aboutsummaryrefslogtreecommitdiff
path: root/gdb/z80-tdep.c
blob: d9ba20798360dae328424d4d108e05e1165a88a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
/* Target-dependent code for the Z80.

   Copyright (C) 1986-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "dis-asm.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "objfiles.h"
#include "symfile.h"
#include "gdbarch.h"

#include "z80-tdep.h"
#include "features/z80.c"

/* You need to define __gdb_break_handler symbol pointing to the breakpoint
   handler.  The value of the symbol will be used to determine the instruction
   for software breakpoint.  If __gdb_break_handler points to one of standard
   RST addresses (0x00, 0x08, 0x10,... 0x38) then RST __gdb_break_handler
   instruction will be used, else CALL __gdb_break_handler

;breakpoint handler
	.globl	__gdb_break_handler
	.org	8
__gdb_break_handler:
	jp	_debug_swbreak

*/

/* Meaning of terms "previous" and "next":
     previous frame - frame of callee, which is called by current function
     current frame - frame of current function which has called callee
     next frame - frame of caller, which has called current function
*/

struct z80_gdbarch_tdep : gdbarch_tdep_base
{
  /* Number of bytes used for address:
      2 bytes for all Z80 family
      3 bytes for eZ80 CPUs operating in ADL mode */
  int addr_length = 0;

  /* Type for void.  */
  struct type *void_type = nullptr;

  /* Type for a function returning void.  */
  struct type *func_void_type = nullptr;

  /* Type for a pointer to a function.  Used for the type of PC.  */
  struct type *pc_type = nullptr;
};

/* At any time stack frame contains following parts:
   [<current PC>]
   [<temporaries, y bytes>]
   [<local variables, x bytes>
   <next frame FP>]
   [<saved state (critical or interrupt functions), 2 or 10 bytes>]
   In simplest case <next PC> is pointer to the call instruction
   (or call __call_hl). There are more difficult cases: interrupt handler or
   push/ret and jp; but they are untrackable.
*/

struct z80_unwind_cache
{
  /* The previous frame's inner most stack address (SP after call executed),
     it is current frame's frame_id.  */
  CORE_ADDR prev_sp;

  /* Size of the frame, prev_sp + size = next_frame.prev_sp */
  ULONGEST size;

  /* size of saved state (including frame pointer and return address),
     assume: prev_sp + size = IX + state_size */
  ULONGEST state_size;

  struct
  {
    unsigned int called : 1;    /* there is return address on stack */
    unsigned int load_args : 1; /* prologues loads args using POPs */
    unsigned int fp_sdcc : 1;   /* prologue saves and adjusts frame pointer IX */
    unsigned int interrupt : 1; /* __interrupt handler */
    unsigned int critical : 1;  /* __critical function */
  } prologue_type;

  /* Table indicating the location of each and every register.  */
  struct trad_frame_saved_reg *saved_regs;
};

enum z80_instruction_type
{
  insn_default,
  insn_z80,
  insn_adl,
  insn_z80_ed,
  insn_adl_ed,
  insn_z80_ddfd,
  insn_adl_ddfd,
  insn_djnz_d,
  insn_jr_d,
  insn_jr_cc_d,
  insn_jp_nn,
  insn_jp_rr,
  insn_jp_cc_nn,
  insn_call_nn,
  insn_call_cc_nn,
  insn_rst_n,
  insn_ret,
  insn_ret_cc,
  insn_push_rr,
  insn_pop_rr,
  insn_dec_sp,
  insn_inc_sp,
  insn_ld_sp_nn,
  insn_ld_sp_6nn9, /* ld sp, (nn) */
  insn_ld_sp_rr,
  insn_force_nop /* invalid opcode prefix */
};

struct z80_insn_info
{
  gdb_byte code;
  gdb_byte mask;
  gdb_byte size; /* without prefix(es) */
  enum z80_instruction_type type;
};

/* Constants */

static const struct z80_insn_info *
z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size);

static const char *z80_reg_names[] =
{
  /* 24 bit on eZ80, else 16 bit */
  "af", "bc", "de", "hl",
  "sp", "pc", "ix", "iy",
  "af'", "bc'", "de'", "hl'",
  "ir",
  /* eZ80 only */
  "sps"
};

/* Return the name of register REGNUM.  */
static const char *
z80_register_name (struct gdbarch *gdbarch, int regnum)
{
  if (regnum < ARRAY_SIZE (z80_reg_names))
    return z80_reg_names[regnum];

  return "";
}

/* Return the type of a register specified by the architecture.  Only
   the register cache should call this function directly; others should
   use "register_type".  */
static struct type *
z80_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  return builtin_type (gdbarch)->builtin_data_ptr;
}

/* The next 2 functions check BUF for instruction.  If it is pop/push rr, then
   it returns register number OR'ed with 0x100 */
static int
z80_is_pop_rr (const gdb_byte buf[], int *size)
{
  switch (buf[0])
    {
    case 0xc1:
      *size = 1;
      return Z80_BC_REGNUM | 0x100;
    case 0xd1:
      *size = 1;
      return Z80_DE_REGNUM | 0x100;
    case 0xe1:
      *size = 1;
      return Z80_HL_REGNUM | 0x100;
    case 0xf1:
      *size = 1;
      return Z80_AF_REGNUM | 0x100;
    case 0xdd:
      *size = 2;
      return (buf[1] == 0xe1) ? (Z80_IX_REGNUM | 0x100) : 0;
    case 0xfd:
      *size = 2;
      return (buf[1] == 0xe1) ? (Z80_IY_REGNUM | 0x100) : 0;
    }
  *size = 0;
  return 0;
}

static int
z80_is_push_rr (const gdb_byte buf[], int *size)
{
  switch (buf[0])
    {
    case 0xc5:
      *size = 1;
      return Z80_BC_REGNUM | 0x100;
    case 0xd5:
      *size = 1;
      return Z80_DE_REGNUM | 0x100;
    case 0xe5:
      *size = 1;
      return Z80_HL_REGNUM | 0x100;
    case 0xf5:
      *size = 1;
      return Z80_AF_REGNUM | 0x100;
    case 0xdd:
      *size = 2;
      return (buf[1] == 0xe5) ? (Z80_IX_REGNUM | 0x100) : 0;
    case 0xfd:
      *size = 2;
      return (buf[1] == 0xe5) ? (Z80_IY_REGNUM | 0x100) : 0;
    }
  *size = 0;
  return 0;
}

/* Function: z80_scan_prologue

   This function decodes a function prologue to determine:
     1) the size of the stack frame
     2) which registers are saved on it
     3) the offsets of saved regs
   This information is stored in the z80_unwind_cache structure.
   Small SDCC functions may just load args using POP instructions in prologue:
	pop	af
	pop	de
	pop	hl
	pop	bc
	push	bc
	push	hl
	push	de
	push	af
   SDCC function prologue may have up to 3 sections (all are optional):
     1) save state
       a) __critical functions:
	ld	a,i
	di
	push	af
       b) __interrupt (both int and nmi) functions:
	push	af
	push	bc
	push	de
	push	hl
	push	iy
     2) save and adjust frame pointer
       a) call to special function (size optimization)
	call	___sdcc_enter_ix
       b) inline (speed optimization)
	push	ix
	ld	ix, #0
	add	ix, sp
       c) without FP, but saving it (IX is optimized out)
	push	ix
     3) allocate local variables
       a) via series of PUSH AF and optional DEC SP (size optimization)
	push	af
	...
	push	af
	dec	sp	;optional, if allocated odd numbers of bytes
       b) via SP decrements
	dec	sp
	...
	dec	sp
       c) via addition (for large frames: 5+ for speed and 9+ for size opt.)
	ld	hl, #xxxx	;size of stack frame
	add	hl, sp
	ld	sp, hl
       d) same, but using register IY (arrays or for __z88dk_fastcall functions)
	ld	iy, #xxxx	;size of stack frame
	add	iy, sp
	ld	sp, iy
       e) same as c, but for eZ80
	lea	hl, ix - #nn
	ld	sp, hl
       f) same as d, but for eZ80
	lea	iy, ix - #nn
	ld	sp, iy
*/

static int
z80_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
		   struct z80_unwind_cache *info)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
  int addr_len = tdep->addr_length;
  gdb_byte prologue[32]; /* max prologue is 24 bytes: __interrupt with local array */
  int pos = 0;
  int len;
  int reg;
  CORE_ADDR value;

  len = pc_end - pc_beg;
  if (len > (int)sizeof (prologue))
    len = sizeof (prologue);

  read_memory (pc_beg, prologue, len);

  /* stage0: check for series of POPs and then PUSHs */
  if ((reg = z80_is_pop_rr(prologue, &pos)))
    {
      int i;
      int size = pos;
      gdb_byte regs[8]; /* Z80 have only 6 register pairs */
      regs[0] = reg & 0xff;
      for (i = 1; i < 8 && (regs[i] = z80_is_pop_rr (&prologue[pos], &size));
	   ++i, pos += size);
      /* now we expect series of PUSHs in reverse order */
      for (--i; i >= 0 && regs[i] == z80_is_push_rr (&prologue[pos], &size);
	   --i, pos += size);
      if (i == -1 && pos > 0)
	info->prologue_type.load_args = 1;
      else
	pos = 0;
    }
  /* stage1: check for __interrupt handlers and __critical functions */
  else if (!memcmp (&prologue[pos], "\355\127\363\365", 4))
    { /* ld a, i; di; push af */
      info->prologue_type.critical = 1;
      pos += 4;
      info->state_size += addr_len;
    }
  else if (!memcmp (&prologue[pos], "\365\305\325\345\375\345", 6))
    { /* push af; push bc; push de; push hl; push iy */
      info->prologue_type.interrupt = 1;
      pos += 6;
      info->state_size += addr_len * 5;
    }

  /* stage2: check for FP saving scheme */
  if (prologue[pos] == 0xcd) /* call nn */
    {
      struct bound_minimal_symbol msymbol;
      msymbol = lookup_minimal_symbol ("__sdcc_enter_ix", NULL, NULL);
      if (msymbol.minsym)
	{
	  value = msymbol.value_address ();
	  if (value == extract_unsigned_integer (&prologue[pos+1], addr_len, byte_order))
	    {
	      pos += 1 + addr_len;
	      info->prologue_type.fp_sdcc = 1;
	    }
	}
    }
  else if (!memcmp (&prologue[pos], "\335\345\335\041\000\000", 4+addr_len) &&
	   !memcmp (&prologue[pos+4+addr_len], "\335\071\335\371", 4))
    { /* push ix; ld ix, #0; add ix, sp; ld sp, ix */
      pos += 4 + addr_len + 4;
      info->prologue_type.fp_sdcc = 1;
    }
  else if (!memcmp (&prologue[pos], "\335\345", 2))
    { /* push ix */
      pos += 2;
      info->prologue_type.fp_sdcc = 1;
    }

  /* stage3: check for local variables allocation */
  switch (prologue[pos])
    {
      case 0xf5: /* push af */
	info->size = 0;
	while (prologue[pos] == 0xf5)
	  {
	    info->size += addr_len;
	    pos++;
	  }
	if (prologue[pos] == 0x3b) /* dec sp */
	  {
	    info->size++;
	    pos++;
	  }
	break;
      case 0x3b: /* dec sp */
	info->size = 0;
	while (prologue[pos] == 0x3b)
	  {
	    info->size++;
	    pos++;
	  }
	break;
      case 0x21: /*ld hl, -nn */
	if (prologue[pos+addr_len] == 0x39 && prologue[pos+addr_len] >= 0x80 &&
	    prologue[pos+addr_len+1] == 0xf9)
	  { /* add hl, sp; ld sp, hl */
	    info->size = -extract_signed_integer(&prologue[pos+1], addr_len, byte_order);
	    pos += 1 + addr_len + 2;
	  }
	break;
      case 0xfd: /* ld iy, -nn */
	if (prologue[pos+1] == 0x21 && prologue[pos+1+addr_len] >= 0x80 &&
	    !memcmp (&prologue[pos+2+addr_len], "\375\071\375\371", 4))
	  {
	    info->size = -extract_signed_integer(&prologue[pos+2], addr_len, byte_order);
	    pos += 2 + addr_len + 4;
	  }
	break;
      case 0xed: /* check for lea xx, ix - n */
	switch (prologue[pos+1])
	  {
	  case 0x22: /* lea hl, ix - n */
	    if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xf9)
	      { /* ld sp, hl */
		info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order);
		pos += 4;
	      }
	    break;
	  case 0x55: /* lea iy, ix - n */
	    if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xfd &&
		prologue[pos+4] == 0xf9)
	      { /* ld sp, iy */
		info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order);
		pos += 5;
	      }
	    break;
	  }
	  break;
    }
  len = 0;

  if (info->prologue_type.interrupt)
    {
      info->saved_regs[Z80_AF_REGNUM].set_addr (len++);
      info->saved_regs[Z80_BC_REGNUM].set_addr (len++);
      info->saved_regs[Z80_DE_REGNUM].set_addr (len++);
      info->saved_regs[Z80_HL_REGNUM].set_addr (len++);
      info->saved_regs[Z80_IY_REGNUM].set_addr (len++);
    }

  if (info->prologue_type.critical)
    len++; /* just skip IFF2 saved state */

  if (info->prologue_type.fp_sdcc)
    info->saved_regs[Z80_IX_REGNUM].set_addr (len++);

  info->state_size += len * addr_len;

  return pc_beg + pos;
}

static CORE_ADDR
z80_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;
  CORE_ADDR prologue_end;

  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return pc;

  prologue_end = skip_prologue_using_sal (gdbarch, func_addr);
  if (prologue_end != 0)
    return std::max (pc, prologue_end);

  {
    struct z80_unwind_cache info = {0};
    struct trad_frame_saved_reg saved_regs[Z80_NUM_REGS];

    info.saved_regs = saved_regs;

    /* Need to run the prologue scanner to figure out if the function has a
       prologue.  */

    prologue_end = z80_scan_prologue (gdbarch, func_addr, func_end, &info);

    if (info.prologue_type.fp_sdcc || info.prologue_type.interrupt ||
	info.prologue_type.critical)
      return std::max (pc, prologue_end);
  }

  if (prologue_end != 0)
    {
      struct symtab_and_line prologue_sal = find_pc_line (func_addr, 0);
      struct compunit_symtab *compunit = prologue_sal.symtab->compunit ();
      const char *debug_format = compunit->debugformat ();

      if (debug_format != NULL &&
	  !strncasecmp ("dwarf", debug_format, strlen("dwarf")))
	return std::max (pc, prologue_end);
    }

  return pc;
}

/* Return the return-value convention that will be used by FUNCTION
   to return a value of type VALTYPE.  FUNCTION may be NULL in which
   case the return convention is computed based only on VALTYPE.

   If READBUF is not NULL, extract the return value and save it in this buffer.

   If WRITEBUF is not NULL, it contains a return value which will be
   stored into the appropriate register.  This can be used when we want
   to force the value returned by a function (see the "return" command
   for instance).  */
static enum return_value_convention
z80_return_value (struct gdbarch *gdbarch, struct value *function,
		  struct type *valtype, struct regcache *regcache,
		  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  /* Byte are returned in L, word in HL, dword in DEHL.  */
  int len = valtype->length ();

  if ((valtype->code () == TYPE_CODE_STRUCT
       || valtype->code () == TYPE_CODE_UNION
       || valtype->code () == TYPE_CODE_ARRAY)
      && len > 4)
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (writebuf != NULL)
    {
      if (len > 2)
	{
	  regcache->cooked_write_part (Z80_DE_REGNUM, 0, len - 2, writebuf+2);
	  len = 2;
	}
      regcache->cooked_write_part (Z80_HL_REGNUM, 0, len, writebuf);
    }

  if (readbuf != NULL)
    {
      if (len > 2)
	{
	  regcache->cooked_read_part (Z80_DE_REGNUM, 0, len - 2, readbuf+2);
	  len = 2;
	}
      regcache->cooked_read_part (Z80_HL_REGNUM, 0, len, readbuf);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* function unwinds current stack frame and returns next one */
static struct z80_unwind_cache *
z80_frame_unwind_cache (frame_info_ptr this_frame,
			void **this_prologue_cache)
{
  CORE_ADDR start_pc, current_pc;
  ULONGEST this_base;
  int i;
  gdb_byte buf[sizeof(void*)];
  struct z80_unwind_cache *info;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
  int addr_len = tdep->addr_length;

  if (*this_prologue_cache)
    return (struct z80_unwind_cache *) *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct z80_unwind_cache);
  memset (info, 0, sizeof (*info));
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  *this_prologue_cache = info;

  start_pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  if ((start_pc > 0) && (start_pc <= current_pc))
    z80_scan_prologue (get_frame_arch (this_frame),
		       start_pc, current_pc, info);

  if (info->prologue_type.fp_sdcc)
    {
      /*  With SDCC standard prologue, IX points to the end of current frame
	  (where previous frame pointer and state are saved).  */
      this_base = get_frame_register_unsigned (this_frame, Z80_IX_REGNUM);
      info->prev_sp = this_base + info->size;
    }
  else
    {
      CORE_ADDR addr;
      CORE_ADDR sp;
      CORE_ADDR sp_mask = (1 << gdbarch_ptr_bit(gdbarch)) - 1;
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      /* Assume that the FP is this frame's SP but with that pushed
	 stack space added back.  */
      this_base = get_frame_register_unsigned (this_frame, Z80_SP_REGNUM);
      sp = this_base + info->size;
      for (;; ++sp)
	{
	  sp &= sp_mask;
	  if (sp < this_base)
	    { /* overflow, looks like end of stack */
	      sp = this_base + info->size;
	      break;
	    }
	  /* find return address */
	  read_memory (sp, buf, addr_len);
	  addr = extract_unsigned_integer(buf, addr_len, byte_order);
	  read_memory (addr-addr_len-1, buf, addr_len+1);
	  if (buf[0] == 0xcd || (buf[0] & 0307) == 0304) /* Is it CALL */
	    { /* CALL nn or CALL cc,nn */
	      static const char *names[] =
		{
		  "__sdcc_call_ix", "__sdcc_call_iy", "__sdcc_call_hl"
		};
	      addr = extract_unsigned_integer(buf+1, addr_len, byte_order);
	      if (addr == start_pc)
		break; /* found */
	      for (i = sizeof(names)/sizeof(*names)-1; i >= 0; --i)
		{
		  struct bound_minimal_symbol msymbol;
		  msymbol = lookup_minimal_symbol (names[i], NULL, NULL);
		  if (!msymbol.minsym)
		    continue;
		  if (addr == msymbol.value_address ())
		    break;
		}
	      if (i >= 0)
		break;
	      continue;
	    }
	  else
	    continue; /* it is not call_nn, call_cc_nn */
	}
      info->prev_sp = sp;
    }

  /* Adjust all the saved registers so that they contain addresses and not
     offsets.  */
  for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
    if (info->saved_regs[i].addr () > 0)
      info->saved_regs[i].set_addr
	(info->prev_sp - info->saved_regs[i].addr () * addr_len);

  /* Except for the startup code, the return PC is always saved on
     the stack and is at the base of the frame.  */
  info->saved_regs[Z80_PC_REGNUM].set_addr (info->prev_sp);

  /* The previous frame's SP needed to be computed.  Save the computed
     value.  */
  info->saved_regs[Z80_SP_REGNUM].set_value (info->prev_sp + addr_len);
  return info;
}

/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct.  */
static void
z80_frame_this_id (frame_info_ptr this_frame, void **this_cache,
		   struct frame_id *this_id)
{
  struct frame_id id;
  struct z80_unwind_cache *info;
  CORE_ADDR base;
  CORE_ADDR func;

  /* The FUNC is easy.  */
  func = get_frame_func (this_frame);

  info = z80_frame_unwind_cache (this_frame, this_cache);
  /* Hopefully the prologue analysis either correctly determined the
     frame's base (which is the SP from the previous frame), or set
     that base to "NULL".  */
  base = info->prev_sp;
  if (base == 0)
    return;

  id = frame_id_build (base, func);
  *this_id = id;
}

static struct value *
z80_frame_prev_register (frame_info_ptr this_frame,
			 void **this_prologue_cache, int regnum)
{
  struct z80_unwind_cache *info
    = z80_frame_unwind_cache (this_frame, this_prologue_cache);

  if (regnum == Z80_PC_REGNUM)
    {
      if (info->saved_regs[Z80_PC_REGNUM].is_addr ())
	{
	  /* Reading the return PC from the PC register is slightly
	     abnormal.  */
	  ULONGEST pc;
	  gdb_byte buf[3];
	  struct gdbarch *gdbarch = get_frame_arch (this_frame);
	  z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

	  read_memory (info->saved_regs[Z80_PC_REGNUM].addr (),
		       buf, tdep->addr_length);
	  pc = extract_unsigned_integer (buf, tdep->addr_length, byte_order);
	  return frame_unwind_got_constant (this_frame, regnum, pc);
	}

      return frame_unwind_got_optimized (this_frame, regnum);
    }

  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

/* Return the breakpoint kind for this target based on *PCPTR.  */
static int
z80_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  static int addr = -1;
  if (addr == -1)
    {
      struct bound_minimal_symbol bh;
      bh = lookup_minimal_symbol ("_break_handler", NULL, NULL);
      if (bh.minsym)
	addr = bh.value_address ();
      else
	{
	  warning(_("Unable to determine inferior's software breakpoint type: "
		    "couldn't find `_break_handler' function in inferior. Will "
		    "be used default software breakpoint instruction RST 0x08."));
	  addr = 0x0008;
	}
    }
  return addr;
}

/* Return the software breakpoint from KIND. KIND is just address of breakpoint
   handler.  If address is on of standard RSTs, then RST n instruction is used
   as breakpoint.
   SIZE is set to the software breakpoint's length in memory.  */
static const gdb_byte *
z80_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  static gdb_byte break_insn[8];

  if ((kind & 070) == kind)
    {
      break_insn[0] = kind | 0307;
      *size = 1;
    }
  else /* kind is non-RST address, use CALL instead, but it is dangerous */
    {
      z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
      gdb_byte *p = break_insn;
      *p++ = 0xcd;
      *p++ = (kind >> 0) & 0xff;
      *p++ = (kind >> 8) & 0xff;
      if (tdep->addr_length > 2)
	*p++ = (kind >> 16) & 0xff;
      *size = p - break_insn;
    }
  return break_insn;
}

/* Return a vector of addresses on which the software single step
   breakpoints should be inserted.  NULL means software single step is
   not used.
   Only one breakpoint address will be returned: conditional branches
   will be always evaluated. */
static std::vector<CORE_ADDR>
z80_software_single_step (struct regcache *regcache)
{
  static const int flag_mask[] = {1 << 6, 1 << 0, 1 << 2, 1 << 7};
  gdb_byte buf[8];
  ULONGEST t;
  ULONGEST addr;
  int opcode;
  int size;
  const struct z80_insn_info *info;
  std::vector<CORE_ADDR> ret (1);
  struct gdbarch *gdbarch = target_gdbarch ();

  regcache->cooked_read (Z80_PC_REGNUM, &addr);
  read_memory (addr, buf, sizeof(buf));
  info = z80_get_insn_info (gdbarch, buf, &size);
  ret[0] = addr + size;
  if (info == NULL) /* possible in case of double prefix */
    { /* forced NOP, TODO: replace by NOP */
      return ret;
    }
  opcode = buf[size - info->size]; /* take opcode instead of prefix */
  /* stage 1: check for conditions */
  switch (info->type)
    {
    case insn_djnz_d:
      regcache->cooked_read (Z80_BC_REGNUM, &t);
      if ((t & 0xff00) != 0x100)
	return ret;
      break;
    case insn_jr_cc_d:
      opcode &= 030; /* JR NZ,d has cc equal to 040, but others 000 */
      /* fall through */
    case insn_jp_cc_nn:
    case insn_call_cc_nn:
    case insn_ret_cc:
      regcache->cooked_read (Z80_AF_REGNUM, &t);
      /* lower bit of condition inverts match, so invert flags if set */
      if ((opcode & 010) != 0)
	t = ~t;
      /* two higher bits of condition field defines flag, so use them only
	 to check condition of "not execute" */
      if (t & flag_mask[(opcode >> 4) & 3])
	return ret;
      break;
    }
  /* stage 2: compute address */
  /* TODO: implement eZ80 MADL support */
  switch (info->type)
    {
    default:
      return ret;
    case insn_djnz_d:
    case insn_jr_d:
    case insn_jr_cc_d:
      addr += size;
      addr += (signed char)buf[size-1];
      break;
    case insn_jp_rr:
      if (size == 1)
	opcode = Z80_HL_REGNUM;
      else
	opcode = (buf[size-2] & 0x20) ? Z80_IY_REGNUM : Z80_IX_REGNUM;
      regcache->cooked_read (opcode, &addr);
      break;
    case insn_jp_nn:
    case insn_jp_cc_nn:
    case insn_call_nn:
    case insn_call_cc_nn:
      addr = buf[size-1] * 0x100 + buf[size-2];
      if (info->size > 3) /* long instruction mode */
	addr = addr * 0x100 + buf[size-3];
      break;
    case insn_rst_n:
      addr = opcode & 070;
      break;
    case insn_ret:
    case insn_ret_cc:
      regcache->cooked_read (Z80_SP_REGNUM, &addr);
      read_memory (addr, buf, 3);
      addr = buf[1] * 0x100 + buf[0];
      if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ez80_adl)
	addr = addr * 0x100 + buf[2];
      break;
    }
  ret[0] = addr;
  return ret;
}

/* Cached, dynamically allocated copies of the target data structures: */
static unsigned (*cache_ovly_region_table)[3] = 0;
static unsigned cache_novly_regions;
static CORE_ADDR cache_ovly_region_table_base = 0;
enum z80_ovly_index
  {
    Z80_VMA, Z80_OSIZE, Z80_MAPPED_TO_LMA
  };

static void
z80_free_overlay_region_table (void)
{
  if (cache_ovly_region_table)
    xfree (cache_ovly_region_table);
  cache_novly_regions = 0;
  cache_ovly_region_table = NULL;
  cache_ovly_region_table_base = 0;
}

/* Read an array of ints of size SIZE from the target into a local buffer.
   Convert to host order.  LEN is number of ints.  */

static void
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
			int len, int size, enum bfd_endian byte_order)
{
  /* alloca is safe here, because regions array is very small. */
  gdb_byte *buf = (gdb_byte *) alloca (len * size);
  int i;

  read_memory (memaddr, buf, len * size);
  for (i = 0; i < len; i++)
    myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
}

static int
z80_read_overlay_region_table ()
{
  struct bound_minimal_symbol novly_regions_msym;
  struct bound_minimal_symbol ovly_region_table_msym;
  struct gdbarch *gdbarch;
  int word_size;
  enum bfd_endian byte_order;

  z80_free_overlay_region_table ();
  novly_regions_msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
  if (! novly_regions_msym.minsym)
    {
      error (_("Error reading inferior's overlay table: "
	       "couldn't find `_novly_regions'\n"
	       "variable in inferior.  Use `overlay manual' mode."));
      return 0;
    }

  ovly_region_table_msym = lookup_bound_minimal_symbol ("_ovly_region_table");
  if (! ovly_region_table_msym.minsym)
    {
      error (_("Error reading inferior's overlay table: couldn't find "
	       "`_ovly_region_table'\n"
	       "array in inferior.  Use `overlay manual' mode."));
      return 0;
    }

  const enum overlay_debugging_state save_ovly_dbg = overlay_debugging;
  /* prevent infinite recurse */
  overlay_debugging = ovly_off;

  gdbarch = ovly_region_table_msym.objfile->arch ();
  word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
  byte_order = gdbarch_byte_order (gdbarch);

  cache_novly_regions = read_memory_integer (novly_regions_msym.value_address (),
					     4, byte_order);
  cache_ovly_region_table
    = (unsigned int (*)[3]) xmalloc (cache_novly_regions *
					sizeof (*cache_ovly_region_table));
  cache_ovly_region_table_base
    = ovly_region_table_msym.value_address ();
  read_target_long_array (cache_ovly_region_table_base,
			  (unsigned int *) cache_ovly_region_table,
			  cache_novly_regions * 3, word_size, byte_order);

  overlay_debugging = save_ovly_dbg;
  return 1;                     /* SUCCESS */
}

static int
z80_overlay_update_1 (struct obj_section *osect)
{
  int i;
  asection *bsect = osect->the_bfd_section;
  unsigned lma;
  unsigned vma = bfd_section_vma (bsect);

  /* find region corresponding to the section VMA */
  for (i = 0; i < cache_novly_regions; i++)
    if (cache_ovly_region_table[i][Z80_VMA] == vma)
	break;
  if (i == cache_novly_regions)
    return 0; /* no such region */

  lma = cache_ovly_region_table[i][Z80_MAPPED_TO_LMA];
  i = 0;

  /* we have interest for sections with same VMA */
  for (objfile *objfile : current_program_space->objfiles ())
    for (obj_section *sect : objfile->sections ())
      if (section_is_overlay (sect))
	{
	  sect->ovly_mapped = (lma == bfd_section_lma (sect->the_bfd_section));
	  i |= sect->ovly_mapped; /* true, if at least one section is mapped */
	}
  return i;
}

/* Refresh overlay mapped state for section OSECT.  */
static void
z80_overlay_update (struct obj_section *osect)
{
  /* Always need to read the entire table anew.  */
  if (!z80_read_overlay_region_table ())
    return;

  /* Were we given an osect to look up?  NULL means do all of them.  */
  if (osect != nullptr && z80_overlay_update_1 (osect))
    return;

  /* Update all sections, even if only one was requested.  */
  for (objfile *objfile : current_program_space->objfiles ())
    for (obj_section *sect : objfile->sections ())
      {
	if (!section_is_overlay (sect))
	  continue;

	asection *bsect = sect->the_bfd_section;
	bfd_vma lma = bfd_section_lma (bsect);
	bfd_vma vma = bfd_section_vma (bsect);

	for (int i = 0; i < cache_novly_regions; ++i)
	  if (cache_ovly_region_table[i][Z80_VMA] == vma)
	    sect->ovly_mapped =
	      (cache_ovly_region_table[i][Z80_MAPPED_TO_LMA] == lma);
      }
}

/* Return non-zero if the instruction at ADDR is a call; zero otherwise.  */
static int
z80_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[8];
  int size;
  const struct z80_insn_info *info;
  read_memory (addr, buf, sizeof(buf));
  info = z80_get_insn_info (gdbarch, buf, &size);
  if (info)
    switch (info->type)
      {
      case insn_call_nn:
      case insn_call_cc_nn:
      case insn_rst_n:
	return 1;
      }
  return 0;
}

/* Return non-zero if the instruction at ADDR is a return; zero otherwise. */
static int
z80_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[8];
  int size;
  const struct z80_insn_info *info;
  read_memory (addr, buf, sizeof(buf));
  info = z80_get_insn_info (gdbarch, buf, &size);
  if (info)
    switch (info->type)
      {
      case insn_ret:
      case insn_ret_cc:
	return 1;
      }
  return 0;
}

/* Return non-zero if the instruction at ADDR is a jump; zero otherwise.  */
static int
z80_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[8];
  int size;
  const struct z80_insn_info *info;
  read_memory (addr, buf, sizeof(buf));
  info = z80_get_insn_info (gdbarch, buf, &size);
  if (info)
    switch (info->type)
      {
      case insn_jp_nn:
      case insn_jp_cc_nn:
      case insn_jp_rr:
      case insn_jr_d:
      case insn_jr_cc_d:
      case insn_djnz_d:
	return 1;
      }
  return 0;
}

static const struct frame_unwind
z80_frame_unwind =
{
  "z80",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  z80_frame_this_id,
  z80_frame_prev_register,
  NULL, /*unwind_data*/
  default_frame_sniffer
  /*dealloc_cache*/
  /*prev_arch*/
};

/* Initialize the gdbarch struct for the Z80 arch */
static struct gdbarch *
z80_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_list *best_arch;
  tdesc_arch_data_up tdesc_data;
  unsigned long mach = info.bfd_arch_info->mach;
  const struct target_desc *tdesc = info.target_desc;

  if (!tdesc_has_registers (tdesc))
    /* Pick a default target description.  */
    tdesc = tdesc_z80;

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      const struct tdesc_feature *feature;
      int valid_p;

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.z80.cpu");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;

      for (unsigned i = 0; i < Z80_NUM_REGS; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
					    z80_reg_names[i]);

      if (!valid_p)
	return NULL;
    }

  /* If there is already a candidate, use it.  */
  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
       best_arch != NULL;
       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
    {
      if (mach == gdbarch_bfd_arch_info (best_arch->gdbarch)->mach)
	return best_arch->gdbarch;
    }

  /* None found, create a new architecture from the information provided.  */
  gdbarch *gdbarch
    = gdbarch_alloc (&info, gdbarch_tdep_up (new z80_gdbarch_tdep));
  z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);

  if (mach == bfd_mach_ez80_adl)
    {
      tdep->addr_length = 3;
      set_gdbarch_max_insn_length (gdbarch, 6);
    }
  else
    {
      tdep->addr_length = 2;
      set_gdbarch_max_insn_length (gdbarch, 4);
    }

  /* Create a type for PC.  We can't use builtin types here, as they may not
     be defined.  */
  type_allocator alloc (gdbarch);
  tdep->void_type = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT,
				    "void");
  tdep->func_void_type = make_function_type (tdep->void_type, NULL);
  tdep->pc_type = init_pointer_type (alloc,
				     tdep->addr_length * TARGET_CHAR_BIT,
				     NULL, tdep->func_void_type);

  set_gdbarch_short_bit (gdbarch, TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT);

  set_gdbarch_num_regs (gdbarch, (mach == bfd_mach_ez80_adl) ? EZ80_NUM_REGS
							     : Z80_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, Z80_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, Z80_PC_REGNUM);

  set_gdbarch_register_name (gdbarch, z80_register_name);
  set_gdbarch_register_type (gdbarch, z80_register_type);

  /* TODO: get FP type from binary (extra flags required) */
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);

  set_gdbarch_return_value (gdbarch, z80_return_value);

  set_gdbarch_skip_prologue (gdbarch, z80_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan); // falling stack

  set_gdbarch_software_single_step (gdbarch, z80_software_single_step);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, z80_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, z80_sw_breakpoint_from_kind);
  set_gdbarch_insn_is_call (gdbarch, z80_insn_is_call);
  set_gdbarch_insn_is_jump (gdbarch, z80_insn_is_jump);
  set_gdbarch_insn_is_ret (gdbarch, z80_insn_is_ret);

  set_gdbarch_overlay_update (gdbarch, z80_overlay_update);

  frame_unwind_append_unwinder (gdbarch, &z80_frame_unwind);
  if (tdesc_data)
    tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));

  return gdbarch;
}

/* Table to disassemble machine codes without prefix.  */
static const struct z80_insn_info
ez80_main_insn_table[] =
{ /* table with double prefix check */
  { 0100, 0377, 0, insn_force_nop}, //double prefix
  { 0111, 0377, 0, insn_force_nop}, //double prefix
  { 0122, 0377, 0, insn_force_nop}, //double prefix
  { 0133, 0377, 0, insn_force_nop}, //double prefix
  /* initial table for eZ80_z80 */
  { 0100, 0377, 1, insn_z80      }, //eZ80 mode prefix
  { 0111, 0377, 1, insn_z80      }, //eZ80 mode prefix
  { 0122, 0377, 1, insn_adl      }, //eZ80 mode prefix
  { 0133, 0377, 1, insn_adl      }, //eZ80 mode prefix
  /* here common Z80/Z180/eZ80 opcodes */
  { 0000, 0367, 1, insn_default  }, //"nop", "ex af,af'"
  { 0061, 0377, 3, insn_ld_sp_nn }, //"ld sp,nn"
  { 0001, 0317, 3, insn_default  }, //"ld rr,nn"
  { 0002, 0347, 1, insn_default  }, //"ld (rr),a", "ld a,(rr)"
  { 0042, 0347, 3, insn_default  }, //"ld (nn),hl/a", "ld hl/a,(nn)"
  { 0063, 0377, 1, insn_inc_sp   }, //"inc sp"
  { 0073, 0377, 1, insn_dec_sp   }, //"dec sp"
  { 0003, 0303, 1, insn_default  }, //"inc rr", "dec rr", ...
  { 0004, 0307, 1, insn_default  }, //"inc/dec r/(hl)"
  { 0006, 0307, 2, insn_default  }, //"ld r,n", "ld (hl),n"
  { 0020, 0377, 2, insn_djnz_d   }, //"djnz dis"
  { 0030, 0377, 2, insn_jr_d     }, //"jr dis"
  { 0040, 0347, 2, insn_jr_cc_d  }, //"jr cc,dis"
  { 0100, 0300, 1, insn_default  }, //"ld r,r", "halt"
  { 0200, 0300, 1, insn_default  }, //"alu_op a,r"
  { 0300, 0307, 1, insn_ret_cc   }, //"ret cc"
  { 0301, 0317, 1, insn_pop_rr   }, //"pop rr"
  { 0302, 0307, 3, insn_jp_cc_nn }, //"jp cc,nn"
  { 0303, 0377, 3, insn_jp_nn    }, //"jp nn"
  { 0304, 0307, 3, insn_call_cc_nn}, //"call cc,nn"
  { 0305, 0317, 1, insn_push_rr  }, //"push rr"
  { 0306, 0307, 2, insn_default  }, //"alu_op a,n"
  { 0307, 0307, 1, insn_rst_n    }, //"rst n"
  { 0311, 0377, 1, insn_ret      }, //"ret"
  { 0313, 0377, 2, insn_default  }, //CB prefix
  { 0315, 0377, 3, insn_call_nn  }, //"call nn"
  { 0323, 0367, 2, insn_default  }, //"out (n),a", "in a,(n)"
  { 0335, 0337, 1, insn_z80_ddfd }, //DD/FD prefix
  { 0351, 0377, 1, insn_jp_rr    }, //"jp (hl)"
  { 0355, 0377, 1, insn_z80_ed   }, //ED prefix
  { 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl"
  { 0000, 0000, 1, insn_default  }  //others
} ;

static const struct z80_insn_info
ez80_adl_main_insn_table[] =
{ /* table with double prefix check */
  { 0100, 0377, 0, insn_force_nop}, //double prefix
  { 0111, 0377, 0, insn_force_nop}, //double prefix
  { 0122, 0377, 0, insn_force_nop}, //double prefix
  { 0133, 0377, 0, insn_force_nop}, //double prefix
  /* initial table for eZ80_adl */
  { 0000, 0367, 1, insn_default  }, //"nop", "ex af,af'"
  { 0061, 0377, 4, insn_ld_sp_nn }, //"ld sp,Mmn"
  { 0001, 0317, 4, insn_default  }, //"ld rr,Mmn"
  { 0002, 0347, 1, insn_default  }, //"ld (rr),a", "ld a,(rr)"
  { 0042, 0347, 4, insn_default  }, //"ld (Mmn),hl/a", "ld hl/a,(Mmn)"
  { 0063, 0377, 1, insn_inc_sp   }, //"inc sp"
  { 0073, 0377, 1, insn_dec_sp   }, //"dec sp"
  { 0003, 0303, 1, insn_default  }, //"inc rr", "dec rr", ...
  { 0004, 0307, 1, insn_default  }, //"inc/dec r/(hl)"
  { 0006, 0307, 2, insn_default  }, //"ld r,n", "ld (hl),n"
  { 0020, 0377, 2, insn_djnz_d   }, //"djnz dis"
  { 0030, 0377, 2, insn_jr_d     }, //"jr dis"
  { 0040, 0347, 2, insn_jr_cc_d  }, //"jr cc,dis"
  { 0100, 0377, 1, insn_z80      }, //eZ80 mode prefix (short instruction)
  { 0111, 0377, 1, insn_z80      }, //eZ80 mode prefix (short instruction)
  { 0122, 0377, 1, insn_adl      }, //eZ80 mode prefix (long instruction)
  { 0133, 0377, 1, insn_adl      }, //eZ80 mode prefix (long instruction)
  { 0100, 0300, 1, insn_default  }, //"ld r,r", "halt"
  { 0200, 0300, 1, insn_default  }, //"alu_op a,r"
  { 0300, 0307, 1, insn_ret_cc   }, //"ret cc"
  { 0301, 0317, 1, insn_pop_rr   }, //"pop rr"
  { 0302, 0307, 4, insn_jp_cc_nn }, //"jp cc,nn"
  { 0303, 0377, 4, insn_jp_nn    }, //"jp nn"
  { 0304, 0307, 4, insn_call_cc_nn}, //"call cc,Mmn"
  { 0305, 0317, 1, insn_push_rr  }, //"push rr"
  { 0306, 0307, 2, insn_default  }, //"alu_op a,n"
  { 0307, 0307, 1, insn_rst_n    }, //"rst n"
  { 0311, 0377, 1, insn_ret      }, //"ret"
  { 0313, 0377, 2, insn_default  }, //CB prefix
  { 0315, 0377, 4, insn_call_nn  }, //"call Mmn"
  { 0323, 0367, 2, insn_default  }, //"out (n),a", "in a,(n)"
  { 0335, 0337, 1, insn_adl_ddfd }, //DD/FD prefix
  { 0351, 0377, 1, insn_jp_rr    }, //"jp (hl)"
  { 0355, 0377, 1, insn_adl_ed   }, //ED prefix
  { 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl"
  { 0000, 0000, 1, insn_default  }  //others
};

/* ED prefix opcodes table.
   Note the instruction length does include the ED prefix (+ 1 byte)
*/
static const struct z80_insn_info
ez80_ed_insn_table[] =
{
  /* eZ80 only instructions */
  { 0002, 0366, 2, insn_default    }, //"lea rr,ii+d"
  { 0124, 0376, 2, insn_default    }, //"lea ix,iy+d", "lea iy,ix+d"
  { 0145, 0377, 2, insn_default    }, //"pea ix+d"
  { 0146, 0377, 2, insn_default    }, //"pea iy+d"
  { 0164, 0377, 2, insn_default    }, //"tstio n"
  /* Z180/eZ80 only instructions */
  { 0060, 0376, 1, insn_default    }, //not an instruction
  { 0000, 0306, 2, insn_default    }, //"in0 r,(n)", "out0 (n),r"
  { 0144, 0377, 2, insn_default    }, //"tst a, n"
  /* common instructions */
  { 0173, 0377, 3, insn_ld_sp_6nn9 }, //"ld sp,(nn)"
  { 0103, 0307, 3, insn_default    }, //"ld (nn),rr", "ld rr,(nn)"
  { 0105, 0317, 1, insn_ret        }, //"retn", "reti"
  { 0000, 0000, 1, insn_default    }
};

static const struct z80_insn_info
ez80_adl_ed_insn_table[] =
{
  { 0002, 0366, 2, insn_default }, //"lea rr,ii+d"
  { 0124, 0376, 2, insn_default }, //"lea ix,iy+d", "lea iy,ix+d"
  { 0145, 0377, 2, insn_default }, //"pea ix+d"
  { 0146, 0377, 2, insn_default }, //"pea iy+d"
  { 0164, 0377, 2, insn_default }, //"tstio n"
  { 0060, 0376, 1, insn_default }, //not an instruction
  { 0000, 0306, 2, insn_default }, //"in0 r,(n)", "out0 (n),r"
  { 0144, 0377, 2, insn_default }, //"tst a, n"
  { 0173, 0377, 4, insn_ld_sp_6nn9 }, //"ld sp,(nn)"
  { 0103, 0307, 4, insn_default }, //"ld (nn),rr", "ld rr,(nn)"
  { 0105, 0317, 1, insn_ret     }, //"retn", "reti"
  { 0000, 0000, 1, insn_default }
};

/* table for FD and DD prefixed instructions */
static const struct z80_insn_info
ez80_ddfd_insn_table[] =
{
  /* ez80 only instructions */
  { 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)"
  { 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)"
  /* common instructions */
  { 0011, 0367, 2, insn_default }, //"add ii,rr"
  { 0041, 0377, 3, insn_default }, //"ld ii,nn"
  { 0042, 0367, 3, insn_default }, //"ld (nn),ii", "ld ii,(nn)"
  { 0043, 0367, 1, insn_default }, //"inc ii", "dec ii"
  { 0044, 0366, 1, insn_default }, //"inc/dec iih/iil"
  { 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n"
  { 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)"
  { 0066, 0377, 2, insn_default }, //"ld (ii+d),n"
  { 0166, 0377, 0, insn_default }, //not an instruction
  { 0160, 0370, 2, insn_default }, //"ld (ii+d),r"
  { 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil"
  { 0106, 0307, 2, insn_default }, //"ld r,(ii+d)"
  { 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r"
  { 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil"
  { 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)"
  { 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions
  { 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP
  { 0341, 0373, 1, insn_default }, //"pop ii", "push ii"
  { 0343, 0377, 1, insn_default }, //"ex (sp),ii"
  { 0351, 0377, 1, insn_jp_rr   }, //"jp (ii)"
  { 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii"
  { 0000, 0000, 0, insn_default }  //not an instruction, exec DD/FD as NOP
};

static const struct z80_insn_info
ez80_adl_ddfd_insn_table[] =
{
  { 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)"
  { 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)"
  { 0011, 0367, 1, insn_default }, //"add ii,rr"
  { 0041, 0377, 4, insn_default }, //"ld ii,nn"
  { 0042, 0367, 4, insn_default }, //"ld (nn),ii", "ld ii,(nn)"
  { 0043, 0367, 1, insn_default }, //"inc ii", "dec ii"
  { 0044, 0366, 1, insn_default }, //"inc/dec iih/iil"
  { 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n"
  { 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)"
  { 0066, 0377, 3, insn_default }, //"ld (ii+d),n"
  { 0166, 0377, 0, insn_default }, //not an instruction
  { 0160, 0370, 2, insn_default }, //"ld (ii+d),r"
  { 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil"
  { 0106, 0307, 2, insn_default }, //"ld r,(ii+d)"
  { 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r"
  { 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil"
  { 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)"
  { 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions
  { 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP
  { 0341, 0373, 1, insn_default }, //"pop ii", "push ii"
  { 0343, 0377, 1, insn_default }, //"ex (sp),ii"
  { 0351, 0377, 1, insn_jp_rr   }, //"jp (ii)"
  { 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii"
  { 0000, 0000, 0, insn_default }  //not an instruction, exec DD/FD as NOP
};

/* Return pointer to instruction information structure corresponded to opcode
   in buf.  */
static const struct z80_insn_info *
z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size)
{
  int code;
  const struct z80_insn_info *info;
  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
  *size = 0;
  switch (mach)
    {
    case bfd_mach_ez80_z80:
      info = &ez80_main_insn_table[4]; /* skip force_nops */
      break;
    case bfd_mach_ez80_adl:
      info = &ez80_adl_main_insn_table[4]; /* skip force_nops */
      break;
    default:
      info = &ez80_main_insn_table[8]; /* skip eZ80 prefixes and force_nops */
      break;
    }
  do
    {
      for (; ((code = buf[*size]) & info->mask) != info->code; ++info)
	;
      *size += info->size;
      /* process instruction type */
      switch (info->type)
	{
	case insn_z80:
	  if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl)
	    info = &ez80_main_insn_table[0];
	  else
	    info = &ez80_main_insn_table[8];
	  break;
	case insn_adl:
	  info = &ez80_adl_main_insn_table[0];
	  break;
	/*  These two (for GameBoy Z80 & Z80 Next CPUs) haven't been tested.

	case bfd_mach_gbz80:
	  info = &gbz80_main_insn_table[0];
	  break;
	case bfd_mach_z80n:
	  info = &z80n_main_insn_table[0];
	  break;
	*/
	case insn_z80_ddfd:
	  if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl)
	    info = &ez80_ddfd_insn_table[0];
	  else
	    info = &ez80_ddfd_insn_table[2];
	  break;
	case insn_adl_ddfd:
	  info = &ez80_adl_ddfd_insn_table[0];
	  break;
	case insn_z80_ed:
	  info = &ez80_ed_insn_table[0];
	  break;
	case insn_adl_ed:
	  info = &ez80_adl_ed_insn_table[0];
	  break;
	case insn_force_nop:
	  return NULL;
	default:
	  return info;
	}
    }
  while (1);
}

extern initialize_file_ftype _initialize_z80_tdep;

void
_initialize_z80_tdep ()
{
  gdbarch_register (bfd_arch_z80, z80_gdbarch_init);
  initialize_tdesc_z80 ();
}