrtf(float x)
-{
- const float inf = a_inf.value;
- /* x = f_washf(x); *//* This ensures only one exception for SNaN. */
- if (x > 0)
- {
- if (x != inf)
- {
- /* Variables named starting with 's' exist in the
- argument-reduced space, so that 2 > sx >= 0.5,
- 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
- Variables named ending with 'i' are integer versions of
- floating-point values. */
- float sx; /* The value of which we're trying to find the square
- root. */
- float sg,g; /* Guess of the square root of x. */
- float sd,d; /* Difference between the square of the guess and x. */
- float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
- float sy2; /* 2*sy */
- float e; /* Difference between y*g and 1/2 (note that e==se). */
- float shx; /* == sx * fsg */
- float fsg; /* sg*fsg == g. */
- fenv_t fe; /* Saved floating-point environment (stores rounding
- mode and whether the inexact exception is
- enabled). */
- uint32_t xi, sxi, fsgi;
- const float *t_sqrt;
-
- GET_FLOAT_WORD (xi, x);
- fe = fegetenv_register ();
- relax_fenv_state ();
- sxi = (xi & 0x3fffffff) | 0x3f000000;
- SET_FLOAT_WORD (sx, sxi);
- t_sqrt = __t_sqrt + (xi >> (23-8-1) & 0x3fe);
- sg = t_sqrt[0];
- sy = t_sqrt[1];
-
- /* Here we have three Newton-Rhapson iterations each of a
- division and a square root and the remainder of the
- argument reduction, all interleaved. */
- sd = -(sg*sg - sx);
- fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
- sy2 = sy + sy;
- sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */
- e = -(sy*sg - almost_half);
- SET_FLOAT_WORD (fsg, fsgi);
- sd = -(sg*sg - sx);
- sy = sy + e*sy2;
- if ((xi & 0x7f800000) == 0)
- goto denorm;
- shx = sx * fsg;
- sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx),
- but perhaps rounded incorrectly. */
- sy2 = sy + sy;
- g = sg * fsg;
- e = -(sy*sg - almost_half);
- d = -(g*sg - shx);
- sy = sy + e*sy2;
- fesetenv_register (fe);
- return g + sy*d;
- denorm:
- /* For denormalised numbers, we normalise, calculate the
- square root, and return an adjusted result. */
- fesetenv_register (fe);
- return __sqrtf(x * two48) * twom24;
- }
- }
- else if (x < 0)
- {
-#ifdef FE_INVALID_SQRT
- feraiseexcept (FE_INVALID_SQRT);
- /* For some reason, some PowerPC processors don't implement
- FE_INVALID_SQRT. I guess no-one ever thought they'd be
- used for square roots... :-) */
- if (!fetestexcept (FE_INVALID))
+__sqrtf (float x) /* wrapper sqrtf */
+#else
+float
+__sqrtf (x) /* wrapper sqrtf */
+ float x;
#endif
- feraiseexcept (FE_INVALID);
-#ifndef _IEEE_LIBM
- if (_LIB_VERSION != _IEEE_)
- x = __kernel_standard(x,x,126);
- else
+{
+#ifdef _IEEE_LIBM
+ return __ieee754_sqrtf (x);
+#else
+ float z;
+ z = __ieee754_sqrtf (x);
+
+ if (_LIB_VERSION == _IEEE_ || (x != x))
+ return z;
+
+ if (x < (float) 0.0)
+ /* sqrtf(negative) */
+ return (float) __kernel_standard ((double) x, (double) x, 126);
+ else
+ return z;
#endif
- x = a_nan.value;
- }
- return f_washf(x);
}
weak_alias (__sqrtf, sqrtf)
-/* Strictly, this is wrong, but the only places where _ieee754_sqrt is
- used will not pass in a negative result. */
-strong_alias(__sqrtf,__ieee754_sqrtf)