aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@gmail.com>2011-10-24 20:19:17 -0400
committerUlrich Drepper <drepper@gmail.com>2011-10-24 20:19:17 -0400
commitaf968f62f24c5c0ef4e7e5ab41acae946908c112 (patch)
treee1e0570eeb00c434cc751cbadfbeae150eeea11a /sysdeps/ieee754/dbl-64
parent58985aa92f57ff46e96b32388ce65e7fdd8c8b9e (diff)
downloadglibc-af968f62f24c5c0ef4e7e5ab41acae946908c112.zip
glibc-af968f62f24c5c0ef4e7e5ab41acae946908c112.tar.gz
glibc-af968f62f24c5c0ef4e7e5ab41acae946908c112.tar.bz2
Optimize accurate 64-bit routines for FMA4 on x86-64
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/dosincos.c23
-rw-r--r--sysdeps/ieee754/dbl-64/e_asin.c4
-rw-r--r--sysdeps/ieee754/dbl-64/e_atan2.c13
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c2
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c2
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c2
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c58
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.h27
-rw-r--r--sysdeps/ieee754/dbl-64/mpsqrt.c15
-rw-r--r--sysdeps/ieee754/dbl-64/s_atan.c16
-rw-r--r--sysdeps/ieee754/dbl-64/s_sin.c210
-rw-r--r--sysdeps/ieee754/dbl-64/sincostab.c (renamed from sysdeps/ieee754/dbl-64/sincos.tbl)9
12 files changed, 205 insertions, 176 deletions
diff --git a/sysdeps/ieee754/dbl-64/dosincos.c b/sysdeps/ieee754/dbl-64/dosincos.c
index d5c6a14..712d585 100644
--- a/sysdeps/ieee754/dbl-64/dosincos.c
+++ b/sysdeps/ieee754/dbl-64/dosincos.c
@@ -35,11 +35,16 @@
#include "endian.h"
#include "mydefs.h"
-#include "sincos.tbl"
#include <dla.h>
#include "dosincos.h"
#include "math_private.h"
+extern const union
+{
+ int4 i[880];
+ double x[440];
+} __sincostab attribute_hidden;
+
/***********************************************************************/
/* Routine receive Double-Length number (x+dx) and computing sin(x+dx) */
/* as Double-Length number and store it at array v .It computes it by */
@@ -66,10 +71,10 @@ void __dubsin(double x, double dx, double v[]) {
dd=(x-d)+dx;
/* sin(x+dx)=sin(Xi+t)=sin(Xi)*cos(t) + cos(Xi)sin(t) where t ->0 */
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
- sn=sincos.x[k]; /* */
- ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
- cs=sincos.x[k+2]; /* */
- ccs=sincos.x[k+3]; /* */
+ sn=__sincostab.x[k]; /* */
+ ssn=__sincostab.x[k+1]; /* sin(Xi) and cos(Xi) */
+ cs=__sincostab.x[k+2]; /* */
+ ccs=__sincostab.x[k+3]; /* */
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* Taylor */
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* series */
@@ -118,10 +123,10 @@ void __dubcos(double x, double dx, double v[]) {
d=x+dx;
dd=(x-d)+dx; /* cos(x+dx)=cos(Xi+t)=cos(Xi)cos(t) - sin(Xi)sin(t) */
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
- sn=sincos.x[k]; /* */
- ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
- cs=sincos.x[k+2]; /* */
- ccs=sincos.x[k+3]; /* */
+ sn=__sincostab.x[k]; /* */
+ ssn=__sincostab.x[k+1]; /* sin(Xi) and cos(Xi) */
+ cs=__sincostab.x[k+2]; /* */
+ ccs=__sincostab.x[k+3]; /* */
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
diff --git a/sysdeps/ieee754/dbl-64/e_asin.c b/sysdeps/ieee754/dbl-64/e_asin.c
index 02efb7a..cd4cc2e 100644
--- a/sysdeps/ieee754/dbl-64/e_asin.c
+++ b/sysdeps/ieee754/dbl-64/e_asin.c
@@ -324,7 +324,9 @@ double __ieee754_asin(double x){
return u.x/v.x; /* NaN */
}
}
+#ifndef __ieee754_asin
strong_alias (__ieee754_asin, __asin_finite)
+#endif
/*******************************************************************/
/* */
@@ -636,4 +638,6 @@ double __ieee754_acos(double x)
return u.x/v.x;
}
}
+#ifndef __ieee754_acos
strong_alias (__ieee754_acos, __acos_finite)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/e_atan2.c b/sysdeps/ieee754/dbl-64/e_atan2.c
index 264791e..9caaccc 100644
--- a/sysdeps/ieee754/dbl-64/e_atan2.c
+++ b/sysdeps/ieee754/dbl-64/e_atan2.c
@@ -51,7 +51,11 @@
/* round to nearest mode of IEEE 754 standard. */
/************************************************************************/
static double atan2Mp(double ,double ,const int[]);
-static double signArctan2(double ,double);
+ /* Fix the sign and return after stage 1 or stage 2 */
+static double signArctan2(double y,double z)
+{
+ return __copysign(z, y);
+}
static double normalized(double ,double,double ,double);
void __mpatan2(mp_no *,mp_no *,mp_no *,int);
@@ -375,7 +379,9 @@ double __ieee754_atan2(double y,double x) {
}
}
}
+#ifndef __ieee754_atan2
strong_alias (__ieee754_atan2, __atan2_finite)
+#endif
/* Treat the Denormalized case */
static double normalized(double ax,double ay,double y, double z)
@@ -387,11 +393,6 @@ static double normalized(double ax,double ay,double y, double z)
__sub(&mpz,&mperr,&mpz2,p); __mp_dbl(&mpz2,&z,p);
return signArctan2(y,z);
}
- /* Fix the sign and return after stage 1 or stage 2 */
-static double signArctan2(double y,double z)
-{
- return ((y<ZERO) ? -z : z);
-}
/* Stage 3: Perform a multi-Precision computation */
static double atan2Mp(double x,double y,const int pr[])
{
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
index f4b34a6..48bbb05 100644
--- a/sysdeps/ieee754/dbl-64/e_exp.c
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -145,7 +145,9 @@ double __ieee754_exp(double x) {
else return __slowexp(x);
}
}
+#ifndef __ieee754_exp
strong_alias (__ieee754_exp, __exp_finite)
+#endif
/************************************************************************/
/* Compute e^(x+xx)(Double-Length number) .The routine also receive */
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
index b7df81b..7a0a26f 100644
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -207,4 +207,6 @@ double __ieee754_log(double x) {
}
return y1;
}
+#ifndef __ieee754_log
strong_alias (__ieee754_log, __log_finite)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
index 0c7abb6..94b1ab8 100644
--- a/sysdeps/ieee754/dbl-64/e_pow.c
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -153,7 +153,9 @@ double __ieee754_pow(double x, double y) {
if (y<0) return (x<1.0)?INF.x:0;
return 0; /* unreachable, to make the compiler happy */
}
+#ifndef __ieee754_pow
strong_alias (__ieee754_pow, __pow_finite)
+#endif
/**************************************************************************/
/* Computing x^y using more accurate but more slow log routine */
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
index 68647ba..ad5a639 100644
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ b/sysdeps/ieee754/dbl-64/mpa.c
@@ -1,8 +1,7 @@
-
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
- * Copyright (C) 2001 Free Software Foundation
+ * Copyright (C) 2001, 2011 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -64,7 +63,7 @@ static int mcr(const mp_no *x, const mp_no *y, int p) {
/* acr() compares the absolute values of two multiple precision numbers */
-int __acr(const mp_no *x, const mp_no *y, int p) {
+static int __acr(const mp_no *x, const mp_no *y, int p) {
int i;
if (X[0] == ZERO) {
@@ -82,8 +81,9 @@ int __acr(const mp_no *x, const mp_no *y, int p) {
}
+#if 0
/* cr90 compares the values of two multiple precision numbers */
-int __cr(const mp_no *x, const mp_no *y, int p) {
+static int __cr(const mp_no *x, const mp_no *y, int p) {
int i;
if (X[0] > Y[0]) i= 1;
@@ -93,26 +93,26 @@ int __cr(const mp_no *x, const mp_no *y, int p) {
return i;
}
+#endif
+#ifndef NO___CPY
/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
void __cpy(const mp_no *x, mp_no *y, int p) {
- int i;
-
EY = EX;
- for (i=0; i <= p; i++) Y[i] = X[i];
-
- return;
+ for (int i=0; i <= p; i++) Y[i] = X[i];
}
+#endif
+#if 0
/* Copy a multiple precision number x of precision m into a */
/* multiple precision number y of precision n. In case n>m, */
/* the digits of y beyond the m'th are set to zero. In case */
/* n<m, the digits of x beyond the n'th are ignored. */
/* x=y is permissible. */
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
+static void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
int i,k;
@@ -122,7 +122,10 @@ void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
return;
}
+#endif
+
+#ifndef NO___MP_DBL
/* Convert a multiple precision number *x into a double precision */
/* number *y, normalized case (|x| >= 2**(-1022))) */
static void norm(const mp_no *x, double *y, int p)
@@ -141,7 +144,7 @@ static void norm(const mp_no *x, double *y, int p)
}
else {
for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
- {a *= TWO; z[1] *= TWO; }
+ {a *= TWO; z[1] *= TWO; }
for (i=2; i<5; i++) {
z[i] = X[i]*a;
@@ -157,10 +160,10 @@ static void norm(const mp_no *x, double *y, int p)
if (v == TWO18) {
if (z[4] == ZERO) {
- for (i=5; i <= p; i++) {
- if (X[i] == ZERO) continue;
- else {z[3] += ONE; break; }
- }
+ for (i=5; i <= p; i++) {
+ if (X[i] == ZERO) continue;
+ else {z[3] += ONE; break; }
+ }
}
else z[3] += ONE;
}
@@ -242,6 +245,7 @@ void __mp_dbl(const mp_no *x, double *y, int p) {
else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
else denorm(x,y,p);
}
+#endif
/* dbl_mp() converts a double precision number x into a multiple precision */
@@ -336,11 +340,11 @@ static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
else {
i=p; j=p+1-j; k=p;
if (Y[j] > ZERO) {
- Z[k+1] = RADIX - Y[j--];
- Z[k] = MONE; }
+ Z[k+1] = RADIX - Y[j--];
+ Z[k] = MONE; }
else {
- Z[k+1] = ZERO;
- Z[k] = ZERO; j--;}
+ Z[k+1] = ZERO;
+ Z[k] = ZERO; j--;}
}
}
@@ -431,11 +435,11 @@ void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int i, i1, i2, j, k, k2;
double u;
- /* Is z=0? */
+ /* Is z=0? */
if (X[0]*Y[0]==ZERO)
{ Z[0]=ZERO; return; }
- /* Multiply, add and carry */
+ /* Multiply, add and carry */
k2 = (p<3) ? p+p : p+3;
Z[k2]=ZERO;
for (k=k2; k>1; ) {
@@ -449,7 +453,7 @@ void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
Z[--k] = u*RADIXI;
}
- /* Is there a carry beyond the most significant digit? */
+ /* Is there a carry beyond the most significant digit? */
if (Z[1] == ZERO) {
for (i=1; i<=p; i++) Z[i]=Z[i+1];
EZ = EX + EY - 1; }
@@ -466,7 +470,7 @@ void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
/* 2.001*r**(1-p) for p>3. */
/* *x=0 is not permissible. *x is left unchanged. */
-void __inv(const mp_no *x, mp_no *y, int p) {
+static void __inv(const mp_no *x, mp_no *y, int p) {
int i;
#if 0
int l;
@@ -474,11 +478,11 @@ void __inv(const mp_no *x, mp_no *y, int p) {
double t;
mp_no z,w;
static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
- 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
+ 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
__cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
diff --git a/sysdeps/ieee754/dbl-64/mpa.h b/sysdeps/ieee754/dbl-64/mpa.h
index 4aec48e..3ca0ca5 100644
--- a/sysdeps/ieee754/dbl-64/mpa.h
+++ b/sysdeps/ieee754/dbl-64/mpa.h
@@ -1,8 +1,7 @@
-
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
- * Copyright (C) 2001 Free Software Foundation, Inc.
+ * Copyright (C) 2001, 2011 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -45,14 +44,14 @@ typedef struct {/* This structure holds the details of a multi-precision */
int e; /* floating point number, x: d[0] holds its sign (-1,0 or 1) */
double d[40]; /* e holds its exponent (...,-2,-1,0,1,2,...) and */
} mp_no; /* d[1]...d[p] hold its mantissa digits. The value of x is, */
- /* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */
- /* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */
- /* p is a global variable. A multi-precision number is */
- /* always normalized. Namely, d[1] > 0. An exception is */
- /* a zero which is characterized by d[0] = 0. The terms */
- /* d[p+1], d[p+2], ... of a none zero number have no */
- /* significance and so are the terms e, d[1],d[2],... */
- /* of a zero. */
+ /* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */
+ /* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */
+ /* p is a global variable. A multi-precision number is */
+ /* always normalized. Namely, d[1] > 0. An exception is */
+ /* a zero which is characterized by d[0] = 0. The terms */
+ /* d[p+1], d[p+2], ... of a none zero number have no */
+ /* significance and so are the terms e, d[1],d[2],... */
+ /* of a zero. */
typedef union { int i[2]; double d; } number;
@@ -65,16 +64,16 @@ typedef union { int i[2]; double d; } number;
#define ABS(x) ((x) < 0 ? -(x) : (x))
-int __acr(const mp_no *, const mp_no *, int);
-int __cr(const mp_no *, const mp_no *, int);
+// int __acr(const mp_no *, const mp_no *, int);
+// int __cr(const mp_no *, const mp_no *, int);
void __cpy(const mp_no *, mp_no *, int);
-void __cpymn(const mp_no *, int, mp_no *, int);
+// void __cpymn(const mp_no *, int, mp_no *, int);
void __mp_dbl(const mp_no *, double *, int);
void __dbl_mp(double, mp_no *, int);
void __add(const mp_no *, const mp_no *, mp_no *, int);
void __sub(const mp_no *, const mp_no *, mp_no *, int);
void __mul(const mp_no *, const mp_no *, mp_no *, int);
-void __inv(const mp_no *, mp_no *, int);
+// void __inv(const mp_no *, mp_no *, int);
void __dvd(const mp_no *, const mp_no *, mp_no *, int);
extern void __mpatan (mp_no *, mp_no *, int);
diff --git a/sysdeps/ieee754/dbl-64/mpsqrt.c b/sysdeps/ieee754/dbl-64/mpsqrt.c
index 9945de3..bea6232 100644
--- a/sysdeps/ieee754/dbl-64/mpsqrt.c
+++ b/sysdeps/ieee754/dbl-64/mpsqrt.c
@@ -1,8 +1,7 @@
-
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
- * Copyright (C) 2001 Free Software Foundation
+ * Copyright (C) 2001, 2011 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -41,7 +40,7 @@
/* p as integer. Routine computes sqrt(*x) and stores result in *y */
/****************************************************************************/
-double fastiroot(double);
+static double fastiroot(double);
void __mpsqrt(mp_no *x, mp_no *y, int p) {
#include "mpsqrt.h"
@@ -50,11 +49,11 @@ void __mpsqrt(mp_no *x, mp_no *y, int p) {
double dx,dy;
mp_no
mphalf = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
mp3halfs = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
mp_no mpxn,mpz,mpu,mpt1,mpt2;
/* Prepare multi-precision 1/2 and 3/2 */
@@ -82,7 +81,7 @@ void __mpsqrt(mp_no *x, mp_no *y, int p) {
/* Compute a double precision approximation for 1/sqrt(x) */
/* with the relative error bounded by 2**-51. */
/***********************************************************/
-double fastiroot(double x) {
+static double fastiroot(double x) {
union {int i[2]; double d;} p,q;
double y,z, t;
int n;
diff --git a/sysdeps/ieee754/dbl-64/s_atan.c b/sysdeps/ieee754/dbl-64/s_atan.c
index c7f5f3e..65369ff 100644
--- a/sysdeps/ieee754/dbl-64/s_atan.c
+++ b/sysdeps/ieee754/dbl-64/s_atan.c
@@ -46,7 +46,13 @@
void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */
static double atanMp(double,const int[]);
-double __signArctan(double,double);
+
+ /* Fix the sign of y and return */
+static double __signArctan(double x,double y){
+ return __copysign(y, x);
+}
+
+
/* An ultimate atan() routine. Given an IEEE double machine number x, */
/* routine computes the correctly rounded (to nearest) value of atan(x). */
double atan(double x) {
@@ -203,14 +209,6 @@ double atan(double x) {
}
-
- /* Fix the sign of y and return */
-double __signArctan(double x,double y){
-
- if (x<ZERO) return -y;
- else return y;
-}
-
/* Final stages. Compute atan(x) by multiple precision arithmetic */
static double atanMp(double x,const int pr[]){
mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
diff --git a/sysdeps/ieee754/dbl-64/s_sin.c b/sysdeps/ieee754/dbl-64/s_sin.c
index b40776f..02d428c 100644
--- a/sysdeps/ieee754/dbl-64/s_sin.c
+++ b/sysdeps/ieee754/dbl-64/s_sin.c
@@ -1,7 +1,7 @@
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
- * Copyright (C) 2001, 2009 Free Software Foundation
+ * Copyright (C) 2001, 2009, 2011 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -53,15 +53,20 @@
#include "mydefs.h"
#include "usncs.h"
#include "MathLib.h"
-#include "sincos.tbl"
#include "math_private.h"
+extern const union
+{
+ int4 i[880];
+ double x[440];
+} __sincostab attribute_hidden;
+
static const double
- sn3 = -1.66666666666664880952546298448555E-01,
- sn5 = 8.33333214285722277379541354343671E-03,
- cs2 = 4.99999999999999999999950396842453E-01,
- cs4 = -4.16666666666664434524222570944589E-02,
- cs6 = 1.38888874007937613028114285595617E-03;
+ sn3 = -1.66666666666664880952546298448555E-01,
+ sn5 = 8.33333214285722277379541354343671E-03,
+ cs2 = 4.99999999999999999999950396842453E-01,
+ cs4 = -4.16666666666664434524222570944589E-02,
+ cs6 = 1.38888874007937613028114285595617E-03;
void __dubsin(double x, double dx, double w[]);
void __docos(double x, double dx, double w[]);
@@ -120,10 +125,10 @@ double __sin(double x){
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=(m>0)?sincos.x[k]:-sincos.x[k];
- ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=(m>0)?__sincostab.x[k]:-__sincostab.x[k];
+ ssn=(m>0)?__sincostab.x[k+1]:-__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -146,10 +151,10 @@ double __sin(double x){
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ccs-s*ssn-cs*c)-sn*s;
res=cs+cor;
cor=(cs-res)+cor;
@@ -174,7 +179,7 @@ double __sin(double x){
xx = a*a;
if (n) {a=-a;da=-da;}
if (xx < 0.01588) {
- /*Taylor series */
+ /*Taylor series */
t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
res = a+t;
cor = (a-res)+t;
@@ -192,10 +197,10 @@ double __sin(double x){
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -212,10 +217,10 @@ double __sin(double x){
y=a-(u.x-big.x)+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
@@ -253,7 +258,7 @@ double __sin(double x){
xx = a*a;
if (n) {a=-a;da=-da;}
if (xx < 0.01588) {
- /* Taylor series */
+ /* Taylor series */
t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
res = a+t;
cor = (a-res)+t;
@@ -269,10 +274,10 @@ double __sin(double x){
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -289,10 +294,10 @@ double __sin(double x){
y=a-(u.x-big.x)+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
@@ -364,10 +369,10 @@ double __cos(double x)
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ccs-s*ssn-cs*c)-sn*s;
res=cs+cor;
cor=(cs-res)+cor;
@@ -396,10 +401,10 @@ double __cos(double x)
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -442,10 +447,10 @@ double __cos(double x)
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -461,10 +466,10 @@ double __cos(double x)
y=a-(u.x-big.x)+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
@@ -473,7 +478,7 @@ double __cos(double x)
cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n);
- break;
+ break;
}
@@ -517,10 +522,10 @@ double __cos(double x)
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
@@ -536,10 +541,10 @@ double __cos(double x)
y=a-(u.x-big.x)+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
@@ -611,7 +616,7 @@ static const double th2_36 = 206158430208.0; /* 1.5*2**37 */
}
}
/*******************************************************************************/
-/* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor */
+/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
/* and if result still doesn't accurate enough by mpsin or dubsin */
/*******************************************************************************/
@@ -627,10 +632,10 @@ static double slow1(double x) {
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k]; /* Data */
- ssn=sincos.x[k+1]; /* from */
- cs=sincos.x[k+2]; /* tables */
- ccs=sincos.x[k+3]; /* sincos.tbl */
+ sn=__sincostab.x[k]; /* Data */
+ ssn=__sincostab.x[k+1]; /* from */
+ cs=__sincostab.x[k+2]; /* tables */
+ ccs=__sincostab.x[k+3]; /* __sincostab.tbl */
y1 = (y+t22)-t22;
y2 = y - y1;
c1 = (cs+t22)-t22;
@@ -648,7 +653,7 @@ static double slow1(double x) {
}
}
/**************************************************************************/
-/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl */
+/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */
/* and if result still doesn't accurate enough by mpsin or dubsin */
/**************************************************************************/
static double slow2(double x) {
@@ -672,10 +677,10 @@ static double slow2(double x) {
s = y*xx*(sn3 +xx*sn5);
c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+del;
e1 = (sn+t22)-t22;
@@ -763,10 +768,10 @@ static double sloww1(double x, double dx, double orig) {
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
c1 = (cs+t22)-t22;
@@ -805,10 +810,10 @@ static double sloww2(double x, double dx, double orig, int n) {
s = y*xx*(sn3 +xx*sn5);
c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
@@ -882,10 +887,10 @@ mynumber u;
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
c1 = (cs+t22)-t22;
@@ -925,10 +930,10 @@ mynumber u;
s = y*xx*(sn3 +xx*sn5);
c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
@@ -966,10 +971,10 @@ static double cslow2(double x) {
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = y - y1;
e1 = (sn+t22)-t22;
@@ -1059,10 +1064,10 @@ static double csloww1(double x, double dx, double orig) {
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
c1 = (cs+t22)-t22;
@@ -1103,10 +1108,10 @@ static double csloww2(double x, double dx, double orig, int n) {
s = y*xx*(sn3 +xx*sn5);
c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
- sn=sincos.x[k];
- ssn=sincos.x[k+1];
- cs=sincos.x[k+2];
- ccs=sincos.x[k+3];
+ sn=__sincostab.x[k];
+ ssn=__sincostab.x[k+1];
+ cs=__sincostab.x[k+2];
+ ccs=__sincostab.x[k+3];
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
@@ -1127,12 +1132,17 @@ static double csloww2(double x, double dx, double orig, int n) {
}
}
+#ifndef __cos
weak_alias (__cos, cos)
+# ifdef NO_LONG_DOUBLE
+strong_alias (__cos, __cosl)
+weak_alias (__cos, cosl)
+# endif
+#endif
+#ifndef __sin
weak_alias (__sin, sin)
-
-#ifdef NO_LONG_DOUBLE
+# ifdef NO_LONG_DOUBLE
strong_alias (__sin, __sinl)
weak_alias (__sin, sinl)
-strong_alias (__cos, __cosl)
-weak_alias (__cos, cosl)
+# endif
#endif
diff --git a/sysdeps/ieee754/dbl-64/sincos.tbl b/sysdeps/ieee754/dbl-64/sincostab.c
index 9343f24..49fccac 100644
--- a/sysdeps/ieee754/dbl-64/sincos.tbl
+++ b/sysdeps/ieee754/dbl-64/sincostab.c
@@ -1,7 +1,7 @@
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
- * Copyright (C) 2001, 2007 Free Software Foundation, Inc.
+ * Copyright (C) 2001, 2007, 2011 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -18,13 +18,16 @@
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
+#include <mydefs.h>
+#include <endian.h>
+
/****************************************************************/
/* TABLES FOR THE usin() and ucos() FUNCTION */
/****************************************************************/
#ifdef BIG_ENDI
-static const union {int4 i[880]; double x[440];}sincos = { .i = {
+const union {int4 i[880]; double x[440];}__sincostab = { .i = {
/**/ 0x00000000, 0x00000000,
/**/ 0x00000000, 0x00000000,
/**/ 0x3FF00000, 0x00000000,
@@ -467,7 +470,7 @@ static const union {int4 i[880]; double x[440];}sincos = { .i = {
/**/ 0x3C747A10, 0x8073C259 } };
#else
#ifdef LITTLE_ENDI
-static const union {int4 i[880]; double x[440];} sincos = { .i = {
+const union {int4 i[880]; double x[440];} __sincostab = { .i = {
/**/ 0x00000000, 0x00000000,
/**/ 0x00000000, 0x00000000,
/**/ 0x00000000, 0x3FF00000,