diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-02 11:01:07 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-13 15:33:59 -0500 |
commit | 02bbfb414f367c73196e6f23fa7435a08c92449f (patch) | |
tree | 5f70a6d722dbdb1d716f6cf4b34fd7ca50e62c80 /sysdeps/ieee754/ldbl-128/e_acosl.c | |
parent | fd37b5a78ab215ea2599250ec345e25545410bce (diff) | |
download | glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.zip glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.gz glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.bz2 |
ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.
Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.
Likewise, -L(x) is transformed into L(-x).
Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch. Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_acosl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/e_acosl.c | 140 |
1 files changed, 70 insertions, 70 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_acosl.c b/sysdeps/ieee754/ldbl-128/e_acosl.c index a89a953..342ea5f 100644 --- a/sysdeps/ieee754/ldbl-128/e_acosl.c +++ b/sysdeps/ieee754/ldbl-128/e_acosl.c @@ -58,94 +58,94 @@ #include <math_private.h> static const _Float128 - one = 1.0L, - pio2_hi = 1.5707963267948966192313216916397514420986L, - pio2_lo = 4.3359050650618905123985220130216759843812E-35L, + one = 1, + pio2_hi = L(1.5707963267948966192313216916397514420986), + pio2_lo = L(4.3359050650618905123985220130216759843812E-35), /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) -0.0625 <= x <= 0.0625 peak relative error 3.3e-35 */ - rS0 = 5.619049346208901520945464704848780243887E0L, - rS1 = -4.460504162777731472539175700169871920352E1L, - rS2 = 1.317669505315409261479577040530751477488E2L, - rS3 = -1.626532582423661989632442410808596009227E2L, - rS4 = 3.144806644195158614904369445440583873264E1L, - rS5 = 9.806674443470740708765165604769099559553E1L, - rS6 = -5.708468492052010816555762842394927806920E1L, - rS7 = -1.396540499232262112248553357962639431922E1L, - rS8 = 1.126243289311910363001762058295832610344E1L, - rS9 = 4.956179821329901954211277873774472383512E-1L, - rS10 = -3.313227657082367169241333738391762525780E-1L, + rS0 = L(5.619049346208901520945464704848780243887E0), + rS1 = L(-4.460504162777731472539175700169871920352E1), + rS2 = L(1.317669505315409261479577040530751477488E2), + rS3 = L(-1.626532582423661989632442410808596009227E2), + rS4 = L(3.144806644195158614904369445440583873264E1), + rS5 = L(9.806674443470740708765165604769099559553E1), + rS6 = L(-5.708468492052010816555762842394927806920E1), + rS7 = L(-1.396540499232262112248553357962639431922E1), + rS8 = L(1.126243289311910363001762058295832610344E1), + rS9 = L(4.956179821329901954211277873774472383512E-1), + rS10 = L(-3.313227657082367169241333738391762525780E-1), - sS0 = -4.645814742084009935700221277307007679325E0L, - sS1 = 3.879074822457694323970438316317961918430E1L, - sS2 = -1.221986588013474694623973554726201001066E2L, - sS3 = 1.658821150347718105012079876756201905822E2L, - sS4 = -4.804379630977558197953176474426239748977E1L, - sS5 = -1.004296417397316948114344573811562952793E2L, - sS6 = 7.530281592861320234941101403870010111138E1L, - sS7 = 1.270735595411673647119592092304357226607E1L, - sS8 = -1.815144839646376500705105967064792930282E1L, - sS9 = -7.821597334910963922204235247786840828217E-2L, + sS0 = L(-4.645814742084009935700221277307007679325E0), + sS1 = L(3.879074822457694323970438316317961918430E1), + sS2 = L(-1.221986588013474694623973554726201001066E2), + sS3 = L(1.658821150347718105012079876756201905822E2), + sS4 = L(-4.804379630977558197953176474426239748977E1), + sS5 = L(-1.004296417397316948114344573811562952793E2), + sS6 = L(7.530281592861320234941101403870010111138E1), + sS7 = L(1.270735595411673647119592092304357226607E1), + sS8 = L(-1.815144839646376500705105967064792930282E1), + sS9 = L(-7.821597334910963922204235247786840828217E-2), /* 1.000000000000000000000000000000000000000E0 */ - acosr5625 = 9.7338991014954640492751132535550279812151E-1L, - pimacosr5625 = 2.1682027434402468335351320579240000860757E0L, + acosr5625 = L(9.7338991014954640492751132535550279812151E-1), + pimacosr5625 = L(2.1682027434402468335351320579240000860757E0), /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x) -0.0625 <= x <= 0.0625 peak relative error 2.1e-35 */ - P0 = 2.177690192235413635229046633751390484892E0L, - P1 = -2.848698225706605746657192566166142909573E1L, - P2 = 1.040076477655245590871244795403659880304E2L, - P3 = -1.400087608918906358323551402881238180553E2L, - P4 = 2.221047917671449176051896400503615543757E1L, - P5 = 9.643714856395587663736110523917499638702E1L, - P6 = -5.158406639829833829027457284942389079196E1L, - P7 = -1.578651828337585944715290382181219741813E1L, - P8 = 1.093632715903802870546857764647931045906E1L, - P9 = 5.448925479898460003048760932274085300103E-1L, - P10 = -3.315886001095605268470690485170092986337E-1L, - Q0 = -1.958219113487162405143608843774587557016E0L, - Q1 = 2.614577866876185080678907676023269360520E1L, - Q2 = -9.990858606464150981009763389881793660938E1L, - Q3 = 1.443958741356995763628660823395334281596E2L, - Q4 = -3.206441012484232867657763518369723873129E1L, - Q5 = -1.048560885341833443564920145642588991492E2L, - Q6 = 6.745883931909770880159915641984874746358E1L, - Q7 = 1.806809656342804436118449982647641392951E1L, - Q8 = -1.770150690652438294290020775359580915464E1L, - Q9 = -5.659156469628629327045433069052560211164E-1L, + P0 = L(2.177690192235413635229046633751390484892E0), + P1 = L(-2.848698225706605746657192566166142909573E1), + P2 = L(1.040076477655245590871244795403659880304E2), + P3 = L(-1.400087608918906358323551402881238180553E2), + P4 = L(2.221047917671449176051896400503615543757E1), + P5 = L(9.643714856395587663736110523917499638702E1), + P6 = L(-5.158406639829833829027457284942389079196E1), + P7 = L(-1.578651828337585944715290382181219741813E1), + P8 = L(1.093632715903802870546857764647931045906E1), + P9 = L(5.448925479898460003048760932274085300103E-1), + P10 = L(-3.315886001095605268470690485170092986337E-1), + Q0 = L(-1.958219113487162405143608843774587557016E0), + Q1 = L(2.614577866876185080678907676023269360520E1), + Q2 = L(-9.990858606464150981009763389881793660938E1), + Q3 = L(1.443958741356995763628660823395334281596E2), + Q4 = L(-3.206441012484232867657763518369723873129E1), + Q5 = L(-1.048560885341833443564920145642588991492E2), + Q6 = L(6.745883931909770880159915641984874746358E1), + Q7 = L(1.806809656342804436118449982647641392951E1), + Q8 = L(-1.770150690652438294290020775359580915464E1), + Q9 = L(-5.659156469628629327045433069052560211164E-1), /* 1.000000000000000000000000000000000000000E0 */ - acosr4375 = 1.1179797320499710475919903296900511518755E0L, - pimacosr4375 = 2.0236129215398221908706530535894517323217E0L, + acosr4375 = L(1.1179797320499710475919903296900511518755E0), + pimacosr4375 = L(2.0236129215398221908706530535894517323217E0), /* asin(x) = x + x^3 pS(x^2) / qS(x^2) 0 <= x <= 0.5 peak relative error 1.9e-35 */ - pS0 = -8.358099012470680544198472400254596543711E2L, - pS1 = 3.674973957689619490312782828051860366493E3L, - pS2 = -6.730729094812979665807581609853656623219E3L, - pS3 = 6.643843795209060298375552684423454077633E3L, - pS4 = -3.817341990928606692235481812252049415993E3L, - pS5 = 1.284635388402653715636722822195716476156E3L, - pS6 = -2.410736125231549204856567737329112037867E2L, - pS7 = 2.219191969382402856557594215833622156220E1L, - pS8 = -7.249056260830627156600112195061001036533E-1L, - pS9 = 1.055923570937755300061509030361395604448E-3L, + pS0 = L(-8.358099012470680544198472400254596543711E2), + pS1 = L(3.674973957689619490312782828051860366493E3), + pS2 = L(-6.730729094812979665807581609853656623219E3), + pS3 = L(6.643843795209060298375552684423454077633E3), + pS4 = L(-3.817341990928606692235481812252049415993E3), + pS5 = L(1.284635388402653715636722822195716476156E3), + pS6 = L(-2.410736125231549204856567737329112037867E2), + pS7 = L(2.219191969382402856557594215833622156220E1), + pS8 = L(-7.249056260830627156600112195061001036533E-1), + pS9 = L(1.055923570937755300061509030361395604448E-3), - qS0 = -5.014859407482408326519083440151745519205E3L, - qS1 = 2.430653047950480068881028451580393430537E4L, - qS2 = -4.997904737193653607449250593976069726962E4L, - qS3 = 5.675712336110456923807959930107347511086E4L, - qS4 = -3.881523118339661268482937768522572588022E4L, - qS5 = 1.634202194895541569749717032234510811216E4L, - qS6 = -4.151452662440709301601820849901296953752E3L, - qS7 = 5.956050864057192019085175976175695342168E2L, - qS8 = -4.175375777334867025769346564600396877176E1L; + qS0 = L(-5.014859407482408326519083440151745519205E3), + qS1 = L(2.430653047950480068881028451580393430537E4), + qS2 = L(-4.997904737193653607449250593976069726962E4), + qS3 = L(5.675712336110456923807959930107347511086E4), + qS4 = L(-3.881523118339661268482937768522572588022E4), + qS5 = L(1.634202194895541569749717032234510811216E4), + qS6 = L(-4.151452662440709301601820849901296953752E3), + qS7 = L(5.956050864057192019085175976175695342168E2), + qS8 = L(-4.175375777334867025769346564600396877176E1); /* 1.000000000000000000000000000000000000000E0 */ _Float128 @@ -204,7 +204,7 @@ __ieee754_acosl (_Float128 x) return z; } /* .4375 <= |x| < .5 */ - t = u.value - 0.4375L; + t = u.value - L(0.4375); p = ((((((((((P10 * t + P9) * t + P8) * t @@ -237,7 +237,7 @@ __ieee754_acosl (_Float128 x) } else if (ix < 0x3ffe4000) /* |x| < 0.625 */ { - t = u.value - 0.5625L; + t = u.value - L(0.5625); p = ((((((((((rS10 * t + rS9) * t + rS8) * t |