aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
committerUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
commita334319f6530564d22e775935d9c91663623a1b4 (patch)
treeb5877475619e4c938e98757d518bb1e9cbead751 /sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
parent0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff)
downloadglibc-a334319f6530564d22e775935d9c91663623a1b4.zip
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.bz2
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_log1pl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/s_log1pl.c257
1 files changed, 0 insertions, 257 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c b/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
deleted file mode 100644
index f1863fb..0000000
--- a/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
+++ /dev/null
@@ -1,257 +0,0 @@
-/* log1pl.c
- *
- * Relative error logarithm
- * Natural logarithm of 1+x, 128-bit long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, log1pl();
- *
- * y = log1pl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of 1+x.
- *
- * The argument 1+x is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(w-1)/(w+1),
- *
- * log(w) = z + z^3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 8 100000 1.9e-34 4.3e-35
- */
-
-/* Copyright 2001 by Stephen L. Moshier
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
-
-
-#include "math.h"
-#include "math_private.h"
-#include <math_ldbl_opt.h>
-
-/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
- * 1/sqrt(2) <= 1+x < sqrt(2)
- * Theoretical peak relative error = 5.3e-37,
- * relative peak error spread = 2.3e-14
- */
-static const long double
- P12 = 1.538612243596254322971797716843006400388E-6L,
- P11 = 4.998469661968096229986658302195402690910E-1L,
- P10 = 2.321125933898420063925789532045674660756E1L,
- P9 = 4.114517881637811823002128927449878962058E2L,
- P8 = 3.824952356185897735160588078446136783779E3L,
- P7 = 2.128857716871515081352991964243375186031E4L,
- P6 = 7.594356839258970405033155585486712125861E4L,
- P5 = 1.797628303815655343403735250238293741397E5L,
- P4 = 2.854829159639697837788887080758954924001E5L,
- P3 = 3.007007295140399532324943111654767187848E5L,
- P2 = 2.014652742082537582487669938141683759923E5L,
- P1 = 7.771154681358524243729929227226708890930E4L,
- P0 = 1.313572404063446165910279910527789794488E4L,
- /* Q12 = 1.000000000000000000000000000000000000000E0L, */
- Q11 = 4.839208193348159620282142911143429644326E1L,
- Q10 = 9.104928120962988414618126155557301584078E2L,
- Q9 = 9.147150349299596453976674231612674085381E3L,
- Q8 = 5.605842085972455027590989944010492125825E4L,
- Q7 = 2.248234257620569139969141618556349415120E5L,
- Q6 = 6.132189329546557743179177159925690841200E5L,
- Q5 = 1.158019977462989115839826904108208787040E6L,
- Q4 = 1.514882452993549494932585972882995548426E6L,
- Q3 = 1.347518538384329112529391120390701166528E6L,
- Q2 = 7.777690340007566932935753241556479363645E5L,
- Q1 = 2.626900195321832660448791748036714883242E5L,
- Q0 = 3.940717212190338497730839731583397586124E4L;
-
-/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 1.1e-35,
- * relative peak error spread 1.1e-9
- */
-static const long double
- R5 = -8.828896441624934385266096344596648080902E-1L,
- R4 = 8.057002716646055371965756206836056074715E1L,
- R3 = -2.024301798136027039250415126250455056397E3L,
- R2 = 2.048819892795278657810231591630928516206E4L,
- R1 = -8.977257995689735303686582344659576526998E4L,
- R0 = 1.418134209872192732479751274970992665513E5L,
- /* S6 = 1.000000000000000000000000000000000000000E0L, */
- S5 = -1.186359407982897997337150403816839480438E2L,
- S4 = 3.998526750980007367835804959888064681098E3L,
- S3 = -5.748542087379434595104154610899551484314E4L,
- S2 = 4.001557694070773974936904547424676279307E5L,
- S1 = -1.332535117259762928288745111081235577029E6L,
- S0 = 1.701761051846631278975701529965589676574E6L;
-
-/* C1 + C2 = ln 2 */
-static const long double C1 = 6.93145751953125E-1L;
-static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
-
-static const long double sqrth = 0.7071067811865475244008443621048490392848L;
-/* ln (2^16384 * (1 - 2^-113)) */
-static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;
-static const long double big = 2e300L;
-static const long double zero = 0.0L;
-
-#if 1
-/* Make sure these are prototyped. */
-long double frexpl (long double, int *);
-long double ldexpl (long double, int);
-#endif
-
-
-long double
-__log1pl (long double xm1)
-{
- long double x, y, z, r, s;
- ieee854_long_double_shape_type u;
- int32_t hx;
- int e;
-
- /* Test for NaN or infinity input. */
- u.value = xm1;
- hx = u.parts32.w0;
- if (hx >= 0x7ff00000)
- return xm1;
-
- /* log1p(+- 0) = +- 0. */
- if (((hx & 0x7fffffff) == 0)
- && (u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3) == 0)
- return xm1;
-
- x = xm1 + 1.0L;
-
- /* log1p(-1) = -inf */
- if (x <= 0.0L)
- {
- if (x == 0.0L)
- return (-1.0L / (x - x));
- else
- return (zero / (x - x));
- }
-
- /* Separate mantissa from exponent. */
-
- /* Use frexp used so that denormal numbers will be handled properly. */
- x = frexpl (x, &e);
-
- /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
- where z = 2(x-1)/x+1). */
- if ((e > 2) || (e < -2))
- {
- if (x < sqrth)
- { /* 2( 2x-1 )/( 2x+1 ) */
- e -= 1;
- z = x - 0.5L;
- y = 0.5L * z + 0.5L;
- }
- else
- { /* 2 (x-1)/(x+1) */
- z = x - 0.5L;
- z -= 0.5L;
- y = 0.5L * x + 0.5L;
- }
- x = z / y;
- z = x * x;
- r = ((((R5 * z
- + R4) * z
- + R3) * z
- + R2) * z
- + R1) * z
- + R0;
- s = (((((z
- + S5) * z
- + S4) * z
- + S3) * z
- + S2) * z
- + S1) * z
- + S0;
- z = x * (z * r / s);
- z = z + e * C2;
- z = z + x;
- z = z + e * C1;
- return (z);
- }
-
-
- /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
-
- if (x < sqrth)
- {
- e -= 1;
- if (e != 0)
- x = 2.0L * x - 1.0L; /* 2x - 1 */
- else
- x = xm1;
- }
- else
- {
- if (e != 0)
- x = x - 1.0L;
- else
- x = xm1;
- }
- z = x * x;
- r = (((((((((((P12 * x
- + P11) * x
- + P10) * x
- + P9) * x
- + P8) * x
- + P7) * x
- + P6) * x
- + P5) * x
- + P4) * x
- + P3) * x
- + P2) * x
- + P1) * x
- + P0;
- s = (((((((((((x
- + Q11) * x
- + Q10) * x
- + Q9) * x
- + Q8) * x
- + Q7) * x
- + Q6) * x
- + Q5) * x
- + Q4) * x
- + Q3) * x
- + Q2) * x
- + Q1) * x
- + Q0;
- y = x * (z * r / s);
- y = y + e * C2;
- z = y - 0.5L * z;
- z = z + x;
- z = z + e * C1;
- return (z);
-}
-
-long_double_symbol (libm, __log1pl, log1pl);