aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-open.c
blob: 2ae0a696c3ab50f47f06530a1ad88067ee17bc47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
/* Opening CTF files.
   Copyright (C) 2019-2024 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <elf.h>
#include "swap.h"
#include <bfd.h>
#include <zlib.h>

static const ctf_dmodel_t _libctf_models[] = {
  {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
  {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
  {NULL, 0, 0, 0, 0, 0, 0}
};

const char _CTF_SECTION[] = ".ctf";
const char _CTF_NULLSTR[] = "";

/* Version-sensitive accessors.  */

static uint32_t
get_kind_v1 (uint32_t info)
{
  return (CTF_V1_INFO_KIND (info));
}

static uint32_t
get_root_v1 (uint32_t info)
{
  return (CTF_V1_INFO_ISROOT (info));
}

static uint32_t
get_vlen_v1 (uint32_t info)
{
  return (CTF_V1_INFO_VLEN (info));
}

static uint32_t
get_kind_v2 (uint32_t info)
{
  return (CTF_V2_INFO_KIND (info));
}

static uint32_t
get_root_v2 (uint32_t info)
{
  return (CTF_V2_INFO_ISROOT (info));
}

static uint32_t
get_vlen_v2 (uint32_t info)
{
  return (CTF_V2_INFO_VLEN (info));
}

static inline ssize_t
get_ctt_size_common (const ctf_dict_t *fp _libctf_unused_,
		     const ctf_type_t *tp _libctf_unused_,
		     ssize_t *sizep, ssize_t *incrementp, size_t lsize,
		     size_t csize, size_t ctf_type_size,
		     size_t ctf_stype_size, size_t ctf_lsize_sent)
{
  ssize_t size, increment;

  if (csize == ctf_lsize_sent)
    {
      size = lsize;
      increment = ctf_type_size;
    }
  else
    {
      size = csize;
      increment = ctf_stype_size;
    }

  if (sizep)
    *sizep = size;
  if (incrementp)
    *incrementp = increment;

  return size;
}

static ssize_t
get_ctt_size_v1 (const ctf_dict_t *fp, const ctf_type_t *tp,
		 ssize_t *sizep, ssize_t *incrementp)
{
  ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;

  return (get_ctt_size_common (fp, tp, sizep, incrementp,
			       CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
			       sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
			       CTF_LSIZE_SENT_V1));
}

/* Return the size that a v1 will be once it is converted to v2.  */

static ssize_t
get_ctt_size_v2_unconverted (const ctf_dict_t *fp, const ctf_type_t *tp,
			     ssize_t *sizep, ssize_t *incrementp)
{
  ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;

  return (get_ctt_size_common (fp, tp, sizep, incrementp,
			       CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
			       sizeof (ctf_type_t), sizeof (ctf_stype_t),
			       CTF_LSIZE_SENT));
}

static ssize_t
get_ctt_size_v2 (const ctf_dict_t *fp, const ctf_type_t *tp,
		 ssize_t *sizep, ssize_t *incrementp)
{
  return (get_ctt_size_common (fp, tp, sizep, incrementp,
			       CTF_TYPE_LSIZE (tp), tp->ctt_size,
			       sizeof (ctf_type_t), sizeof (ctf_stype_t),
			       CTF_LSIZE_SENT));
}

static ssize_t
get_vbytes_common (ctf_dict_t *fp, unsigned short kind,
		   ssize_t size _libctf_unused_, size_t vlen)
{
  switch (kind)
    {
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
      return (sizeof (uint32_t));
    case CTF_K_SLICE:
      return (sizeof (ctf_slice_t));
    case CTF_K_ENUM:
      return (sizeof (ctf_enum_t) * vlen);
    case CTF_K_FORWARD:
    case CTF_K_UNKNOWN:
    case CTF_K_POINTER:
    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
      return 0;
    default:
      ctf_set_errno (fp, ECTF_CORRUPT);
      ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
      return -1;
    }
}

static ssize_t
get_vbytes_v1 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
{
  switch (kind)
    {
    case CTF_K_ARRAY:
      return (sizeof (ctf_array_v1_t));
    case CTF_K_FUNCTION:
      return (sizeof (unsigned short) * (vlen + (vlen & 1)));
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      if (size < CTF_LSTRUCT_THRESH_V1)
	return (sizeof (ctf_member_v1_t) * vlen);
      else
	return (sizeof (ctf_lmember_v1_t) * vlen);
    }

  return (get_vbytes_common (fp, kind, size, vlen));
}

static ssize_t
get_vbytes_v2 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
{
  switch (kind)
    {
    case CTF_K_ARRAY:
      return (sizeof (ctf_array_t));
    case CTF_K_FUNCTION:
      return (sizeof (uint32_t) * (vlen + (vlen & 1)));
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      if (size < CTF_LSTRUCT_THRESH)
	return (sizeof (ctf_member_t) * vlen);
      else
	return (sizeof (ctf_lmember_t) * vlen);
    }

  return (get_vbytes_common (fp, kind, size, vlen));
}

static const ctf_dictops_t ctf_dictops[] = {
  {NULL, NULL, NULL, NULL, NULL},
  /* CTF_VERSION_1 */
  {get_kind_v1, get_root_v1, get_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
  /* CTF_VERSION_1_UPGRADED_3 */
  {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
  /* CTF_VERSION_2 */
  {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
  /* CTF_VERSION_3, identical to 2: only new type kinds */
  {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
};

/* Initialize the symtab translation table as appropriate for its indexing
   state.  For unindexed symtypetabs, fill each entry with the offset of the CTF
   type or function data corresponding to each STT_FUNC or STT_OBJECT entry in
   the symbol table.  For indexed symtypetabs, do nothing: the needed
   initialization for indexed lookups may be quite expensive, so it is done only
   as needed, when lookups happen.  (In particular, the majority of indexed
   symtypetabs come from the compiler, and all the linker does is iteration over
   all entries, which doesn't need this initialization.)

   The SP symbol table section may be NULL if there is no symtab.

   If init_symtab works on one call, it cannot fail on future calls to the same
   fp: ctf_symsect_endianness relies on this.  */

static int
init_symtab (ctf_dict_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp)
{
  const unsigned char *symp;
  int skip_func_info = 0;
  int i;
  uint32_t *xp = fp->ctf_sxlate;
  uint32_t *xend = PTR_ADD (xp, fp->ctf_nsyms);

  uint32_t objtoff = hp->cth_objtoff;
  uint32_t funcoff = hp->cth_funcoff;

  /* If the CTF_F_NEWFUNCINFO flag is not set, pretend the func info section
     is empty: this compiler is too old to emit a function info section we
     understand.  */

  if (!(hp->cth_flags & CTF_F_NEWFUNCINFO))
    skip_func_info = 1;

  if (hp->cth_objtidxoff < hp->cth_funcidxoff)
    fp->ctf_objtidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_objtidxoff);
  if (hp->cth_funcidxoff < hp->cth_varoff && !skip_func_info)
    fp->ctf_funcidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_funcidxoff);

  /* Don't bother doing the rest if everything is indexed, or if we don't have a
     symbol table: we will never use it.  */
  if ((fp->ctf_objtidx_names && fp->ctf_funcidx_names) || !sp || !sp->cts_data)
    return 0;

  /* The CTF data object and function type sections are ordered to match the
     relative order of the respective symbol types in the symtab, unless there
     is an index section, in which case the order is arbitrary and the index
     gives the mapping.  If no type information is available for a symbol table
     entry, a pad is inserted in the CTF section.  As a further optimization,
     anonymous or undefined symbols are omitted from the CTF data.  If an
     index is available for function symbols but not object symbols, or vice
     versa, we populate the xslate table for the unindexed symbols only.  */

  for (i = 0, symp = sp->cts_data; xp < xend; xp++, symp += sp->cts_entsize,
	 i++)
    {
      ctf_link_sym_t sym;

      switch (sp->cts_entsize)
	{
	case sizeof (Elf64_Sym):
	  {
	    const Elf64_Sym *symp64 = (Elf64_Sym *) (uintptr_t) symp;
	    ctf_elf64_to_link_sym (fp, &sym, symp64, i);
	  }
	  break;
	case sizeof (Elf32_Sym):
	  {
	    const Elf32_Sym *symp32 = (Elf32_Sym *) (uintptr_t) symp;
	    ctf_elf32_to_link_sym (fp, &sym, symp32, i);
	  }
	  break;
	default:
	  return ECTF_SYMTAB;
	}

      /* This call may be led astray if our idea of the symtab's endianness is
	 wrong, but when this is fixed by a call to ctf_symsect_endianness,
	 init_symtab will be called again with the right endianness in
	 force.  */
      if (ctf_symtab_skippable (&sym))
	{
	  *xp = -1u;
	  continue;
	}

      switch (sym.st_type)
	{
	case STT_OBJECT:
	  if (fp->ctf_objtidx_names || objtoff >= hp->cth_funcoff)
	    {
	      *xp = -1u;
	      break;
	    }

	  *xp = objtoff;
	  objtoff += sizeof (uint32_t);
	  break;

	case STT_FUNC:
	  if (fp->ctf_funcidx_names || funcoff >= hp->cth_objtidxoff
	      || skip_func_info)
	    {
	      *xp = -1u;
	      break;
	    }

	  *xp = funcoff;
	  funcoff += sizeof (uint32_t);
	  break;

	default:
	  *xp = -1u;
	  break;
	}
    }

  ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
  return 0;
}

/* Reset the CTF base pointer and derive the buf pointer from it, initializing
   everything in the ctf_dict that depends on the base or buf pointers.

   The original gap between the buf and base pointers, if any -- the original,
   unconverted CTF header -- is kept, but its contents are not specified and are
   never used.  */

static void
ctf_set_base (ctf_dict_t *fp, const ctf_header_t *hp, unsigned char *base)
{
  fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
  fp->ctf_base = base;
  fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
				   hp->cth_varoff);
  fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);

  fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
    + hp->cth_stroff;
  fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;

  /* If we have a parent dict name and label, store the relocated string
     pointers in the CTF dict for easy access later. */

  /* Note: before conversion, these will be set to values that will be
     immediately invalidated by the conversion process, but the conversion
     process will call ctf_set_base() again to fix things up.  */

  if (hp->cth_parlabel != 0)
    fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
  if (hp->cth_parname != 0)
    fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
  if (hp->cth_cuname != 0)
    fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);

  if (fp->ctf_cuname)
    ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
  if (fp->ctf_parname)
    ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
	       fp->ctf_parname,
	       fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
}

/* Set the version of the CTF file. */

/* When this is reset, LCTF_* changes behaviour, but there is no guarantee that
   the variable data list associated with each type has been upgraded: the
   caller must ensure this has been done in advance.  */

static void
ctf_set_version (ctf_dict_t *fp, ctf_header_t *cth, int ctf_version)
{
  fp->ctf_version = ctf_version;
  cth->cth_version = ctf_version;
  fp->ctf_dictops = &ctf_dictops[ctf_version];
}


/* Upgrade the header to CTF_VERSION_3.  The upgrade is done in-place.  */
static void
upgrade_header (ctf_header_t *hp)
{
  ctf_header_v2_t *oldhp = (ctf_header_v2_t *) hp;

  hp->cth_strlen = oldhp->cth_strlen;
  hp->cth_stroff = oldhp->cth_stroff;
  hp->cth_typeoff = oldhp->cth_typeoff;
  hp->cth_varoff = oldhp->cth_varoff;
  hp->cth_funcidxoff = hp->cth_varoff;		/* No index sections.  */
  hp->cth_objtidxoff = hp->cth_funcidxoff;
  hp->cth_funcoff = oldhp->cth_funcoff;
  hp->cth_objtoff = oldhp->cth_objtoff;
  hp->cth_lbloff = oldhp->cth_lbloff;
  hp->cth_cuname = 0;				/* No CU name.  */
}

/* Upgrade the type table to CTF_VERSION_3 (really CTF_VERSION_1_UPGRADED_3)
   from CTF_VERSION_1.

   The upgrade is not done in-place: the ctf_base is moved.  ctf_strptr() must
   not be called before reallocation is complete.

   Sections not checked here due to nonexistence or nonpopulated state in older
   formats: objtidx, funcidx.

   Type kinds not checked here due to nonexistence in older formats:
      CTF_K_SLICE.  */
static int
upgrade_types_v1 (ctf_dict_t *fp, ctf_header_t *cth)
{
  const ctf_type_v1_t *tbuf;
  const ctf_type_v1_t *tend;
  unsigned char *ctf_base, *old_ctf_base = (unsigned char *) fp->ctf_dynbase;
  ctf_type_t *t2buf;

  ssize_t increase = 0, size, increment, v2increment, vbytes, v2bytes;
  const ctf_type_v1_t *tp;
  ctf_type_t *t2p;

  tbuf = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_typeoff);
  tend = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_stroff);

  /* Much like init_static_types(), this is a two-pass process.

     First, figure out the new type-section size needed.  (It is possible,
     in theory, for it to be less than the old size, but this is very
     unlikely.  It cannot be so small that cth_typeoff ends up of negative
     size.  We validate this with an assertion below.)

     We must cater not only for changes in vlen and types sizes but also
     for changes in 'increment', which happen because v2 places some types
     into ctf_stype_t where v1 would be forced to use the larger non-stype.  */

  for (tp = tbuf; tp < tend;
       tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes))
    {
      unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
      unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);

      size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
      vbytes = get_vbytes_v1 (fp, kind, size, vlen);

      get_ctt_size_v2_unconverted (fp, (const ctf_type_t *) tp, NULL,
				   &v2increment);
      v2bytes = get_vbytes_v2 (fp, kind, size, vlen);

      if ((vbytes < 0) || (size < 0))
	return ECTF_CORRUPT;

      increase += v2increment - increment;	/* May be negative.  */
      increase += v2bytes - vbytes;
    }

  /* Allocate enough room for the new buffer, then copy everything but the type
     section into place, and reset the base accordingly.  Leave the version
     number unchanged, so that LCTF_INFO_* still works on the
     as-yet-untranslated type info.  */

  if ((ctf_base = malloc (fp->ctf_size + increase)) == NULL)
    return ECTF_ZALLOC;

  /* Start at ctf_buf, not ctf_base, to squeeze out the original header: we
     never use it and it is unconverted.  */

  memcpy (ctf_base, fp->ctf_buf, cth->cth_typeoff);
  memcpy (ctf_base + cth->cth_stroff + increase,
	  fp->ctf_buf + cth->cth_stroff, cth->cth_strlen);

  memset (ctf_base + cth->cth_typeoff, 0, cth->cth_stroff - cth->cth_typeoff
	  + increase);

  cth->cth_stroff += increase;
  fp->ctf_size += increase;
  assert (cth->cth_stroff >= cth->cth_typeoff);
  fp->ctf_base = ctf_base;
  fp->ctf_buf = ctf_base;
  fp->ctf_dynbase = ctf_base;
  ctf_set_base (fp, cth, ctf_base);

  t2buf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);

  /* Iterate through all the types again, upgrading them.

     Everything that hasn't changed can just be outright memcpy()ed.
     Things that have changed need field-by-field consideration.  */

  for (tp = tbuf, t2p = t2buf; tp < tend;
       tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes),
       t2p = (ctf_type_t *) ((uintptr_t) t2p + v2increment + v2bytes))
    {
      unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
      int isroot = CTF_V1_INFO_ISROOT (tp->ctt_info);
      unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
      ssize_t v2size;
      void *vdata, *v2data;

      size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
      vbytes = get_vbytes_v1 (fp, kind, size, vlen);

      t2p->ctt_name = tp->ctt_name;
      t2p->ctt_info = CTF_TYPE_INFO (kind, isroot, vlen);

      switch (kind)
	{
	case CTF_K_FUNCTION:
	case CTF_K_FORWARD:
	case CTF_K_TYPEDEF:
	case CTF_K_POINTER:
	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
	  t2p->ctt_type = tp->ctt_type;
	  break;
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	case CTF_K_ARRAY:
	case CTF_K_STRUCT:
	case CTF_K_UNION:
	case CTF_K_ENUM:
	case CTF_K_UNKNOWN:
	  if ((size_t) size <= CTF_MAX_SIZE)
	    t2p->ctt_size = size;
	  else
	    {
	      t2p->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
	      t2p->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
	    }
	  break;
	}

      v2size = get_ctt_size_v2 (fp, t2p, NULL, &v2increment);
      v2bytes = get_vbytes_v2 (fp, kind, v2size, vlen);

      /* Catch out-of-sync get_ctt_size_*().  The count goes wrong if
	 these are not identical (and having them different makes no
	 sense semantically).  */

      assert (size == v2size);

      /* Now the varlen info.  */

      vdata = (void *) ((uintptr_t) tp + increment);
      v2data = (void *) ((uintptr_t) t2p + v2increment);

      switch (kind)
	{
	case CTF_K_ARRAY:
	  {
	    const ctf_array_v1_t *ap = (const ctf_array_v1_t *) vdata;
	    ctf_array_t *a2p = (ctf_array_t *) v2data;

	    a2p->cta_contents = ap->cta_contents;
	    a2p->cta_index = ap->cta_index;
	    a2p->cta_nelems = ap->cta_nelems;
	    break;
	  }
	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  {
	    ctf_member_t tmp;
	    const ctf_member_v1_t *m1 = (const ctf_member_v1_t *) vdata;
	    const ctf_lmember_v1_t *lm1 = (const ctf_lmember_v1_t *) m1;
	    ctf_member_t *m2 = (ctf_member_t *) v2data;
	    ctf_lmember_t *lm2 = (ctf_lmember_t *) m2;
	    unsigned long i;

	    /* We walk all four pointers forward, but only reference the two
	       that are valid for the given size, to avoid quadruplicating all
	       the code.  */

	    for (i = vlen; i != 0; i--, m1++, lm1++, m2++, lm2++)
	      {
		size_t offset;
		if (size < CTF_LSTRUCT_THRESH_V1)
		  {
		    offset = m1->ctm_offset;
		    tmp.ctm_name = m1->ctm_name;
		    tmp.ctm_type = m1->ctm_type;
		  }
		else
		  {
		    offset = CTF_LMEM_OFFSET (lm1);
		    tmp.ctm_name = lm1->ctlm_name;
		    tmp.ctm_type = lm1->ctlm_type;
		  }
		if (size < CTF_LSTRUCT_THRESH)
		  {
		    m2->ctm_name = tmp.ctm_name;
		    m2->ctm_type = tmp.ctm_type;
		    m2->ctm_offset = offset;
		  }
		else
		  {
		    lm2->ctlm_name = tmp.ctm_name;
		    lm2->ctlm_type = tmp.ctm_type;
		    lm2->ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (offset);
		    lm2->ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (offset);
		  }
	      }
	    break;
	  }
	case CTF_K_FUNCTION:
	  {
	    unsigned long i;
	    unsigned short *a1 = (unsigned short *) vdata;
	    uint32_t *a2 = (uint32_t *) v2data;

	    for (i = vlen; i != 0; i--, a1++, a2++)
	      *a2 = *a1;
	  }
	/* FALLTHRU */
	default:
	  /* Catch out-of-sync get_vbytes_*().  */
	  assert (vbytes == v2bytes);
	  memcpy (v2data, vdata, vbytes);
	}
    }

  /* Verify that the entire region was converted.  If not, we are either
     converting too much, or too little (leading to a buffer overrun either here
     or at read time, in init_static_types().) */

  assert ((size_t) t2p - (size_t) fp->ctf_buf == cth->cth_stroff);

  ctf_set_version (fp, cth, CTF_VERSION_1_UPGRADED_3);
  free (old_ctf_base);

  return 0;
}

/* Upgrade from any earlier version.  */
static int
upgrade_types (ctf_dict_t *fp, ctf_header_t *cth)
{
  switch (cth->cth_version)
    {
      /* v1 requires a full pass and reformatting.  */
    case CTF_VERSION_1:
      upgrade_types_v1 (fp, cth);
      /* FALLTHRU */
      /* Already-converted v1 is just like later versions except that its
	 parent/child boundary is unchanged (and much lower).  */

    case CTF_VERSION_1_UPGRADED_3:
      fp->ctf_parmax = CTF_MAX_PTYPE_V1;

      /* v2 is just the same as v3 except for new types and sections:
	 no upgrading required. */
    case CTF_VERSION_2: ;
      /* FALLTHRU */
    }
  return 0;
}

static int
init_static_types_internal (ctf_dict_t *fp, ctf_header_t *cth,
			    ctf_dynset_t *all_enums);

/* Populate statically-defined types (those loaded from a saved buffer).

   Initialize the type ID translation table with the byte offset of each type,
   and initialize the hash tables of each named type.  Upgrade the type table to
   the latest supported representation in the process, if needed, and if this
   recension of libctf supports upgrading.

   This is a wrapper to simplify memory allocation on error in the _internal
   function that does all the actual work.  */

static int
init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
{
  ctf_dynset_t *all_enums;
  int err;

  if ((all_enums = ctf_dynset_create (htab_hash_pointer, htab_eq_pointer,
				      NULL)) == NULL)
    return ENOMEM;

  err = init_static_types_internal (fp, cth, all_enums);
  ctf_dynset_destroy (all_enums);
  return err;
}

static int
init_static_types_internal (ctf_dict_t *fp, ctf_header_t *cth,
			    ctf_dynset_t *all_enums)
{
  const ctf_type_t *tbuf;
  const ctf_type_t *tend;

  unsigned long pop[CTF_K_MAX + 1] = { 0 };
  int pop_enumerators = 0;
  const ctf_type_t *tp;
  uint32_t id;
  uint32_t *xp;
  unsigned long typemax = 0;
  ctf_next_t *i = NULL;
  void *k;

  /* We determine whether the dict is a child or a parent based on the value of
     cth_parname.  */

  int child = cth->cth_parname != 0;
  int nlstructs = 0, nlunions = 0;
  int err;

  if (_libctf_unlikely_ (fp->ctf_version == CTF_VERSION_1))
    {
      int err;
      if ((err = upgrade_types (fp, cth)) != 0)
	return err;				/* Upgrade failed.  */
    }

  tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
  tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);

  /* We make two passes through the entire type section, and one third pass
     through part of it.  In this first pass, we count the number of each type
     and type-like identifier (like enumerators) and the total number of
     types.  */

  for (tp = tbuf; tp < tend; typemax++)
    {
      unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
      unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
      ssize_t size, increment, vbytes;

      (void) ctf_get_ctt_size (fp, tp, &size, &increment);
      vbytes = LCTF_VBYTES (fp, kind, size, vlen);

      if (vbytes < 0)
	return ECTF_CORRUPT;

      /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
	 so bump that population count too.  */
      if (kind == CTF_K_FORWARD)
	pop[tp->ctt_type]++;

      tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
      pop[kind]++;

      if (kind == CTF_K_ENUM)
	pop_enumerators += vlen;
    }

  if (child)
    {
      ctf_dprintf ("CTF dict %p is a child\n", (void *) fp);
      fp->ctf_flags |= LCTF_CHILD;
    }
  else
    ctf_dprintf ("CTF dict %p is a parent\n", (void *) fp);

  /* Now that we've counted up the number of each type, we can allocate
     the hash tables, type translation table, and pointer table.  */

  if ((fp->ctf_structs
       = ctf_dynhash_create_sized (pop[CTF_K_STRUCT], ctf_hash_string,
				   ctf_hash_eq_string, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_unions
       = ctf_dynhash_create_sized (pop[CTF_K_UNION], ctf_hash_string,
				   ctf_hash_eq_string, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_enums
       = ctf_dynhash_create_sized (pop[CTF_K_ENUM], ctf_hash_string,
				   ctf_hash_eq_string, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_names
       = ctf_dynhash_create_sized (pop[CTF_K_UNKNOWN] +
				   pop[CTF_K_INTEGER] +
				   pop[CTF_K_FLOAT] +
				   pop[CTF_K_FUNCTION] +
				   pop[CTF_K_TYPEDEF] +
				   pop[CTF_K_POINTER] +
				   pop[CTF_K_VOLATILE] +
				   pop[CTF_K_CONST] +
				   pop[CTF_K_RESTRICT] +
				   pop_enumerators,
				   ctf_hash_string,
				   ctf_hash_eq_string, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_conflicting_enums
       = ctf_dynset_create (htab_hash_string, htab_eq_string, NULL)) == NULL)
    return ENOMEM;

  /* The ptrtab and txlate can be appropriately sized for precisely this set
     of types: the txlate because it is only used to look up static types,
     so dynamic types added later will never go through it, and the ptrtab
     because later-added types will call grow_ptrtab() automatically, as
     needed.  */

  fp->ctf_txlate = malloc (sizeof (uint32_t) * (typemax + 1));
  fp->ctf_ptrtab_len = typemax + 1;
  fp->ctf_ptrtab = malloc (sizeof (uint32_t) * fp->ctf_ptrtab_len);
  fp->ctf_stypes = typemax;

  if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
    return ENOMEM;		/* Memory allocation failed.  */

  xp = fp->ctf_txlate;
  *xp++ = 0;			/* Type id 0 is used as a sentinel value.  */

  memset (fp->ctf_txlate, 0, sizeof (uint32_t) * (typemax + 1));
  memset (fp->ctf_ptrtab, 0, sizeof (uint32_t) * (typemax + 1));

  /* In the second pass through the types, we fill in each entry of the
     type and pointer tables and add names to the appropriate hashes.

     (Not all names are added in this pass, only type names.  See below.)

     Bump ctf_typemax as we go, but keep it one higher than normal, so that
     the type being read in is considered a valid type and it is at least
     barely possible to run simple lookups on it.  */

  for (id = 1, fp->ctf_typemax = 1, tp = tbuf; tp < tend; xp++, id++, fp->ctf_typemax++)
    {
      unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
      unsigned short isroot = LCTF_INFO_ISROOT (fp, tp->ctt_info);
      unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
      ssize_t size, increment, vbytes;

      const char *name;

      (void) ctf_get_ctt_size (fp, tp, &size, &increment);
      name = ctf_strptr (fp, tp->ctt_name);
      /* Cannot fail: shielded by call in loop above.  */
      vbytes = LCTF_VBYTES (fp, kind, size, vlen);

      *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);

      switch (kind)
	{
	case CTF_K_UNKNOWN:
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  {
	    ctf_id_t existing;
	    ctf_encoding_t existing_en;
	    ctf_encoding_t this_en;

	    if (!isroot)
	      break;

	    /* Names are reused by bitfields, which are differentiated by
	       their encodings.  So check for the type already existing, and
	       iff the new type is a root-visible non-bitfield, replace the
	       old one.  It's a little hard to figure out whether a type is
	       a non-bitfield without already knowing that type's native
	       width, but we can converge on it by replacing an existing
	       type as long as the new type is zero-offset and has a
	       bit-width wider than the existing one, since the native type
	       must necessarily have a bit-width at least as wide as any
	       bitfield based on it. */

	    if (((existing = ctf_dynhash_lookup_type (fp->ctf_names, name)) == 0)
		|| ctf_type_encoding (fp, existing, &existing_en) != 0
		|| (ctf_type_encoding (fp, LCTF_INDEX_TO_TYPE (fp, id, child), &this_en) == 0
		    && this_en.cte_offset == 0
		    && (existing_en.cte_offset != 0
			|| existing_en.cte_bits < this_en.cte_bits)))
	      {
		err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					       LCTF_INDEX_TO_TYPE (fp, id, child),
					       tp->ctt_name);
		if (err != 0)
		  return err;
	      }
	    break;
	  }

	  /* These kinds have no name, so do not need interning into any
	     hashtables.  */
	case CTF_K_ARRAY:
	case CTF_K_SLICE:
	  break;

	case CTF_K_FUNCTION:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 LCTF_INDEX_TO_TYPE (fp, id, child),
					 tp->ctt_name);
	  if (err != 0)
	    return err;
	  break;

	case CTF_K_STRUCT:
	  if (size >= CTF_LSTRUCT_THRESH)
	    nlstructs++;

	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_structs,
					 LCTF_INDEX_TO_TYPE (fp, id, child),
					 tp->ctt_name);

	  if (err != 0)
	    return err;

	  break;

	case CTF_K_UNION:
	  if (size >= CTF_LSTRUCT_THRESH)
	    nlunions++;

	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_unions,
					 LCTF_INDEX_TO_TYPE (fp, id, child),
					 tp->ctt_name);

	  if (err != 0)
	    return err;
	  break;

	case CTF_K_ENUM:
	  {
	    if (!isroot)
	      break;

	    err = ctf_dynhash_insert_type (fp, fp->ctf_enums,
					   LCTF_INDEX_TO_TYPE (fp, id, child),
					   tp->ctt_name);

	    if (err != 0)
	      return err;

	    /* Remember all enums for later rescanning.  */

	    err = ctf_dynset_insert (all_enums, (void *) (ptrdiff_t)
				     LCTF_INDEX_TO_TYPE (fp, id, child));
	    if (err != 0)
	      return err;
	    break;
	  }

	case CTF_K_TYPEDEF:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 LCTF_INDEX_TO_TYPE (fp, id, child),
					 tp->ctt_name);
	  if (err != 0)
	    return err;
	  break;

	case CTF_K_FORWARD:
	  {
	    ctf_dynhash_t *h = ctf_name_table (fp, tp->ctt_type);

	    if (!isroot)
	      break;

	    /* Only insert forward tags into the given hash if the type or tag
	       name is not already present.  */
	    if (ctf_dynhash_lookup_type (h, name) == 0)
	      {
		err = ctf_dynhash_insert_type (fp, h, LCTF_INDEX_TO_TYPE (fp, id, child),
					       tp->ctt_name);
		if (err != 0)
		  return err;
	      }
	    break;
	  }

	case CTF_K_POINTER:
	  /* If the type referenced by the pointer is in this CTF dict, then
	     store the index of the pointer type in fp->ctf_ptrtab[ index of
	     referenced type ].  */

	  if (LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
	      && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
	    fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = id;
	 /*FALLTHRU*/

	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 LCTF_INDEX_TO_TYPE (fp, id, child),
					 tp->ctt_name);
	  if (err != 0)
	    return err;
	  break;
	default:
	  ctf_err_warn (fp, 0, ECTF_CORRUPT,
			_("init_static_types(): unhandled CTF kind: %x"), kind);
	  return ECTF_CORRUPT;
	}
      tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
    }
  fp->ctf_typemax--;
  assert (fp->ctf_typemax == typemax);

  ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);

  /* In the third pass, we traverse the enums we spotted earlier and add all
     the enumeration constants therein either to the types table (if no
     type exists with that name) or to ctf_conflciting_enums (otherwise).

     Doing this in a third pass is necessary to avoid the case where an
     enum appears with a constant FOO, then later a type named FOO appears,
     too late to spot the conflict by checking the enum's constants.  */

  while ((err = ctf_dynset_next (all_enums, &i, &k)) == 0)
    {
      ctf_id_t enum_id = (uintptr_t) k;
      ctf_next_t *i_constants = NULL;
      const char *cte_name;

      while ((cte_name = ctf_enum_next (fp, enum_id, &i_constants, NULL)) != NULL)
	{
	  /* Add all the enumeration constants as identifiers.  They all appear
	     as types that cite the original enum.

	     Constants that appear in more than one enum, or which are already
	     the names of types, appear in ctf_conflicting_enums as well.  */

	  if (ctf_dynhash_lookup_type (fp->ctf_names, cte_name) == 0)
	    {
	      uint32_t name = ctf_str_add (fp, cte_name);

	      if (name == 0)
		goto enum_err;

	      err = ctf_dynhash_insert_type (fp, fp->ctf_names, enum_id, name);
	    }
	  else
	    {
	      err = ctf_dynset_insert (fp->ctf_conflicting_enums, (void *)
				       cte_name);

	      if (err != 0)
		goto enum_err;
	    }
	  continue;

	enum_err:
	  ctf_next_destroy (i_constants);
	  ctf_next_destroy (i);
	  return ctf_errno (fp);
	}
      if (ctf_errno (fp) != ECTF_NEXT_END)
	{
	  ctf_next_destroy (i);
	  return ctf_errno (fp);
	}
    }
  if (err != ECTF_NEXT_END)
    return err;

  ctf_dprintf ("%zu enum names hashed\n",
	       ctf_dynhash_elements (fp->ctf_enums));
  ctf_dprintf ("%zu conflicting enumerators identified\n",
	       ctf_dynset_elements (fp->ctf_conflicting_enums));
  ctf_dprintf ("%zu struct names hashed (%d long)\n",
	       ctf_dynhash_elements (fp->ctf_structs), nlstructs);
  ctf_dprintf ("%zu union names hashed (%d long)\n",
	       ctf_dynhash_elements (fp->ctf_unions), nlunions);
  ctf_dprintf ("%zu base type names and identifiers hashed\n",
	       ctf_dynhash_elements (fp->ctf_names));

  return 0;
}

/* Endianness-flipping routines.

   We flip everything, mindlessly, even 1-byte entities, so that future
   expansions do not require changes to this code.  */

/* Flip the endianness of the CTF header.  */

void
ctf_flip_header (ctf_header_t *cth)
{
  swap_thing (cth->cth_preamble.ctp_magic);
  swap_thing (cth->cth_preamble.ctp_version);
  swap_thing (cth->cth_preamble.ctp_flags);
  swap_thing (cth->cth_parlabel);
  swap_thing (cth->cth_parname);
  swap_thing (cth->cth_cuname);
  swap_thing (cth->cth_objtoff);
  swap_thing (cth->cth_funcoff);
  swap_thing (cth->cth_objtidxoff);
  swap_thing (cth->cth_funcidxoff);
  swap_thing (cth->cth_varoff);
  swap_thing (cth->cth_typeoff);
  swap_thing (cth->cth_stroff);
  swap_thing (cth->cth_strlen);
}

/* Flip the endianness of the label section, an array of ctf_lblent_t.  */

static void
flip_lbls (void *start, size_t len)
{
  ctf_lblent_t *lbl = start;
  ssize_t i;

  for (i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
    {
      swap_thing (lbl->ctl_label);
      swap_thing (lbl->ctl_type);
    }
}

/* Flip the endianness of the data-object or function sections or their indexes,
   all arrays of uint32_t.  */

static void
flip_objts (void *start, size_t len)
{
  uint32_t *obj = start;
  ssize_t i;

  for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
      swap_thing (*obj);
}

/* Flip the endianness of the variable section, an array of ctf_varent_t.  */

static void
flip_vars (void *start, size_t len)
{
  ctf_varent_t *var = start;
  ssize_t i;

  for (i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
    {
      swap_thing (var->ctv_name);
      swap_thing (var->ctv_type);
    }
}

/* Flip the endianness of the type section, a tagged array of ctf_type or
   ctf_stype followed by variable data.  */

static int
flip_types (ctf_dict_t *fp, void *start, size_t len, int to_foreign)
{
  ctf_type_t *t = start;

  while ((uintptr_t) t < ((uintptr_t) start) + len)
    {
      uint32_t kind;
      size_t size;
      uint32_t vlen;
      size_t vbytes;

      if (to_foreign)
	{
	  kind = CTF_V2_INFO_KIND (t->ctt_info);
	  size = t->ctt_size;
	  vlen = CTF_V2_INFO_VLEN (t->ctt_info);
	  vbytes = get_vbytes_v2 (fp, kind, size, vlen);
	}

      swap_thing (t->ctt_name);
      swap_thing (t->ctt_info);
      swap_thing (t->ctt_size);

      if (!to_foreign)
	{
	  kind = CTF_V2_INFO_KIND (t->ctt_info);
	  size = t->ctt_size;
	  vlen = CTF_V2_INFO_VLEN (t->ctt_info);
	  vbytes = get_vbytes_v2 (fp, kind, size, vlen);
	}

      if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
	{
	  if (to_foreign)
	    size = CTF_TYPE_LSIZE (t);

	  swap_thing (t->ctt_lsizehi);
	  swap_thing (t->ctt_lsizelo);

	  if (!to_foreign)
	    size = CTF_TYPE_LSIZE (t);

	  t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
	}
      else
	t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));

      switch (kind)
	{
	case CTF_K_FORWARD:
	case CTF_K_UNKNOWN:
	case CTF_K_POINTER:
	case CTF_K_TYPEDEF:
	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
	  /* These types have no vlen data to swap.  */
	  assert (vbytes == 0);
	  break;

	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  {
	    /* These types have a single uint32_t.  */

	    uint32_t *item = (uint32_t *) t;

	    swap_thing (*item);
	    break;
	  }

	case CTF_K_FUNCTION:
	  {
	    /* This type has a bunch of uint32_ts.  */

	    uint32_t *item = (uint32_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; item++, i--)
	      swap_thing (*item);
	    break;
	  }

	case CTF_K_ARRAY:
	  {
	    /* This has a single ctf_array_t.  */

	    ctf_array_t *a = (ctf_array_t *) t;

	    assert (vbytes == sizeof (ctf_array_t));
	    swap_thing (a->cta_contents);
	    swap_thing (a->cta_index);
	    swap_thing (a->cta_nelems);

	    break;
	  }

	case CTF_K_SLICE:
	  {
	    /* This has a single ctf_slice_t.  */

	    ctf_slice_t *s = (ctf_slice_t *) t;

	    assert (vbytes == sizeof (ctf_slice_t));
	    swap_thing (s->cts_type);
	    swap_thing (s->cts_offset);
	    swap_thing (s->cts_bits);

	    break;
	  }

	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  {
	    /* This has an array of ctf_member or ctf_lmember, depending on
	       size.  We could consider it to be a simple array of uint32_t,
	       but for safety's sake in case these structures ever acquire
	       non-uint32_t members, do it member by member.  */

	    if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
	      {
		ctf_lmember_t *lm = (ctf_lmember_t *) t;
		ssize_t i;
		for (i = vlen; i > 0; i--, lm++)
		  {
		    swap_thing (lm->ctlm_name);
		    swap_thing (lm->ctlm_offsethi);
		    swap_thing (lm->ctlm_type);
		    swap_thing (lm->ctlm_offsetlo);
		  }
	      }
	    else
	      {
		ctf_member_t *m = (ctf_member_t *) t;
		ssize_t i;
		for (i = vlen; i > 0; i--, m++)
		  {
		    swap_thing (m->ctm_name);
		    swap_thing (m->ctm_offset);
		    swap_thing (m->ctm_type);
		  }
	      }
	    break;
	  }

	case CTF_K_ENUM:
	  {
	    /* This has an array of ctf_enum_t.  */

	    ctf_enum_t *item = (ctf_enum_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; item++, i--)
	      {
		swap_thing (item->cte_name);
		swap_thing (item->cte_value);
	      }
	    break;
	  }
	default:
	  ctf_err_warn (fp, 0, ECTF_CORRUPT,
			_("unhandled CTF kind in endianness conversion: %x"),
			kind);
	  return ECTF_CORRUPT;
	}

      t = (ctf_type_t *) ((uintptr_t) t + vbytes);
    }

  return 0;
}

/* Flip the endianness of BUF, given the offsets in the (native-endianness) CTH.
   If TO_FOREIGN is set, flip to foreign-endianness; if not, flip away.

   All of this stuff happens before the header is fully initialized, so the
   LCTF_*() macros cannot be used yet.  Since we do not try to endian-convert v1
   data, this is no real loss.  */

int
ctf_flip (ctf_dict_t *fp, ctf_header_t *cth, unsigned char *buf,
	  int to_foreign)
{
  ctf_dprintf("flipping endianness\n");

  flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
  flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
  flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
  flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
  flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
  flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
  return flip_types (fp, buf + cth->cth_typeoff,
		     cth->cth_stroff - cth->cth_typeoff, to_foreign);
}

/* Set up the ctl hashes in a ctf_dict_t.  Called by both writable and
   non-writable dictionary initialization.  */
void ctf_set_ctl_hashes (ctf_dict_t *fp)
{
  /* Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
     array of type name prefixes and the corresponding ctf_hash to use.  */
  fp->ctf_lookups[0].ctl_prefix = "struct";
  fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
  fp->ctf_lookups[0].ctl_hash = fp->ctf_structs;
  fp->ctf_lookups[1].ctl_prefix = "union";
  fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
  fp->ctf_lookups[1].ctl_hash = fp->ctf_unions;
  fp->ctf_lookups[2].ctl_prefix = "enum";
  fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
  fp->ctf_lookups[2].ctl_hash = fp->ctf_enums;
  fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
  fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
  fp->ctf_lookups[3].ctl_hash = fp->ctf_names;
  fp->ctf_lookups[4].ctl_prefix = NULL;
  fp->ctf_lookups[4].ctl_len = 0;
  fp->ctf_lookups[4].ctl_hash = NULL;
}

/* Open a CTF file, mocking up a suitable ctf_sect.  */

ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
			     const char *symsect, size_t symsect_size,
			     size_t symsect_entsize,
			     const char *strsect, size_t strsect_size,
			     int *errp)
{
  ctf_sect_t skeleton;

  ctf_sect_t ctf_sect, sym_sect, str_sect;
  ctf_sect_t *ctfsectp = NULL;
  ctf_sect_t *symsectp = NULL;
  ctf_sect_t *strsectp = NULL;

  skeleton.cts_name = _CTF_SECTION;
  skeleton.cts_entsize = 1;

  if (ctfsect)
    {
      memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
      ctf_sect.cts_data = ctfsect;
      ctf_sect.cts_size = ctfsect_size;
      ctfsectp = &ctf_sect;
    }

  if (symsect)
    {
      memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
      sym_sect.cts_data = symsect;
      sym_sect.cts_size = symsect_size;
      sym_sect.cts_entsize = symsect_entsize;
      symsectp = &sym_sect;
    }

  if (strsect)
    {
      memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
      str_sect.cts_data = strsect;
      str_sect.cts_size = strsect_size;
      strsectp = &str_sect;
    }

  return ctf_bufopen (ctfsectp, symsectp, strsectp, errp);
}

/* Decode the specified CTF buffer and optional symbol table, and create a new
   CTF dict representing the symbolic debugging information.  This code can
   be used directly by the debugger, or it can be used as the engine for
   ctf_fdopen() or ctf_open(), below.  */

ctf_dict_t *
ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
	     const ctf_sect_t *strsect, int *errp)
{
  const ctf_preamble_t *pp;
  size_t hdrsz = sizeof (ctf_header_t);
  ctf_header_t *hp;
  ctf_dict_t *fp;
  int foreign_endian = 0;
  int err;

  libctf_init_debug();

  if ((ctfsect == NULL) || ((symsect != NULL) && (strsect == NULL)))
    return (ctf_set_open_errno (errp, EINVAL));

  if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
      symsect->cts_entsize != sizeof (Elf64_Sym))
    return (ctf_set_open_errno (errp, ECTF_SYMTAB));

  if (symsect != NULL && symsect->cts_data == NULL)
    return (ctf_set_open_errno (errp, ECTF_SYMBAD));

  if (strsect != NULL && strsect->cts_data == NULL)
    return (ctf_set_open_errno (errp, ECTF_STRBAD));

  if (ctfsect->cts_data == NULL
      || ctfsect->cts_size < sizeof (ctf_preamble_t))
    return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));

  pp = (const ctf_preamble_t *) ctfsect->cts_data;

  ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
	       pp->ctp_magic, pp->ctp_version);

  /* Validate each part of the CTF header.

     First, we validate the preamble (common to all versions).  At that point,
     we know the endianness and specific header version, and can validate the
     version-specific parts including section offsets and alignments.

     We specifically do not support foreign-endian old versions.  */

  if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
    {
      if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
	{
	  if (pp->ctp_version != CTF_VERSION_3)
	    return (ctf_set_open_errno (errp, ECTF_CTFVERS));
	  foreign_endian = 1;
	}
      else
	return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
    }

  if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
			 || (pp->ctp_version > CTF_VERSION_3)))
    return (ctf_set_open_errno (errp, ECTF_CTFVERS));

  if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
    {
      /* The symtab can contain function entries which contain embedded ctf
	 info.  We do not support dynamically upgrading such entries (none
	 should exist in any case, since dwarf2ctf does not create them).  */

      ctf_err_warn (NULL, 0, ECTF_NOTSUP, _("ctf_bufopen: CTF version %d "
					    "symsect not supported"),
		    pp->ctp_version);
      return (ctf_set_open_errno (errp, ECTF_NOTSUP));
    }

  if (pp->ctp_version < CTF_VERSION_3)
    hdrsz = sizeof (ctf_header_v2_t);

  if (_libctf_unlikely_ (pp->ctp_flags > CTF_F_MAX))
    {
      ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
					   "flags: %x"),
		    (unsigned int) pp->ctp_flags);
      return (ctf_set_open_errno (errp, ECTF_FLAGS));
    }

  if (ctfsect->cts_size < hdrsz)
    return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));

  if ((fp = malloc (sizeof (ctf_dict_t))) == NULL)
    return (ctf_set_open_errno (errp, ENOMEM));

  memset (fp, 0, sizeof (ctf_dict_t));

  if ((fp->ctf_header = malloc (sizeof (struct ctf_header))) == NULL)
    {
      free (fp);
      return (ctf_set_open_errno (errp, ENOMEM));
    }
  hp = fp->ctf_header;
  memcpy (hp, ctfsect->cts_data, hdrsz);
  if (pp->ctp_version < CTF_VERSION_3)
    upgrade_header (hp);

  if (foreign_endian)
    ctf_flip_header (hp);
  fp->ctf_openflags = hp->cth_flags;
  fp->ctf_size = hp->cth_stroff + hp->cth_strlen;

  ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
	       (unsigned long) fp->ctf_size);

  if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
      || hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
      || hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
      || hp->cth_stroff > fp->ctf_size)
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("header offset exceeds CTF size"));
      return (ctf_set_open_errno (errp, ECTF_CORRUPT));
    }

  if (hp->cth_lbloff > hp->cth_objtoff
      || hp->cth_objtoff > hp->cth_funcoff
      || hp->cth_funcoff > hp->cth_typeoff
      || hp->cth_funcoff > hp->cth_objtidxoff
      || hp->cth_objtidxoff > hp->cth_funcidxoff
      || hp->cth_funcidxoff > hp->cth_varoff
      || hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("overlapping CTF sections"));
      return (ctf_set_open_errno (errp, ECTF_CORRUPT));
    }

  if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
      || (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
      || (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
      || (hp->cth_typeoff & 3))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("CTF sections not properly aligned"));
      return (ctf_set_open_errno (errp, ECTF_CORRUPT));
    }

  /* This invariant will be lifted in v4, but for now it is true.  */

  if ((hp->cth_funcidxoff - hp->cth_objtidxoff != 0) &&
      (hp->cth_funcidxoff - hp->cth_objtidxoff
       != hp->cth_funcoff - hp->cth_objtoff))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("Object index section is neither empty nor the "
		      "same length as the object section: %u versus %u "
		      "bytes"), hp->cth_funcoff - hp->cth_objtoff,
		    hp->cth_funcidxoff - hp->cth_objtidxoff);
      return (ctf_set_open_errno (errp, ECTF_CORRUPT));
    }

  if ((hp->cth_varoff - hp->cth_funcidxoff != 0) &&
      (hp->cth_varoff - hp->cth_funcidxoff
       != hp->cth_objtidxoff - hp->cth_funcoff) &&
      (hp->cth_flags & CTF_F_NEWFUNCINFO))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("Function index section is neither empty nor the "
		      "same length as the function section: %u versus %u "
		      "bytes"), hp->cth_objtidxoff - hp->cth_funcoff,
		    hp->cth_varoff - hp->cth_funcidxoff);
      return (ctf_set_open_errno (errp, ECTF_CORRUPT));
    }

  /* Once everything is determined to be valid, attempt to decompress the CTF
     data buffer if it is compressed, or copy it into new storage if it is not
     compressed but needs endian-flipping.  Otherwise we just put the data
     section's buffer pointer into ctf_buf, below.  */

  /* Note: if this is a v1 buffer, it will be reallocated and expanded by
     init_static_types().  */

  if (hp->cth_flags & CTF_F_COMPRESS)
    {
      size_t srclen;
      uLongf dstlen;
      const void *src;
      int rc = Z_OK;

      /* We are allocating this ourselves, so we can drop the ctf header
	 copy in favour of ctf->ctf_header.  */

      if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
	{
	  err = ECTF_ZALLOC;
	  goto bad;
	}
      fp->ctf_dynbase = fp->ctf_base;
      hp->cth_flags &= ~CTF_F_COMPRESS;

      src = (unsigned char *) ctfsect->cts_data + hdrsz;
      srclen = ctfsect->cts_size - hdrsz;
      dstlen = fp->ctf_size;
      fp->ctf_buf = fp->ctf_base;

      if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
	{
	  ctf_err_warn (NULL, 0, ECTF_DECOMPRESS, _("zlib inflate err: %s"),
			zError (rc));
	  err = ECTF_DECOMPRESS;
	  goto bad;
	}

      if ((size_t) dstlen != fp->ctf_size)
	{
	  ctf_err_warn (NULL, 0, ECTF_CORRUPT,
			_("zlib inflate short: got %lu of %lu bytes"),
			(unsigned long) dstlen, (unsigned long) fp->ctf_size);
	  err = ECTF_CORRUPT;
	  goto bad;
	}
    }
  else
    {
      if (_libctf_unlikely_ (ctfsect->cts_size < hdrsz + fp->ctf_size))
	{
	  ctf_err_warn (NULL, 0, ECTF_CORRUPT,
			_("%lu byte long CTF dictionary overruns %lu byte long CTF section"),
			(unsigned long) ctfsect->cts_size,
			(unsigned long) (hdrsz + fp->ctf_size));
	  err = ECTF_CORRUPT;
	  goto bad;
	}

      if (foreign_endian)
	{
	  if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
	    {
	      err = ECTF_ZALLOC;
	      goto bad;
	    }
	  fp->ctf_dynbase = fp->ctf_base;
	  memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
		  fp->ctf_size);
	  fp->ctf_buf = fp->ctf_base;
	}
      else
	{
	  /* We are just using the section passed in -- but its header may
	     be an old version.  Point ctf_buf past the old header, and
	     never touch it again.  */
	  fp->ctf_base = (unsigned char *) ctfsect->cts_data;
	  fp->ctf_dynbase = NULL;
	  fp->ctf_buf = fp->ctf_base + hdrsz;
	}
    }

  /* Once we have uncompressed and validated the CTF data buffer, we can
     proceed with initializing the ctf_dict_t we allocated above.

     Nothing that depends on buf or base should be set directly in this function
     before the init_static_types() call, because it may be reallocated during
     transparent upgrade if this recension of libctf is so configured: see
     ctf_set_base().  */

  ctf_set_version (fp, hp, hp->cth_version);

  /* Temporary assignment, just enough to be able to initialize
     the atoms table.  */

  fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
    + hp->cth_stroff;
  fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
  if (ctf_str_create_atoms (fp) < 0)
    {
      err = ENOMEM;
      goto bad;
    }

  fp->ctf_parmax = CTF_MAX_PTYPE;
  memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));

  if (symsect != NULL)
    {
      memcpy (&fp->ctf_ext_symtab, symsect, sizeof (ctf_sect_t));
      memcpy (&fp->ctf_ext_strtab, strsect, sizeof (ctf_sect_t));
    }

  if (fp->ctf_data.cts_name != NULL)
    if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }
  if (fp->ctf_ext_symtab.cts_name != NULL)
    if ((fp->ctf_ext_symtab.cts_name = strdup (fp->ctf_ext_symtab.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }
  if (fp->ctf_ext_strtab.cts_name != NULL)
    if ((fp->ctf_ext_strtab.cts_name = strdup (fp->ctf_ext_strtab.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }

  if (fp->ctf_data.cts_name == NULL)
    fp->ctf_data.cts_name = _CTF_NULLSTR;
  if (fp->ctf_ext_symtab.cts_name == NULL)
    fp->ctf_ext_symtab.cts_name = _CTF_NULLSTR;
  if (fp->ctf_ext_strtab.cts_name == NULL)
    fp->ctf_ext_strtab.cts_name = _CTF_NULLSTR;

  if (strsect != NULL)
    {
      fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
      fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
    }

  /* Dynamic state, for dynamic addition to this dict after loading.  */

  fp->ctf_dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
				       NULL, NULL);
  fp->ctf_dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				       NULL, NULL);
  fp->ctf_snapshots = 1;

  fp->ctf_objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					   free, NULL);
  fp->ctf_funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					 free, NULL);

  if (!fp->ctf_dthash || !fp->ctf_dvhash || !fp->ctf_snapshots ||
      !fp->ctf_objthash || !fp->ctf_funchash)
    {
      err = ENOMEM;
      goto bad;
    }

  if (foreign_endian &&
      (err = ctf_flip (fp, hp, fp->ctf_buf, 0)) != 0)
    {
      /* We can be certain that ctf_flip() will have endian-flipped everything
	 other than the types table when we return.  In particular the header
	 is fine, so set it, to allow freeing to use the usual code path.  */

      ctf_set_base (fp, hp, fp->ctf_base);
      goto bad;
    }

  ctf_set_base (fp, hp, fp->ctf_base);

  if ((err = init_static_types (fp, hp)) != 0)
    goto bad;

  /* Allocate and initialize the symtab translation table, pointed to by
     ctf_sxlate, and the corresponding index sections.  This table may be too
     large for the actual size of the object and function info sections: if so,
     ctf_nsyms will be adjusted and the excess will never be used.  It's
     possible to do indexed symbol lookups even without a symbol table, so check
     even in that case.  Initially, we assume the symtab is native-endian: if it
     isn't, the caller will inform us later by calling ctf_symsect_endianness.  */
#ifdef WORDS_BIGENDIAN
  fp->ctf_symsect_little_endian = 0;
#else
  fp->ctf_symsect_little_endian = 1;
#endif

  if (symsect != NULL)
    {
      fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
      fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));

      if (fp->ctf_sxlate == NULL)
	{
	  err = ENOMEM;
	  goto bad;
	}
    }

  if ((err = init_symtab (fp, hp, symsect)) != 0)
    goto bad;

  ctf_set_ctl_hashes (fp);

  if (symsect != NULL)
    {
      if (symsect->cts_entsize == sizeof (Elf64_Sym))
	(void) ctf_setmodel (fp, CTF_MODEL_LP64);
      else
	(void) ctf_setmodel (fp, CTF_MODEL_ILP32);
    }
  else
    (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);

  fp->ctf_refcnt = 1;
  return fp;

bad:
  ctf_set_open_errno (errp, err);
  ctf_err_warn_to_open (fp);
  /* Without this, the refcnt is zero on entry and ctf_dict_close() won't
     actually do anything on the grounds that this is a recursive call via
     another dict being closed.  */
  fp->ctf_refcnt = 1;
  ctf_dict_close (fp);
  return NULL;
}

/* Bump the refcount on the specified CTF dict, to allow export of ctf_dict_t's
   from iterators that open and close the ctf_dict_t around the loop.  (This
   does not extend their lifetime beyond that of the ctf_archive_t in which they
   are contained.)  */

void
ctf_ref (ctf_dict_t *fp)
{
  fp->ctf_refcnt++;
}

/* Close the specified CTF dict and free associated data structures.  Note that
   ctf_dict_close() is a reference counted operation: if the specified file is
   the parent of other active dict, its reference count will be greater than one
   and it will be freed later when no active children exist.  */

void
ctf_dict_close (ctf_dict_t *fp)
{
  ctf_dtdef_t *dtd, *ntd;
  ctf_dvdef_t *dvd, *nvd;
  ctf_in_flight_dynsym_t *did, *nid;
  ctf_err_warning_t *err, *nerr;

  if (fp == NULL)
    return;		   /* Allow ctf_dict_close(NULL) to simplify caller code.  */

  ctf_dprintf ("ctf_dict_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);

  if (fp->ctf_refcnt > 1)
    {
      fp->ctf_refcnt--;
      return;
    }

  /* It is possible to recurse back in here, notably if dicts in the
     ctf_link_inputs or ctf_link_outputs cite this dict as a parent without
     using ctf_import_unref.  Do nothing in that case.  */
  if (fp->ctf_refcnt == 0)
    return;

  fp->ctf_refcnt--;
  free (fp->ctf_dyncuname);
  free (fp->ctf_dynparname);
  if (fp->ctf_parent && !fp->ctf_parent_unreffed)
    ctf_dict_close (fp->ctf_parent);

  for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
    {
      ntd = ctf_list_next (dtd);
      ctf_dtd_delete (fp, dtd);
    }
  ctf_dynhash_destroy (fp->ctf_dthash);

  ctf_dynset_destroy (fp->ctf_conflicting_enums);
  ctf_dynhash_destroy (fp->ctf_structs);
  ctf_dynhash_destroy (fp->ctf_unions);
  ctf_dynhash_destroy (fp->ctf_enums);
  ctf_dynhash_destroy (fp->ctf_names);

  for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
    {
      nvd = ctf_list_next (dvd);
      ctf_dvd_delete (fp, dvd);
    }
  ctf_dynhash_destroy (fp->ctf_dvhash);

  ctf_dynhash_destroy (fp->ctf_symhash_func);
  ctf_dynhash_destroy (fp->ctf_symhash_objt);
  free (fp->ctf_funcidx_sxlate);
  free (fp->ctf_objtidx_sxlate);
  ctf_dynhash_destroy (fp->ctf_objthash);
  ctf_dynhash_destroy (fp->ctf_funchash);
  free (fp->ctf_dynsymidx);
  ctf_dynhash_destroy (fp->ctf_dynsyms);
  for (did = ctf_list_next (&fp->ctf_in_flight_dynsyms); did != NULL; did = nid)
    {
      nid = ctf_list_next (did);
      ctf_list_delete (&fp->ctf_in_flight_dynsyms, did);
      free (did);
    }

  ctf_str_free_atoms (fp);
  free (fp->ctf_tmp_typeslice);

  if (fp->ctf_data.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_data.cts_name);

  if (fp->ctf_ext_symtab.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_ext_symtab.cts_name);

  if (fp->ctf_ext_strtab.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_ext_strtab.cts_name);
  else if (fp->ctf_data_mmapped)
    ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);

  free (fp->ctf_dynbase);

  ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
  ctf_dynhash_destroy (fp->ctf_link_inputs);
  ctf_dynhash_destroy (fp->ctf_link_outputs);
  ctf_dynhash_destroy (fp->ctf_link_type_mapping);
  ctf_dynhash_destroy (fp->ctf_link_in_cu_mapping);
  ctf_dynhash_destroy (fp->ctf_link_out_cu_mapping);
  ctf_dynhash_destroy (fp->ctf_add_processing);
  ctf_dedup_fini (fp, NULL, 0);
  ctf_dynset_destroy (fp->ctf_dedup_atoms_alloc);

  for (err = ctf_list_next (&fp->ctf_errs_warnings); err != NULL; err = nerr)
    {
      nerr = ctf_list_next (err);
      ctf_list_delete (&fp->ctf_errs_warnings, err);
      free (err->cew_text);
      free (err);
    }

  free (fp->ctf_sxlate);
  free (fp->ctf_txlate);
  free (fp->ctf_ptrtab);
  free (fp->ctf_pptrtab);

  free (fp->ctf_header);
  free (fp);
}

/* Backward compatibility.  */
void
ctf_file_close (ctf_file_t *fp)
{
  ctf_dict_close (fp);
}

/* The converse of ctf_open().  ctf_open() disguises whatever it opens as an
   archive, so closing one is just like closing an archive.  */
void
ctf_close (ctf_archive_t *arc)
{
  ctf_arc_close (arc);
}

/* Get the CTF archive from which this ctf_dict_t is derived.  */
ctf_archive_t *
ctf_get_arc (const ctf_dict_t *fp)
{
  return fp->ctf_archive;
}

/* Return the ctfsect out of the core ctf_impl.  Useful for freeing the
   ctfsect's data * after ctf_dict_close(), which is why we return the actual
   structure, not a pointer to it, since that is likely to become a pointer to
   freed data before the return value is used under the expected use case of
   ctf_getsect()/ ctf_dict_close()/free().  */
ctf_sect_t
ctf_getdatasect (const ctf_dict_t *fp)
{
  return fp->ctf_data;
}

ctf_sect_t
ctf_getsymsect (const ctf_dict_t *fp)
{
  return fp->ctf_ext_symtab;
}

ctf_sect_t
ctf_getstrsect (const ctf_dict_t *fp)
{
  return fp->ctf_ext_strtab;
}

/* Set the endianness of the symbol table attached to FP.  */
void
ctf_symsect_endianness (ctf_dict_t *fp, int little_endian)
{
  int old_endianness = fp->ctf_symsect_little_endian;

  fp->ctf_symsect_little_endian = !!little_endian;

  /* If we already have a symtab translation table, we need to repopulate it if
     our idea of the endianness has changed.  */

  if (old_endianness != fp->ctf_symsect_little_endian
      && fp->ctf_sxlate != NULL && fp->ctf_ext_symtab.cts_data != NULL)
    assert (init_symtab (fp, fp->ctf_header, &fp->ctf_ext_symtab) == 0);
}

/* Return the CTF handle for the parent CTF dict, if one exists.  Otherwise
   return NULL to indicate this dict has no imported parent.  */
ctf_dict_t *
ctf_parent_dict (ctf_dict_t *fp)
{
  return fp->ctf_parent;
}

/* Backward compatibility.  */
ctf_dict_t *
ctf_parent_file (ctf_dict_t *fp)
{
  return ctf_parent_dict (fp);
}

/* Return the name of the parent CTF dict, if one exists, or NULL otherwise.  */
const char *
ctf_parent_name (ctf_dict_t *fp)
{
  return fp->ctf_parname;
}

/* Set the parent name.  It is an error to call this routine without calling
   ctf_import() at some point.  */
int
ctf_parent_name_set (ctf_dict_t *fp, const char *name)
{
  if (fp->ctf_dynparname != NULL)
    free (fp->ctf_dynparname);

  if ((fp->ctf_dynparname = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));
  fp->ctf_parname = fp->ctf_dynparname;
  return 0;
}

/* Return the name of the compilation unit this CTF file applies to.  Usually
   non-NULL only for non-parent dicts.  */
const char *
ctf_cuname (ctf_dict_t *fp)
{
  return fp->ctf_cuname;
}

/* Set the compilation unit name.  */
int
ctf_cuname_set (ctf_dict_t *fp, const char *name)
{
  if (fp->ctf_dyncuname != NULL)
    free (fp->ctf_dyncuname);

  if ((fp->ctf_dyncuname = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));
  fp->ctf_cuname = fp->ctf_dyncuname;
  return 0;
}

/* Import the types from the specified parent dict by storing a pointer to it in
   ctf_parent and incrementing its reference count.  Only one parent is allowed:
   if a parent already exists, it is replaced by the new parent.  The pptrtab
   is wiped, and will be refreshed by the next ctf_lookup_by_name call.  */
int
ctf_import (ctf_dict_t *fp, ctf_dict_t *pfp)
{
  if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
    return (ctf_set_errno (fp, EINVAL));

  if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
    return (ctf_set_errno (fp, ECTF_DMODEL));

  if (fp->ctf_parent && !fp->ctf_parent_unreffed)
    ctf_dict_close (fp->ctf_parent);
  fp->ctf_parent = NULL;

  free (fp->ctf_pptrtab);
  fp->ctf_pptrtab = NULL;
  fp->ctf_pptrtab_len = 0;
  fp->ctf_pptrtab_typemax = 0;

  if (pfp != NULL)
    {
      int err;

      if (fp->ctf_parname == NULL)
	if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
	  return err;

      fp->ctf_flags |= LCTF_CHILD;
      pfp->ctf_refcnt++;
      fp->ctf_parent_unreffed = 0;
    }

  fp->ctf_parent = pfp;
  return 0;
}

/* Like ctf_import, but does not increment the refcount on the imported parent
   or close it at any point: as a result it can go away at any time and the
   caller must do all freeing itself.  Used internally to avoid refcount
   loops.  */
int
ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp)
{
  if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
    return (ctf_set_errno (fp, EINVAL));

  if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
    return (ctf_set_errno (fp, ECTF_DMODEL));

  if (fp->ctf_parent && !fp->ctf_parent_unreffed)
    ctf_dict_close (fp->ctf_parent);
  fp->ctf_parent = NULL;

  free (fp->ctf_pptrtab);
  fp->ctf_pptrtab = NULL;
  fp->ctf_pptrtab_len = 0;
  fp->ctf_pptrtab_typemax = 0;
  if (pfp != NULL)
    {
      int err;

      if (fp->ctf_parname == NULL)
	if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
	  return err;

      fp->ctf_flags |= LCTF_CHILD;
      fp->ctf_parent_unreffed = 1;
    }

  fp->ctf_parent = pfp;
  return 0;
}

/* Set the data model constant for the CTF dict.  */
int
ctf_setmodel (ctf_dict_t *fp, int model)
{
  const ctf_dmodel_t *dp;

  for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
    {
      if (dp->ctd_code == model)
	{
	  fp->ctf_dmodel = dp;
	  return 0;
	}
    }

  return (ctf_set_errno (fp, EINVAL));
}

/* Return the data model constant for the CTF dict.  */
int
ctf_getmodel (ctf_dict_t *fp)
{
  return fp->ctf_dmodel->ctd_code;
}

/* The caller can hang an arbitrary pointer off each ctf_dict_t using this
   function.  */
void
ctf_setspecific (ctf_dict_t *fp, void *data)
{
  fp->ctf_specific = data;
}

/* Retrieve the arbitrary pointer again.  */
void *
ctf_getspecific (ctf_dict_t *fp)
{
  return fp->ctf_specific;
}