1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
/* Vector API for GDB.
Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Nathan Sidwell <nathan@codesourcery.com>
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (GDB_VEC_H)
#define GDB_VEC_H
#include <stddef.h>
#include "gdb_string.h"
#include "gdb_assert.h"
/* The macros here implement a set of templated vector types and
associated interfaces. These templates are implemented with
macros, as we're not in C++ land. The interface functions are
typesafe and use static inline functions, sometimes backed by
out-of-line generic functions.
Because of the different behavior of structure objects, scalar
objects and of pointers, there are three flavors, one for each of
these variants. Both the structure object and pointer variants
pass pointers to objects around -- in the former case the pointers
are stored into the vector and in the latter case the pointers are
dereferenced and the objects copied into the vector. The scalar
object variant is suitable for int-like objects, and the vector
elements are returned by value.
There are both 'index' and 'iterate' accessors. The iterator
returns a boolean iteration condition and updates the iteration
variable passed by reference. Because the iterator will be
inlined, the address-of can be optimized away.
The vectors are implemented using the trailing array idiom, thus
they are not resizeable without changing the address of the vector
object itself. This means you cannot have variables or fields of
vector type -- always use a pointer to a vector. The one exception
is the final field of a structure, which could be a vector type.
You will have to use the embedded_size & embedded_init calls to
create such objects, and they will probably not be resizeable (so
don't use the 'safe' allocation variants). The trailing array
idiom is used (rather than a pointer to an array of data), because,
if we allow NULL to also represent an empty vector, empty vectors
occupy minimal space in the structure containing them.
Each operation that increases the number of active elements is
available in 'quick' and 'safe' variants. The former presumes that
there is sufficient allocated space for the operation to succeed
(it dies if there is not). The latter will reallocate the
vector, if needed. Reallocation causes an exponential increase in
vector size. If you know you will be adding N elements, it would
be more efficient to use the reserve operation before adding the
elements with the 'quick' operation. This will ensure there are at
least as many elements as you ask for, it will exponentially
increase if there are too few spare slots. If you want reserve a
specific number of slots, but do not want the exponential increase
(for instance, you know this is the last allocation), use a
negative number for reservation. You can also create a vector of a
specific size from the get go.
You should prefer the push and pop operations, as they append and
remove from the end of the vector. If you need to remove several
items in one go, use the truncate operation. The insert and remove
operations allow you to change elements in the middle of the
vector. There are two remove operations, one which preserves the
element ordering 'ordered_remove', and one which does not
'unordered_remove'. The latter function copies the end element
into the removed slot, rather than invoke a memmove operation. The
'lower_bound' function will determine where to place an item in the
array using insert that will maintain sorted order.
If you need to directly manipulate a vector, then the 'address'
accessor will return the address of the start of the vector. Also
the 'space' predicate will tell you whether there is spare capacity
in the vector. You will not normally need to use these two functions.
Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
Variables of vector type are declared using a VEC(TYPEDEF) macro.
The characters O, P and I indicate whether TYPEDEF is a pointer
(P), object (O) or integral (I) type. Be careful to pick the
correct one, as you'll get an awkward and inefficient API if you
use the wrong one. There is a check, which results in a
compile-time warning, for the P and I versions, but there is no
check for the O versions, as that is not possible in plain C.
An example of their use would be,
DEF_VEC_P(tree); // non-managed tree vector.
struct my_struct {
VEC(tree) *v; // A (pointer to) a vector of tree pointers.
};
struct my_struct *s;
if (VEC_length(tree, s->v)) { we have some contents }
VEC_safe_push(tree, s->v, decl); // append some decl onto the end
for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
{ do something with elt }
*/
/* Macros to invoke API calls. A single macro works for both pointer
and object vectors, but the argument and return types might well be
different. In each macro, T is the typedef of the vector elements.
Some of these macros pass the vector, V, by reference (by taking
its address), this is noted in the descriptions. */
/* Length of vector
unsigned VEC_T_length(const VEC(T) *v);
Return the number of active elements in V. V can be NULL, in which
case zero is returned. */
#define VEC_length(T,V) (VEC_OP(T,length)(V))
/* Check if vector is empty
int VEC_T_empty(const VEC(T) *v);
Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
#define VEC_empty(T,V) (VEC_length (T,V) == 0)
/* Get the final element of the vector.
T VEC_T_last(VEC(T) *v); // Integer
T VEC_T_last(VEC(T) *v); // Pointer
T *VEC_T_last(VEC(T) *v); // Object
Return the final element. V must not be empty. */
#define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
/* Index into vector
T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
Return the IX'th element. If IX must be in the domain of V. */
#define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
/* Iterate over vector
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
Return iteration condition and update PTR to point to the IX'th
element. At the end of iteration, sets PTR to NULL. Use this to
iterate over the elements of a vector as follows,
for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
continue; */
#define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
/* Allocate new vector.
VEC(T,A) *VEC_T_alloc(int reserve);
Allocate a new vector with space for RESERVE objects. If RESERVE
is zero, NO vector is created. */
#define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
/* Free a vector.
void VEC_T_free(VEC(T,A) *&);
Free a vector and set it to NULL. */
#define VEC_free(T,V) (VEC_OP(T,free)(&V))
/* Use these to determine the required size and initialization of a
vector embedded within another structure (as the final member).
size_t VEC_T_embedded_size(int reserve);
void VEC_T_embedded_init(VEC(T) *v, int reserve);
These allow the caller to perform the memory allocation. */
#define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
/* Copy a vector.
VEC(T,A) *VEC_T_copy(VEC(T) *);
Copy the live elements of a vector into a new vector. The new and
old vectors need not be allocated by the same mechanism. */
#define VEC_copy(T,V) (VEC_OP(T,copy)(V))
/* Determine if a vector has additional capacity.
int VEC_T_space (VEC(T) *v,int reserve)
If V has space for RESERVE additional entries, return nonzero. You
usually only need to use this if you are doing your own vector
reallocation, for instance on an embedded vector. This returns
nonzero in exactly the same circumstances that VEC_T_reserve
will. */
#define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
/* Reserve space.
int VEC_T_reserve(VEC(T,A) *&v, int reserve);
Ensure that V has at least abs(RESERVE) slots available. The
signedness of RESERVE determines the reallocation behavior. A
negative value will not create additional headroom beyond that
requested. A positive value will create additional headroom. Note
this can cause V to be reallocated. Returns nonzero iff
reallocation actually occurred. */
#define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
/* Push object with no reallocation
T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. There must
be sufficient space in the vector. */
#define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
/* Push object with reallocation
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. Reallocates V, if needed. */
#define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
/* Pop element off end
T VEC_T_pop (VEC(T) *v); // Integer
T VEC_T_pop (VEC(T) *v); // Pointer
void VEC_T_pop (VEC(T) *v); // Object
Pop the last element off the end. Returns the element popped, for
pointer vectors. */
#define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
/* Truncate to specific length
void VEC_T_truncate (VEC(T) *v, unsigned len);
Set the length as specified. The new length must be less than or
equal to the current length. This is an O(1) operation. */
#define VEC_truncate(T,V,I) \
(VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
/* Grow to a specific length.
void VEC_T_safe_grow (VEC(T,A) *&v, int len);
Grow the vector to a specific length. The LEN must be as
long or longer than the current length. The new elements are
uninitialized. */
#define VEC_safe_grow(T,V,I) \
(VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
/* Replace element
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
Replace the IXth element of V with a new value, VAL. For pointer
vectors returns the original value. For object vectors returns a
pointer to the new value. For object vectors the new value can be
NULL, in which case no overwriting of the slot is actually
performed. */
#define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
/* Insert object with no reallocation
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. There must be sufficient space. */
#define VEC_quick_insert(T,V,I,O) \
(VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
/* Insert object with reallocation
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. Reallocate V, if necessary. */
#define VEC_safe_insert(T,V,I,O) \
(VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
/* Remove element retaining order
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is preserved. For pointer vectors returns the
removed object. This is an O(N) operation due to a memmove. */
#define VEC_ordered_remove(T,V,I) \
(VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
/* Remove element destroying order
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is destroyed. For pointer vectors returns the
removed object. This is an O(1) operation. */
#define VEC_unordered_remove(T,V,I) \
(VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
/* Remove a block of elements
void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
Remove LEN elements starting at the IXth. Ordering is retained.
This is an O(1) operation. */
#define VEC_block_remove(T,V,I,L) \
(VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
/* Get the address of the array of elements
T *VEC_T_address (VEC(T) v)
If you need to directly manipulate the array (for instance, you
want to feed it to qsort), use this accessor. */
#define VEC_address(T,V) (VEC_OP(T,address)(V))
/* Find the first index in the vector not less than the object.
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
int (*lessthan) (const T, const T)); // Integer
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
int (*lessthan) (const T, const T)); // Pointer
unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
int (*lessthan) (const T*, const T*)); // Object
Find the first position in which VAL could be inserted without
changing the ordering of V. LESSTHAN is a function that returns
true if the first argument is strictly less than the second. */
#define VEC_lower_bound(T,V,O,LT) \
(VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
/* Reallocate an array of elements with prefix. */
extern void *vec_p_reserve (void *, int);
extern void *vec_o_reserve (void *, int, size_t, size_t);
#define vec_free_(V) xfree (V)
#define VEC_ASSERT_INFO ,__FILE__,__LINE__
#define VEC_ASSERT_DECL ,const char *file_,unsigned line_
#define VEC_ASSERT_PASS ,file_,line_
#define vec_assert(expr, op) \
((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
#define VEC(T) VEC_##T
#define VEC_OP(T,OP) VEC_##T##_##OP
#define VEC_T(T) \
typedef struct VEC(T) \
{ \
unsigned num; \
unsigned alloc; \
T vec[1]; \
} VEC(T)
/* Vector of integer-like object. */
#define DEF_VEC_I(T) \
static inline void VEC_OP (T,must_be_integral_type) (void) \
{ \
(void)~(T)0; \
} \
\
VEC_T(T); \
DEF_VEC_FUNC_P(T) \
DEF_VEC_ALLOC_FUNC_I(T) \
struct vec_swallow_trailing_semi
/* Vector of pointer to object. */
#define DEF_VEC_P(T) \
static inline void VEC_OP (T,must_be_pointer_type) (void) \
{ \
(void)((T)1 == (void *)1); \
} \
\
VEC_T(T); \
DEF_VEC_FUNC_P(T) \
DEF_VEC_ALLOC_FUNC_P(T) \
struct vec_swallow_trailing_semi
/* Vector of object. */
#define DEF_VEC_O(T) \
VEC_T(T); \
DEF_VEC_FUNC_O(T) \
DEF_VEC_ALLOC_FUNC_O(T) \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_FUNC_I(T) \
static inline VEC(T) *VEC_OP (T,alloc) \
(int alloc_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
offsetof (VEC(T),vec), sizeof (T)); \
} \
\
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
{ \
size_t len_ = vec_ ? vec_->num : 0; \
VEC (T) *new_vec_ = NULL; \
\
if (len_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
new_vec_ = (VEC (T) *) \
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
\
new_vec_->num = len_; \
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
} \
return new_vec_; \
} \
\
static inline void VEC_OP (T,free) \
(VEC(T) **vec_) \
{ \
if (*vec_) \
vec_free_ (*vec_); \
*vec_ = NULL; \
} \
\
static inline int VEC_OP (T,reserve) \
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
{ \
int extend = !VEC_OP (T,space) \
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
\
if (extend) \
*vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
offsetof (VEC(T),vec), sizeof (T)); \
\
return extend; \
} \
\
static inline void VEC_OP (T,safe_grow) \
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
{ \
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
"safe_grow"); \
VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
VEC_ASSERT_PASS); \
(*vec_)->num = size_; \
} \
\
static inline T *VEC_OP (T,safe_push) \
(VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
} \
\
static inline T *VEC_OP (T,safe_insert) \
(VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
}
#define DEF_VEC_FUNC_P(T) \
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline T VEC_OP (T,last) \
(const VEC(T) *vec_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ && vec_->num, "last"); \
\
return vec_->vec[vec_->num - 1]; \
} \
\
static inline T VEC_OP (T,index) \
(const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ && ix_ < vec_->num, "index"); \
\
return vec_->vec[ix_]; \
} \
\
static inline int VEC_OP (T,iterate) \
(const VEC(T) *vec_, unsigned ix_, T *ptr) \
{ \
if (vec_ && ix_ < vec_->num) \
{ \
*ptr = vec_->vec[ix_]; \
return 1; \
} \
else \
{ \
*ptr = 0; \
return 0; \
} \
} \
\
static inline size_t VEC_OP (T,embedded_size) \
(int alloc_) \
{ \
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
} \
\
static inline void VEC_OP (T,embedded_init) \
(VEC(T) *vec_, int alloc_) \
{ \
vec_->num = 0; \
vec_->alloc = alloc_; \
} \
\
static inline int VEC_OP (T,space) \
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
{ \
vec_assert (alloc_ >= 0, "space"); \
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
} \
\
static inline T *VEC_OP (T,quick_push) \
(VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
slot_ = &vec_->vec[vec_->num++]; \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
{ \
T obj_; \
\
vec_assert (vec_->num, "pop"); \
obj_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
static inline void VEC_OP (T,truncate) \
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
if (vec_) \
vec_->num = size_; \
} \
\
static inline T VEC_OP (T,replace) \
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
{ \
T old_obj_; \
\
vec_assert (ix_ < vec_->num, "replace"); \
old_obj_ = vec_->vec[ix_]; \
vec_->vec[ix_] = obj_; \
\
return old_obj_; \
} \
\
static inline T *VEC_OP (T,quick_insert) \
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline T VEC_OP (T,ordered_remove) \
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
T obj_; \
\
vec_assert (ix_ < vec_->num, "ordered_remove"); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
\
return obj_; \
} \
\
static inline T VEC_OP (T,unordered_remove) \
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
T obj_; \
\
vec_assert (ix_ < vec_->num, "unordered_remove"); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
*slot_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
static inline void VEC_OP (T,block_remove) \
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
slot_ = &vec_->vec[ix_]; \
vec_->num -= len_; \
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
} \
\
static inline T *VEC_OP (T,address) \
(VEC(T) *vec_) \
{ \
return vec_ ? vec_->vec : 0; \
} \
\
static inline unsigned VEC_OP (T,lower_bound) \
(VEC(T) *vec_, const T obj_, \
int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
{ \
unsigned int len_ = VEC_OP (T, length) (vec_); \
unsigned int half_, middle_; \
unsigned int first_ = 0; \
while (len_ > 0) \
{ \
T middle_elem_; \
half_ = len_ >> 1; \
middle_ = first_; \
middle_ += half_; \
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
if (lessthan_ (middle_elem_, obj_)) \
{ \
first_ = middle_; \
++first_; \
len_ = len_ - half_ - 1; \
} \
else \
len_ = half_; \
} \
return first_; \
}
#define DEF_VEC_ALLOC_FUNC_P(T) \
static inline VEC(T) *VEC_OP (T,alloc) \
(int alloc_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
} \
\
static inline void VEC_OP (T,free) \
(VEC(T) **vec_) \
{ \
if (*vec_) \
vec_free_ (*vec_); \
*vec_ = NULL; \
} \
\
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
{ \
size_t len_ = vec_ ? vec_->num : 0; \
VEC (T) *new_vec_ = NULL; \
\
if (len_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
\
new_vec_->num = len_; \
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
} \
return new_vec_; \
} \
\
static inline int VEC_OP (T,reserve) \
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
{ \
int extend = !VEC_OP (T,space) \
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
\
if (extend) \
*vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
\
return extend; \
} \
\
static inline void VEC_OP (T,safe_grow) \
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
{ \
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
"safe_grow"); \
VEC_OP (T,reserve) \
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
(*vec_)->num = size_; \
} \
\
static inline T *VEC_OP (T,safe_push) \
(VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
} \
\
static inline T *VEC_OP (T,safe_insert) \
(VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
}
#define DEF_VEC_FUNC_O(T) \
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ && vec_->num, "last"); \
\
return &vec_->vec[vec_->num - 1]; \
} \
\
static inline T *VEC_OP (T,index) \
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ && ix_ < vec_->num, "index"); \
\
return &vec_->vec[ix_]; \
} \
\
static inline int VEC_OP (T,iterate) \
(VEC(T) *vec_, unsigned ix_, T **ptr) \
{ \
if (vec_ && ix_ < vec_->num) \
{ \
*ptr = &vec_->vec[ix_]; \
return 1; \
} \
else \
{ \
*ptr = 0; \
return 0; \
} \
} \
\
static inline size_t VEC_OP (T,embedded_size) \
(int alloc_) \
{ \
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
} \
\
static inline void VEC_OP (T,embedded_init) \
(VEC(T) *vec_, int alloc_) \
{ \
vec_->num = 0; \
vec_->alloc = alloc_; \
} \
\
static inline int VEC_OP (T,space) \
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
{ \
vec_assert (alloc_ >= 0, "space"); \
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
} \
\
static inline T *VEC_OP (T,quick_push) \
(VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
slot_ = &vec_->vec[vec_->num++]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_->num, "pop"); \
--vec_->num; \
} \
\
static inline void VEC_OP (T,truncate) \
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
{ \
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
if (vec_) \
vec_->num = size_; \
} \
\
static inline T *VEC_OP (T,replace) \
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (ix_ < vec_->num, "replace"); \
slot_ = &vec_->vec[ix_]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline T *VEC_OP (T,quick_insert) \
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline void VEC_OP (T,ordered_remove) \
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (ix_ < vec_->num, "ordered_remove"); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
} \
\
static inline void VEC_OP (T,unordered_remove) \
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
{ \
vec_assert (ix_ < vec_->num, "unordered_remove"); \
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
} \
\
static inline void VEC_OP (T,block_remove) \
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
{ \
T *slot_; \
\
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
slot_ = &vec_->vec[ix_]; \
vec_->num -= len_; \
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
} \
\
static inline T *VEC_OP (T,address) \
(VEC(T) *vec_) \
{ \
return vec_ ? vec_->vec : 0; \
} \
\
static inline unsigned VEC_OP (T,lower_bound) \
(VEC(T) *vec_, const T *obj_, \
int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
{ \
unsigned int len_ = VEC_OP (T, length) (vec_); \
unsigned int half_, middle_; \
unsigned int first_ = 0; \
while (len_ > 0) \
{ \
T *middle_elem_; \
half_ = len_ >> 1; \
middle_ = first_; \
middle_ += half_; \
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
if (lessthan_ (middle_elem_, obj_)) \
{ \
first_ = middle_; \
++first_; \
len_ = len_ - half_ - 1; \
} \
else \
len_ = half_; \
} \
return first_; \
}
#define DEF_VEC_ALLOC_FUNC_O(T) \
static inline VEC(T) *VEC_OP (T,alloc) \
(int alloc_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
offsetof (VEC(T),vec), sizeof (T)); \
} \
\
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
{ \
size_t len_ = vec_ ? vec_->num : 0; \
VEC (T) *new_vec_ = NULL; \
\
if (len_) \
{ \
/* We must request exact size allocation, hence the negation. */ \
new_vec_ = (VEC (T) *) \
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
\
new_vec_->num = len_; \
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
} \
return new_vec_; \
} \
\
static inline void VEC_OP (T,free) \
(VEC(T) **vec_) \
{ \
if (*vec_) \
vec_free_ (*vec_); \
*vec_ = NULL; \
} \
\
static inline int VEC_OP (T,reserve) \
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
{ \
int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
VEC_ASSERT_PASS); \
\
if (extend) \
*vec_ = (VEC(T) *) \
vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
\
return extend; \
} \
\
static inline void VEC_OP (T,safe_grow) \
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
{ \
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
"safe_grow"); \
VEC_OP (T,reserve) \
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
(*vec_)->num = size_; \
} \
\
static inline T *VEC_OP (T,safe_push) \
(VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
} \
\
static inline T *VEC_OP (T,safe_insert) \
(VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
{ \
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
\
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
}
#endif /* GDB_VEC_H */
|