aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128/e_acosl.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-09-02 11:01:07 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-09-13 15:33:59 -0500
commit02bbfb414f367c73196e6f23fa7435a08c92449f (patch)
tree5f70a6d722dbdb1d716f6cf4b34fd7ca50e62c80 /sysdeps/ieee754/ldbl-128/e_acosl.c
parentfd37b5a78ab215ea2599250ec345e25545410bce (diff)
downloadglibc-02bbfb414f367c73196e6f23fa7435a08c92449f.zip
glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.gz
glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.bz2
ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using a regex which aggressively matches long double literals when not obviously part of a comment. Likewise, 5 digit or less integral constants are replaced with integer constants, excepting the two cases of 0 used in large tables, which are also the only integral values of the form x.0*E0L encountered within these converted files. Likewise, -L(x) is transformed into L(-x). Naturally, the script has a few minor hiccups which are more clearly remedied via the attached fixup patch. Such hiccups include, context-sensitive promotion to a real type, and munging constants inside harder to detect comment blocks.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_acosl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128/e_acosl.c140
1 files changed, 70 insertions, 70 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_acosl.c b/sysdeps/ieee754/ldbl-128/e_acosl.c
index a89a953..342ea5f 100644
--- a/sysdeps/ieee754/ldbl-128/e_acosl.c
+++ b/sysdeps/ieee754/ldbl-128/e_acosl.c
@@ -58,94 +58,94 @@
#include <math_private.h>
static const _Float128
- one = 1.0L,
- pio2_hi = 1.5707963267948966192313216916397514420986L,
- pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
+ one = 1,
+ pio2_hi = L(1.5707963267948966192313216916397514420986),
+ pio2_lo = L(4.3359050650618905123985220130216759843812E-35),
/* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
- rS0 = 5.619049346208901520945464704848780243887E0L,
- rS1 = -4.460504162777731472539175700169871920352E1L,
- rS2 = 1.317669505315409261479577040530751477488E2L,
- rS3 = -1.626532582423661989632442410808596009227E2L,
- rS4 = 3.144806644195158614904369445440583873264E1L,
- rS5 = 9.806674443470740708765165604769099559553E1L,
- rS6 = -5.708468492052010816555762842394927806920E1L,
- rS7 = -1.396540499232262112248553357962639431922E1L,
- rS8 = 1.126243289311910363001762058295832610344E1L,
- rS9 = 4.956179821329901954211277873774472383512E-1L,
- rS10 = -3.313227657082367169241333738391762525780E-1L,
+ rS0 = L(5.619049346208901520945464704848780243887E0),
+ rS1 = L(-4.460504162777731472539175700169871920352E1),
+ rS2 = L(1.317669505315409261479577040530751477488E2),
+ rS3 = L(-1.626532582423661989632442410808596009227E2),
+ rS4 = L(3.144806644195158614904369445440583873264E1),
+ rS5 = L(9.806674443470740708765165604769099559553E1),
+ rS6 = L(-5.708468492052010816555762842394927806920E1),
+ rS7 = L(-1.396540499232262112248553357962639431922E1),
+ rS8 = L(1.126243289311910363001762058295832610344E1),
+ rS9 = L(4.956179821329901954211277873774472383512E-1),
+ rS10 = L(-3.313227657082367169241333738391762525780E-1),
- sS0 = -4.645814742084009935700221277307007679325E0L,
- sS1 = 3.879074822457694323970438316317961918430E1L,
- sS2 = -1.221986588013474694623973554726201001066E2L,
- sS3 = 1.658821150347718105012079876756201905822E2L,
- sS4 = -4.804379630977558197953176474426239748977E1L,
- sS5 = -1.004296417397316948114344573811562952793E2L,
- sS6 = 7.530281592861320234941101403870010111138E1L,
- sS7 = 1.270735595411673647119592092304357226607E1L,
- sS8 = -1.815144839646376500705105967064792930282E1L,
- sS9 = -7.821597334910963922204235247786840828217E-2L,
+ sS0 = L(-4.645814742084009935700221277307007679325E0),
+ sS1 = L(3.879074822457694323970438316317961918430E1),
+ sS2 = L(-1.221986588013474694623973554726201001066E2),
+ sS3 = L(1.658821150347718105012079876756201905822E2),
+ sS4 = L(-4.804379630977558197953176474426239748977E1),
+ sS5 = L(-1.004296417397316948114344573811562952793E2),
+ sS6 = L(7.530281592861320234941101403870010111138E1),
+ sS7 = L(1.270735595411673647119592092304357226607E1),
+ sS8 = L(-1.815144839646376500705105967064792930282E1),
+ sS9 = L(-7.821597334910963922204235247786840828217E-2),
/* 1.000000000000000000000000000000000000000E0 */
- acosr5625 = 9.7338991014954640492751132535550279812151E-1L,
- pimacosr5625 = 2.1682027434402468335351320579240000860757E0L,
+ acosr5625 = L(9.7338991014954640492751132535550279812151E-1),
+ pimacosr5625 = L(2.1682027434402468335351320579240000860757E0),
/* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 2.1e-35 */
- P0 = 2.177690192235413635229046633751390484892E0L,
- P1 = -2.848698225706605746657192566166142909573E1L,
- P2 = 1.040076477655245590871244795403659880304E2L,
- P3 = -1.400087608918906358323551402881238180553E2L,
- P4 = 2.221047917671449176051896400503615543757E1L,
- P5 = 9.643714856395587663736110523917499638702E1L,
- P6 = -5.158406639829833829027457284942389079196E1L,
- P7 = -1.578651828337585944715290382181219741813E1L,
- P8 = 1.093632715903802870546857764647931045906E1L,
- P9 = 5.448925479898460003048760932274085300103E-1L,
- P10 = -3.315886001095605268470690485170092986337E-1L,
- Q0 = -1.958219113487162405143608843774587557016E0L,
- Q1 = 2.614577866876185080678907676023269360520E1L,
- Q2 = -9.990858606464150981009763389881793660938E1L,
- Q3 = 1.443958741356995763628660823395334281596E2L,
- Q4 = -3.206441012484232867657763518369723873129E1L,
- Q5 = -1.048560885341833443564920145642588991492E2L,
- Q6 = 6.745883931909770880159915641984874746358E1L,
- Q7 = 1.806809656342804436118449982647641392951E1L,
- Q8 = -1.770150690652438294290020775359580915464E1L,
- Q9 = -5.659156469628629327045433069052560211164E-1L,
+ P0 = L(2.177690192235413635229046633751390484892E0),
+ P1 = L(-2.848698225706605746657192566166142909573E1),
+ P2 = L(1.040076477655245590871244795403659880304E2),
+ P3 = L(-1.400087608918906358323551402881238180553E2),
+ P4 = L(2.221047917671449176051896400503615543757E1),
+ P5 = L(9.643714856395587663736110523917499638702E1),
+ P6 = L(-5.158406639829833829027457284942389079196E1),
+ P7 = L(-1.578651828337585944715290382181219741813E1),
+ P8 = L(1.093632715903802870546857764647931045906E1),
+ P9 = L(5.448925479898460003048760932274085300103E-1),
+ P10 = L(-3.315886001095605268470690485170092986337E-1),
+ Q0 = L(-1.958219113487162405143608843774587557016E0),
+ Q1 = L(2.614577866876185080678907676023269360520E1),
+ Q2 = L(-9.990858606464150981009763389881793660938E1),
+ Q3 = L(1.443958741356995763628660823395334281596E2),
+ Q4 = L(-3.206441012484232867657763518369723873129E1),
+ Q5 = L(-1.048560885341833443564920145642588991492E2),
+ Q6 = L(6.745883931909770880159915641984874746358E1),
+ Q7 = L(1.806809656342804436118449982647641392951E1),
+ Q8 = L(-1.770150690652438294290020775359580915464E1),
+ Q9 = L(-5.659156469628629327045433069052560211164E-1),
/* 1.000000000000000000000000000000000000000E0 */
- acosr4375 = 1.1179797320499710475919903296900511518755E0L,
- pimacosr4375 = 2.0236129215398221908706530535894517323217E0L,
+ acosr4375 = L(1.1179797320499710475919903296900511518755E0),
+ pimacosr4375 = L(2.0236129215398221908706530535894517323217E0),
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
- pS0 = -8.358099012470680544198472400254596543711E2L,
- pS1 = 3.674973957689619490312782828051860366493E3L,
- pS2 = -6.730729094812979665807581609853656623219E3L,
- pS3 = 6.643843795209060298375552684423454077633E3L,
- pS4 = -3.817341990928606692235481812252049415993E3L,
- pS5 = 1.284635388402653715636722822195716476156E3L,
- pS6 = -2.410736125231549204856567737329112037867E2L,
- pS7 = 2.219191969382402856557594215833622156220E1L,
- pS8 = -7.249056260830627156600112195061001036533E-1L,
- pS9 = 1.055923570937755300061509030361395604448E-3L,
+ pS0 = L(-8.358099012470680544198472400254596543711E2),
+ pS1 = L(3.674973957689619490312782828051860366493E3),
+ pS2 = L(-6.730729094812979665807581609853656623219E3),
+ pS3 = L(6.643843795209060298375552684423454077633E3),
+ pS4 = L(-3.817341990928606692235481812252049415993E3),
+ pS5 = L(1.284635388402653715636722822195716476156E3),
+ pS6 = L(-2.410736125231549204856567737329112037867E2),
+ pS7 = L(2.219191969382402856557594215833622156220E1),
+ pS8 = L(-7.249056260830627156600112195061001036533E-1),
+ pS9 = L(1.055923570937755300061509030361395604448E-3),
- qS0 = -5.014859407482408326519083440151745519205E3L,
- qS1 = 2.430653047950480068881028451580393430537E4L,
- qS2 = -4.997904737193653607449250593976069726962E4L,
- qS3 = 5.675712336110456923807959930107347511086E4L,
- qS4 = -3.881523118339661268482937768522572588022E4L,
- qS5 = 1.634202194895541569749717032234510811216E4L,
- qS6 = -4.151452662440709301601820849901296953752E3L,
- qS7 = 5.956050864057192019085175976175695342168E2L,
- qS8 = -4.175375777334867025769346564600396877176E1L;
+ qS0 = L(-5.014859407482408326519083440151745519205E3),
+ qS1 = L(2.430653047950480068881028451580393430537E4),
+ qS2 = L(-4.997904737193653607449250593976069726962E4),
+ qS3 = L(5.675712336110456923807959930107347511086E4),
+ qS4 = L(-3.881523118339661268482937768522572588022E4),
+ qS5 = L(1.634202194895541569749717032234510811216E4),
+ qS6 = L(-4.151452662440709301601820849901296953752E3),
+ qS7 = L(5.956050864057192019085175976175695342168E2),
+ qS8 = L(-4.175375777334867025769346564600396877176E1);
/* 1.000000000000000000000000000000000000000E0 */
_Float128
@@ -204,7 +204,7 @@ __ieee754_acosl (_Float128 x)
return z;
}
/* .4375 <= |x| < .5 */
- t = u.value - 0.4375L;
+ t = u.value - L(0.4375);
p = ((((((((((P10 * t
+ P9) * t
+ P8) * t
@@ -237,7 +237,7 @@ __ieee754_acosl (_Float128 x)
}
else if (ix < 0x3ffe4000) /* |x| < 0.625 */
{
- t = u.value - 0.5625L;
+ t = u.value - L(0.5625);
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t