1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
|
/* Target dependent code for CRIS, for GDB, the GNU debugger.
Copyright (C) 2001-2022 Free Software Foundation, Inc.
Contributed by Axis Communications AB.
Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dwarf2/frame.h"
#include "symtab.h"
#include "inferior.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "value.h"
#include "opcode/cris.h"
#include "osabi.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "objfiles.h"
#include "solib.h" /* Support for shared libraries. */
#include "solib-svr4.h"
#include "dis-asm.h"
#include "cris-tdep.h"
enum cris_num_regs
{
/* There are no floating point registers. Used in gdbserver low-linux.c. */
NUM_FREGS = 0,
/* There are 16 general registers. */
NUM_GENREGS = 16,
/* There are 16 special registers. */
NUM_SPECREGS = 16,
/* CRISv32 has a pseudo PC register, not noted here. */
/* CRISv32 has 16 support registers. */
NUM_SUPPREGS = 16
};
/* Register numbers of various important registers.
CRIS_FP_REGNUM Contains address of executing stack frame.
STR_REGNUM Contains the address of structure return values.
RET_REGNUM Contains the return value when shorter than or equal to 32 bits
ARG1_REGNUM Contains the first parameter to a function.
ARG2_REGNUM Contains the second parameter to a function.
ARG3_REGNUM Contains the third parameter to a function.
ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
gdbarch_sp_regnum Contains address of top of stack.
gdbarch_pc_regnum Contains address of next instruction.
SRP_REGNUM Subroutine return pointer register.
BRP_REGNUM Breakpoint return pointer register. */
enum cris_regnums
{
/* Enums with respect to the general registers, valid for all
CRIS versions. The frame pointer is always in R8. */
CRIS_FP_REGNUM = 8,
/* ABI related registers. */
STR_REGNUM = 9,
RET_REGNUM = 10,
ARG1_REGNUM = 10,
ARG2_REGNUM = 11,
ARG3_REGNUM = 12,
ARG4_REGNUM = 13,
/* Registers which happen to be common. */
VR_REGNUM = 17,
MOF_REGNUM = 23,
SRP_REGNUM = 27,
/* CRISv10 et al. specific registers. */
P0_REGNUM = 16,
P4_REGNUM = 20,
CCR_REGNUM = 21,
P8_REGNUM = 24,
IBR_REGNUM = 25,
IRP_REGNUM = 26,
BAR_REGNUM = 28,
DCCR_REGNUM = 29,
BRP_REGNUM = 30,
USP_REGNUM = 31,
/* CRISv32 specific registers. */
ACR_REGNUM = 15,
BZ_REGNUM = 16,
PID_REGNUM = 18,
SRS_REGNUM = 19,
WZ_REGNUM = 20,
EXS_REGNUM = 21,
EDA_REGNUM = 22,
DZ_REGNUM = 24,
EBP_REGNUM = 25,
ERP_REGNUM = 26,
NRP_REGNUM = 28,
CCS_REGNUM = 29,
CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
SPC_REGNUM = 31,
CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
S0_REGNUM = 33,
S1_REGNUM = 34,
S2_REGNUM = 35,
S3_REGNUM = 36,
S4_REGNUM = 37,
S5_REGNUM = 38,
S6_REGNUM = 39,
S7_REGNUM = 40,
S8_REGNUM = 41,
S9_REGNUM = 42,
S10_REGNUM = 43,
S11_REGNUM = 44,
S12_REGNUM = 45,
S13_REGNUM = 46,
S14_REGNUM = 47,
S15_REGNUM = 48,
};
extern const struct cris_spec_reg cris_spec_regs[];
/* CRIS version, set via the user command 'set cris-version'. Affects
register names and sizes. */
static unsigned int usr_cmd_cris_version;
/* Indicates whether to trust the above variable. */
static bool usr_cmd_cris_version_valid = false;
static const char cris_mode_normal[] = "normal";
static const char cris_mode_guru[] = "guru";
static const char *const cris_modes[] = {
cris_mode_normal,
cris_mode_guru,
0
};
/* CRIS mode, set via the user command 'set cris-mode'. Affects
type of break instruction among other things. */
static const char *usr_cmd_cris_mode = cris_mode_normal;
/* Whether to make use of Dwarf-2 CFI (default on). */
static bool usr_cmd_cris_dwarf2_cfi = true;
/* Sigtramp identification code copied from i386-linux-tdep.c. */
#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
#define SIGTRAMP_OFFSET0 0
#define SIGTRAMP_INSN1 0xe93d /* break 13 */
#define SIGTRAMP_OFFSET1 4
static const unsigned short sigtramp_code[] =
{
SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
SIGTRAMP_INSN1 /* break 13 */
};
#define SIGTRAMP_LEN (sizeof sigtramp_code)
/* Note: same length as normal sigtramp code. */
static const unsigned short rt_sigtramp_code[] =
{
SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
SIGTRAMP_INSN1 /* break 13 */
};
/* If PC is in a sigtramp routine, return the address of the start of
the routine. Otherwise, return 0. */
static CORE_ADDR
cris_sigtramp_start (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
gdb_byte buf[SIGTRAMP_LEN];
if (!safe_frame_unwind_memory (this_frame, pc, buf))
return 0;
if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
{
if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
return 0;
pc -= SIGTRAMP_OFFSET1;
if (!safe_frame_unwind_memory (this_frame, pc, buf))
return 0;
}
if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
return 0;
return pc;
}
/* If PC is in a RT sigtramp routine, return the address of the start of
the routine. Otherwise, return 0. */
static CORE_ADDR
cris_rt_sigtramp_start (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
gdb_byte buf[SIGTRAMP_LEN];
if (!safe_frame_unwind_memory (this_frame, pc, buf))
return 0;
if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
{
if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
return 0;
pc -= SIGTRAMP_OFFSET1;
if (!safe_frame_unwind_memory (this_frame, pc, buf))
return 0;
}
if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
return 0;
return pc;
}
/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
return the address of the associated sigcontext structure. */
static CORE_ADDR
cris_sigcontext_addr (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc;
CORE_ADDR sp;
gdb_byte buf[4];
get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
sp = extract_unsigned_integer (buf, 4, byte_order);
/* Look for normal sigtramp frame first. */
pc = cris_sigtramp_start (this_frame);
if (pc)
{
/* struct signal_frame (arch/cris/kernel/signal.c) contains
struct sigcontext as its first member, meaning the SP points to
it already. */
return sp;
}
pc = cris_rt_sigtramp_start (this_frame);
if (pc)
{
/* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
a struct ucontext, which in turn contains a struct sigcontext.
Magic digging:
4 + 4 + 128 to struct ucontext, then
4 + 4 + 12 to struct sigcontext. */
return (sp + 156);
}
error (_("Couldn't recognize signal trampoline."));
return 0;
}
struct cris_unwind_cache
{
/* The previous frame's inner most stack address. Used as this
frame ID's stack_addr. */
CORE_ADDR prev_sp;
/* The frame's base, optionally used by the high-level debug info. */
CORE_ADDR base;
int size;
/* How far the SP and r8 (FP) have been offset from the start of
the stack frame (as defined by the previous frame's stack
pointer). */
LONGEST sp_offset;
LONGEST r8_offset;
int uses_frame;
/* From old frame_extra_info struct. */
CORE_ADDR return_pc;
int leaf_function;
/* Table indicating the location of each and every register. */
trad_frame_saved_reg *saved_regs;
};
static struct cris_unwind_cache *
cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct cris_unwind_cache *info;
CORE_ADDR addr;
gdb_byte buf[4];
int i;
if ((*this_cache))
return (struct cris_unwind_cache *) (*this_cache);
info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
(*this_cache) = info;
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* Zero all fields. */
info->prev_sp = 0;
info->base = 0;
info->size = 0;
info->sp_offset = 0;
info->r8_offset = 0;
info->uses_frame = 0;
info->return_pc = 0;
info->leaf_function = 0;
get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
info->base = extract_unsigned_integer (buf, 4, byte_order);
addr = cris_sigcontext_addr (this_frame);
/* Layout of the sigcontext struct:
struct sigcontext {
struct pt_regs regs;
unsigned long oldmask;
unsigned long usp;
}; */
if (tdep->cris_version == 10)
{
/* R0 to R13 are stored in reverse order at offset (2 * 4) in
struct pt_regs. */
for (i = 0; i <= 13; i++)
info->saved_regs[i].set_addr (addr + ((15 - i) * 4));
info->saved_regs[MOF_REGNUM].set_addr (addr + (16 * 4));
info->saved_regs[DCCR_REGNUM].set_addr (addr + (17 * 4));
info->saved_regs[SRP_REGNUM].set_addr (addr + (18 * 4));
/* Note: IRP is off by 2 at this point. There's no point in correcting
it though since that will mean that the backtrace will show a PC
different from what is shown when stopped. */
info->saved_regs[IRP_REGNUM].set_addr (addr + (19 * 4));
info->saved_regs[gdbarch_pc_regnum (gdbarch)]
= info->saved_regs[IRP_REGNUM];
info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (24 * 4));
}
else
{
/* CRISv32. */
/* R0 to R13 are stored in order at offset (1 * 4) in
struct pt_regs. */
for (i = 0; i <= 13; i++)
info->saved_regs[i].set_addr (addr + ((i + 1) * 4));
info->saved_regs[ACR_REGNUM].set_addr (addr + (15 * 4));
info->saved_regs[SRS_REGNUM].set_addr (addr + (16 * 4));
info->saved_regs[MOF_REGNUM].set_addr (addr + (17 * 4));
info->saved_regs[SPC_REGNUM].set_addr (addr + (18 * 4));
info->saved_regs[CCS_REGNUM].set_addr (addr + (19 * 4));
info->saved_regs[SRP_REGNUM].set_addr (addr + (20 * 4));
info->saved_regs[ERP_REGNUM].set_addr (addr + (21 * 4));
info->saved_regs[EXS_REGNUM].set_addr (addr + (22 * 4));
info->saved_regs[EDA_REGNUM].set_addr (addr + (23 * 4));
/* FIXME: If ERP is in a delay slot at this point then the PC will
be wrong at this point. This problem manifests itself in the
sigaltstack.exp test case, which occasionally generates FAILs when
the signal is received while in a delay slot.
This could be solved by a couple of read_memory_unsigned_integer and a
trad_frame_set_value. */
info->saved_regs[gdbarch_pc_regnum (gdbarch)]
= info->saved_regs[ERP_REGNUM];
info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (25 * 4));
}
return info;
}
static void
cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct cris_unwind_cache *cache =
cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
}
/* Forward declaration. */
static struct value *cris_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum);
static struct value *
cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
/* Make sure we've initialized the cache. */
cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
return cris_frame_prev_register (this_frame, this_cache, regnum);
}
static int
cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
if (cris_sigtramp_start (this_frame)
|| cris_rt_sigtramp_start (this_frame))
return 1;
return 0;
}
static const struct frame_unwind cris_sigtramp_frame_unwind =
{
"cris sigtramp",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
cris_sigtramp_frame_this_id,
cris_sigtramp_frame_prev_register,
NULL,
cris_sigtramp_frame_sniffer
};
static int
crisv32_single_step_through_delay (struct gdbarch *gdbarch,
struct frame_info *this_frame)
{
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
ULONGEST erp;
int ret = 0;
if (tdep->cris_mode == cris_mode_guru)
erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
else
erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
if (erp & 0x1)
{
/* In delay slot - check if there's a breakpoint at the preceding
instruction. */
if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
ret = 1;
}
return ret;
}
/* The instruction environment needed to find single-step breakpoints. */
typedef
struct instruction_environment
{
unsigned long reg[NUM_GENREGS];
unsigned long preg[NUM_SPECREGS];
unsigned long branch_break_address;
unsigned long delay_slot_pc;
unsigned long prefix_value;
int branch_found;
int prefix_found;
int invalid;
int slot_needed;
int delay_slot_pc_active;
int xflag_found;
int disable_interrupt;
enum bfd_endian byte_order;
} inst_env_type;
/* Machine-dependencies in CRIS for opcodes. */
/* Instruction sizes. */
enum cris_instruction_sizes
{
INST_BYTE_SIZE = 0,
INST_WORD_SIZE = 1,
INST_DWORD_SIZE = 2
};
/* Addressing modes. */
enum cris_addressing_modes
{
REGISTER_MODE = 1,
INDIRECT_MODE = 2,
AUTOINC_MODE = 3
};
/* Prefix addressing modes. */
enum cris_prefix_addressing_modes
{
PREFIX_INDEX_MODE = 2,
PREFIX_ASSIGN_MODE = 3,
/* Handle immediate byte offset addressing mode prefix format. */
PREFIX_OFFSET_MODE = 2
};
/* Masks for opcodes. */
enum cris_opcode_masks
{
BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
SIGNED_EXTEND_BIT_MASK = 0x2,
SIGNED_BYTE_MASK = 0x80,
SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
SIGNED_WORD_MASK = 0x8000,
SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
SIGNED_DWORD_MASK = 0x80000000,
SIGNED_QUICK_VALUE_MASK = 0x20,
SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
};
/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
Bit 15 - 12 Operand2
11 - 10 Mode
9 - 6 Opcode
5 - 4 Size
3 - 0 Operand1 */
static int
cris_get_operand2 (unsigned short insn)
{
return ((insn & 0xF000) >> 12);
}
static int
cris_get_mode (unsigned short insn)
{
return ((insn & 0x0C00) >> 10);
}
static int
cris_get_opcode (unsigned short insn)
{
return ((insn & 0x03C0) >> 6);
}
static int
cris_get_size (unsigned short insn)
{
return ((insn & 0x0030) >> 4);
}
static int
cris_get_operand1 (unsigned short insn)
{
return (insn & 0x000F);
}
/* Additional functions in order to handle opcodes. */
static int
cris_get_quick_value (unsigned short insn)
{
return (insn & 0x003F);
}
static int
cris_get_bdap_quick_offset (unsigned short insn)
{
return (insn & 0x00FF);
}
static int
cris_get_branch_short_offset (unsigned short insn)
{
return (insn & 0x00FF);
}
static int
cris_get_asr_shift_steps (unsigned long value)
{
return (value & 0x3F);
}
static int
cris_get_clear_size (unsigned short insn)
{
return ((insn) & 0xC000);
}
static int
cris_is_signed_extend_bit_on (unsigned short insn)
{
return (((insn) & 0x20) == 0x20);
}
static int
cris_is_xflag_bit_on (unsigned short insn)
{
return (((insn) & 0x1000) == 0x1000);
}
static void
cris_set_size_to_dword (unsigned short *insn)
{
*insn &= 0xFFCF;
*insn |= 0x20;
}
static signed char
cris_get_signed_offset (unsigned short insn)
{
return ((signed char) (insn & 0x00FF));
}
/* Calls an op function given the op-type, working on the insn and the
inst_env. */
static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
inst_env_type *);
static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
struct gdbarch_list *);
static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
static void set_cris_version (const char *ignore_args, int from_tty,
struct cmd_list_element *c);
static void set_cris_mode (const char *ignore_args, int from_tty,
struct cmd_list_element *c);
static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
struct cmd_list_element *c);
static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
struct frame_info *this_frame,
struct cris_unwind_cache *info);
static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
struct frame_info *this_frame,
struct cris_unwind_cache *info);
/* When arguments must be pushed onto the stack, they go on in reverse
order. The below implements a FILO (stack) to do this.
Copied from d10v-tdep.c. */
struct cris_stack_item
{
int len;
struct cris_stack_item *prev;
gdb_byte *data;
};
static struct cris_stack_item *
push_stack_item (struct cris_stack_item *prev, const gdb_byte *contents,
int len)
{
struct cris_stack_item *si = XNEW (struct cris_stack_item);
si->data = (gdb_byte *) xmalloc (len);
si->len = len;
si->prev = prev;
memcpy (si->data, contents, len);
return si;
}
static struct cris_stack_item *
pop_stack_item (struct cris_stack_item *si)
{
struct cris_stack_item *dead = si;
si = si->prev;
xfree (dead->data);
xfree (dead);
return si;
}
/* Put here the code to store, into fi->saved_regs, the addresses of
the saved registers of frame described by FRAME_INFO. This
includes special registers such as pc and fp saved in special ways
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
static struct cris_unwind_cache *
cris_frame_unwind_cache (struct frame_info *this_frame,
void **this_prologue_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
struct cris_unwind_cache *info;
if ((*this_prologue_cache))
return (struct cris_unwind_cache *) (*this_prologue_cache);
info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
(*this_prologue_cache) = info;
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* Zero all fields. */
info->prev_sp = 0;
info->base = 0;
info->size = 0;
info->sp_offset = 0;
info->r8_offset = 0;
info->uses_frame = 0;
info->return_pc = 0;
info->leaf_function = 0;
/* Prologue analysis does the rest... */
if (tdep->cris_version == 32)
crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
else
cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
return info;
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
cris_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache,
struct frame_id *this_id)
{
struct cris_unwind_cache *info
= cris_frame_unwind_cache (this_frame, this_prologue_cache);
CORE_ADDR base;
CORE_ADDR func;
struct frame_id id;
/* The FUNC is easy. */
func = get_frame_func (this_frame);
/* Hopefully the prologue analysis either correctly determined the
frame's base (which is the SP from the previous frame), or set
that base to "NULL". */
base = info->prev_sp;
if (base == 0)
return;
id = frame_id_build (base, func);
(*this_id) = id;
}
static struct value *
cris_frame_prev_register (struct frame_info *this_frame,
void **this_prologue_cache, int regnum)
{
struct cris_unwind_cache *info
= cris_frame_unwind_cache (this_frame, this_prologue_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static CORE_ADDR
cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align to the size of an instruction (so that they can safely be
pushed onto the stack). */
return sp & ~3;
}
static CORE_ADDR
cris_push_dummy_code (struct gdbarch *gdbarch,
CORE_ADDR sp, CORE_ADDR funaddr,
struct value **args, int nargs,
struct type *value_type,
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
struct regcache *regcache)
{
/* Allocate space sufficient for a breakpoint. */
sp = (sp - 4) & ~3;
/* Store the address of that breakpoint */
*bp_addr = sp;
/* CRIS always starts the call at the callee's entry point. */
*real_pc = funaddr;
return sp;
}
static CORE_ADDR
cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
function_call_return_method return_method,
CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int argreg;
int argnum;
struct cris_stack_item *si = NULL;
/* Push the return address. */
regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
/* Are we returning a value using a structure return or a normal value
return? struct_addr is the address of the reserved space for the return
structure to be written on the stack. */
if (return_method == return_method_struct)
regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
/* Now load as many as possible of the first arguments into registers,
and push the rest onto the stack. */
argreg = ARG1_REGNUM;
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
const gdb_byte *val;
int reg_demand;
int i;
len = TYPE_LENGTH (value_type (args[argnum]));
val = value_contents (args[argnum]).data ();
/* How may registers worth of storage do we need for this argument? */
reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
{
/* Data passed by value. Fits in available register(s). */
for (i = 0; i < reg_demand; i++)
{
regcache->cooked_write (argreg, val);
argreg++;
val += 4;
}
}
else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
{
/* Data passed by value. Does not fit in available register(s).
Use the register(s) first, then the stack. */
for (i = 0; i < reg_demand; i++)
{
if (argreg <= ARG4_REGNUM)
{
regcache->cooked_write (argreg, val);
argreg++;
val += 4;
}
else
{
/* Push item for later so that pushed arguments
come in the right order. */
si = push_stack_item (si, val, 4);
val += 4;
}
}
}
else if (len > (2 * 4))
{
/* Data passed by reference. Push copy of data onto stack
and pass pointer to this copy as argument. */
sp = (sp - len) & ~3;
write_memory (sp, val, len);
if (argreg <= ARG4_REGNUM)
{
regcache_cooked_write_unsigned (regcache, argreg, sp);
argreg++;
}
else
{
gdb_byte buf[4];
store_unsigned_integer (buf, 4, byte_order, sp);
si = push_stack_item (si, buf, 4);
}
}
else
{
/* Data passed by value. No available registers. Put it on
the stack. */
si = push_stack_item (si, val, len);
}
}
while (si)
{
/* fp_arg must be word-aligned (i.e., don't += len) to match
the function prologue. */
sp = (sp - si->len) & ~3;
write_memory (sp, si->data, si->len);
si = pop_stack_item (si);
}
/* Finally, update the SP register. */
regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
return sp;
}
static const struct frame_unwind cris_frame_unwind =
{
"cris prologue",
NORMAL_FRAME,
default_frame_unwind_stop_reason,
cris_frame_this_id,
cris_frame_prev_register,
NULL,
default_frame_sniffer
};
static CORE_ADDR
cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct cris_unwind_cache *info
= cris_frame_unwind_cache (this_frame, this_cache);
return info->base;
}
static const struct frame_base cris_frame_base =
{
&cris_frame_unwind,
cris_frame_base_address,
cris_frame_base_address,
cris_frame_base_address
};
/* Frames information. The definition of the struct frame_info is
CORE_ADDR frame
CORE_ADDR pc
enum frame_type type;
CORE_ADDR return_pc
int leaf_function
If the compilation option -fno-omit-frame-pointer is present the
variable frame will be set to the content of R8 which is the frame
pointer register.
The variable pc contains the address where execution is performed
in the present frame. The innermost frame contains the current content
of the register PC. All other frames contain the content of the
register PC in the next frame.
The variable `type' indicates the frame's type: normal, SIGTRAMP
(associated with a signal handler), dummy (associated with a dummy
frame).
The variable return_pc contains the address where execution should be
resumed when the present frame has finished, the return address.
The variable leaf_function is 1 if the return address is in the register
SRP, and 0 if it is on the stack.
Prologue instructions C-code.
The prologue may consist of (-fno-omit-frame-pointer)
1) 2)
push srp
push r8 push r8
move.d sp,r8 move.d sp,r8
subq X,sp subq X,sp
movem rY,[sp] movem rY,[sp]
move.S rZ,[r8-U] move.S rZ,[r8-U]
where 1 is a non-terminal function, and 2 is a leaf-function.
Note that this assumption is extremely brittle, and will break at the
slightest change in GCC's prologue.
If local variables are declared or register contents are saved on stack
the subq-instruction will be present with X as the number of bytes
needed for storage. The reshuffle with respect to r8 may be performed
with any size S (b, w, d) and any of the general registers Z={0..13}.
The offset U should be representable by a signed 8-bit value in all cases.
Thus, the prefix word is assumed to be immediate byte offset mode followed
by another word containing the instruction.
Degenerate cases:
3)
push r8
move.d sp,r8
move.d r8,sp
pop r8
Prologue instructions C++-code.
Case 1) and 2) in the C-code may be followed by
move.d r10,rS ; this
move.d r11,rT ; P1
move.d r12,rU ; P2
move.d r13,rV ; P3
move.S [r8+U],rZ ; P4
if any of the call parameters are stored. The host expects these
instructions to be executed in order to get the call parameters right. */
/* Examine the prologue of a function. The variable ip is the address of
the first instruction of the prologue. The variable limit is the address
of the first instruction after the prologue. The variable fi contains the
information in struct frame_info. The variable frameless_p controls whether
the entire prologue is examined (0) or just enough instructions to
determine that it is a prologue (1). */
static CORE_ADDR
cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
struct cris_unwind_cache *info)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* Present instruction. */
unsigned short insn;
/* Next instruction, lookahead. */
unsigned short insn_next;
int regno;
/* Number of byte on stack used for local variables and movem. */
int val;
/* Highest register number in a movem. */
int regsave;
/* move.d r<source_register>,rS */
short source_register;
/* Scan limit. */
int limit;
/* This frame is with respect to a leaf until a push srp is found. */
if (info)
{
info->leaf_function = 1;
}
/* Assume nothing on stack. */
val = 0;
regsave = -1;
/* If we were called without a this_frame, that means we were called
from cris_skip_prologue which already tried to find the end of the
prologue through the symbol information. 64 instructions past current
pc is arbitrarily chosen, but at least it means we'll stop eventually. */
limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
/* Find the prologue instructions. */
while (pc > 0 && pc < limit)
{
insn = read_memory_unsigned_integer (pc, 2, byte_order);
pc += 2;
if (insn == 0xE1FC)
{
/* push <reg> 32 bit instruction. */
insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
pc += 2;
regno = cris_get_operand2 (insn_next);
if (info)
{
info->sp_offset += 4;
}
/* This check, meant to recognize srp, used to be regno ==
(SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
if (insn_next == 0xBE7E)
{
if (info)
{
info->leaf_function = 0;
}
}
else if (insn_next == 0x8FEE)
{
/* push $r8 */
if (info)
{
info->r8_offset = info->sp_offset;
}
}
}
else if (insn == 0x866E)
{
/* move.d sp,r8 */
if (info)
{
info->uses_frame = 1;
}
continue;
}
else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
&& cris_get_mode (insn) == 0x0000
&& cris_get_opcode (insn) == 0x000A)
{
/* subq <val>,sp */
if (info)
{
info->sp_offset += cris_get_quick_value (insn);
}
}
else if (cris_get_mode (insn) == 0x0002
&& cris_get_opcode (insn) == 0x000F
&& cris_get_size (insn) == 0x0003
&& cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
{
/* movem r<regsave>,[sp] */
regsave = cris_get_operand2 (insn);
}
else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
&& ((insn & 0x0F00) >> 8) == 0x0001
&& (cris_get_signed_offset (insn) < 0))
{
/* Immediate byte offset addressing prefix word with sp as base
register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
is between 64 and 128.
movem r<regsave>,[sp=sp-<val>] */
if (info)
{
info->sp_offset += -cris_get_signed_offset (insn);
}
insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
pc += 2;
if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
&& cris_get_opcode (insn_next) == 0x000F
&& cris_get_size (insn_next) == 0x0003
&& cris_get_operand1 (insn_next) == gdbarch_sp_regnum
(gdbarch))
{
regsave = cris_get_operand2 (insn_next);
}
else
{
/* The prologue ended before the limit was reached. */
pc -= 4;
break;
}
}
else if (cris_get_mode (insn) == 0x0001
&& cris_get_opcode (insn) == 0x0009
&& cris_get_size (insn) == 0x0002)
{
/* move.d r<10..13>,r<0..15> */
source_register = cris_get_operand1 (insn);
/* FIXME? In the glibc solibs, the prologue might contain something
like (this example taken from relocate_doit):
move.d $pc,$r0
sub.d 0xfffef426,$r0
which isn't covered by the source_register check below. Question
is whether to add a check for this combo, or make better use of
the limit variable instead. */
if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
{
/* The prologue ended before the limit was reached. */
pc -= 2;
break;
}
}
else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
/* The size is a fixed-size. */
&& ((insn & 0x0F00) >> 8) == 0x0001
/* A negative offset. */
&& (cris_get_signed_offset (insn) < 0))
{
/* move.S rZ,[r8-U] (?) */
insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
pc += 2;
regno = cris_get_operand2 (insn_next);
if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
&& cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
&& cris_get_opcode (insn_next) == 0x000F)
{
/* move.S rZ,[r8-U] */
continue;
}
else
{
/* The prologue ended before the limit was reached. */
pc -= 4;
break;
}
}
else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
/* The size is a fixed-size. */
&& ((insn & 0x0F00) >> 8) == 0x0001
/* A positive offset. */
&& (cris_get_signed_offset (insn) > 0))
{
/* move.S [r8+U],rZ (?) */
insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
pc += 2;
regno = cris_get_operand2 (insn_next);
if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
&& cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
&& cris_get_opcode (insn_next) == 0x0009
&& cris_get_operand1 (insn_next) == regno)
{
/* move.S [r8+U],rZ */
continue;
}
else
{
/* The prologue ended before the limit was reached. */
pc -= 4;
break;
}
}
else
{
/* The prologue ended before the limit was reached. */
pc -= 2;
break;
}
}
/* We only want to know the end of the prologue when this_frame and info
are NULL (called from cris_skip_prologue i.e.). */
if (this_frame == NULL && info == NULL)
{
return pc;
}
info->size = info->sp_offset;
/* Compute the previous frame's stack pointer (which is also the
frame's ID's stack address), and this frame's base pointer. */
if (info->uses_frame)
{
ULONGEST this_base;
/* The SP was moved to the FP. This indicates that a new frame
was created. Get THIS frame's FP value by unwinding it from
the next frame. */
this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
info->base = this_base;
info->saved_regs[CRIS_FP_REGNUM].set_addr (info->base);
/* The FP points at the last saved register. Adjust the FP back
to before the first saved register giving the SP. */
info->prev_sp = info->base + info->r8_offset;
}
else
{
ULONGEST this_base;
/* Assume that the FP is this frame's SP but with that pushed
stack space added back. */
this_base = get_frame_register_unsigned (this_frame,
gdbarch_sp_regnum (gdbarch));
info->base = this_base;
info->prev_sp = info->base + info->size;
}
/* Calculate the addresses for the saved registers on the stack. */
/* FIXME: The address calculation should really be done on the fly while
we're analyzing the prologue (we only hold one regsave value as it is
now). */
val = info->sp_offset;
for (regno = regsave; regno >= 0; regno--)
{
info->saved_regs[regno].set_addr (info->base + info->r8_offset - val);
val -= 4;
}
/* The previous frame's SP needed to be computed. Save the computed
value. */
info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (info->prev_sp);
if (!info->leaf_function)
{
/* SRP saved on the stack. But where? */
if (info->r8_offset == 0)
{
/* R8 not pushed yet. */
info->saved_regs[SRP_REGNUM].set_addr (info->base);
}
else
{
/* R8 pushed, but SP may or may not be moved to R8 yet. */
info->saved_regs[SRP_REGNUM].set_addr (info->base + 4);
}
}
/* The PC is found in SRP (the actual register or located on the stack). */
info->saved_regs[gdbarch_pc_regnum (gdbarch)]
= info->saved_regs[SRP_REGNUM];
return pc;
}
static CORE_ADDR
crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
struct cris_unwind_cache *info)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
ULONGEST this_base;
/* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
meant to be a full-fledged prologue scanner. It is only needed for
the cases where we end up in code always lacking DWARF-2 CFI, notably:
* PLT stubs (library calls)
* call dummys
* signal trampolines
For those cases, it is assumed that there is no actual prologue; that
the stack pointer is not adjusted, and (as a consequence) the return
address is not pushed onto the stack. */
/* We only want to know the end of the prologue when this_frame and info
are NULL (called from cris_skip_prologue i.e.). */
if (this_frame == NULL && info == NULL)
{
return pc;
}
/* The SP is assumed to be unaltered. */
this_base = get_frame_register_unsigned (this_frame,
gdbarch_sp_regnum (gdbarch));
info->base = this_base;
info->prev_sp = this_base;
/* The PC is assumed to be found in SRP. */
info->saved_regs[gdbarch_pc_regnum (gdbarch)]
= info->saved_regs[SRP_REGNUM];
return pc;
}
/* Advance pc beyond any function entry prologue instructions at pc
to reach some "real" code. */
/* Given a PC value corresponding to the start of a function, return the PC
of the first instruction after the function prologue. */
static CORE_ADDR
cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
CORE_ADDR func_addr, func_end;
struct symtab_and_line sal;
CORE_ADDR pc_after_prologue;
/* If we have line debugging information, then the end of the prologue
should the first assembly instruction of the first source line. */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
sal = find_pc_line (func_addr, 0);
if (sal.end > 0 && sal.end < func_end)
return sal.end;
}
if (tdep->cris_version == 32)
pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
else
pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
return pc_after_prologue;
}
/* Implement the breakpoint_kind_from_pc gdbarch method. */
static int
cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
return 2;
}
/* Implement the sw_breakpoint_from_kind gdbarch method. */
static const gdb_byte *
cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
static unsigned char break8_insn[] = {0x38, 0xe9};
static unsigned char break15_insn[] = {0x3f, 0xe9};
*size = kind;
if (tdep->cris_mode == cris_mode_guru)
return break15_insn;
else
return break8_insn;
}
/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
0 otherwise. */
static int
cris_spec_reg_applicable (struct gdbarch *gdbarch,
struct cris_spec_reg spec_reg)
{
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
unsigned int version = tdep->cris_version;
switch (spec_reg.applicable_version)
{
case cris_ver_version_all:
return 1;
case cris_ver_warning:
/* Indeterminate/obsolete. */
return 0;
case cris_ver_v0_3:
return in_inclusive_range (version, 0U, 3U);
case cris_ver_v3p:
return (version >= 3);
case cris_ver_v8:
return in_inclusive_range (version, 8U, 9U);
case cris_ver_v8p:
return (version >= 8);
case cris_ver_v0_10:
return in_inclusive_range (version, 0U, 10U);
case cris_ver_v3_10:
return in_inclusive_range (version, 3U, 10U);
case cris_ver_v8_10:
return in_inclusive_range (version, 8U, 10U);
case cris_ver_v10:
return (version == 10);
case cris_ver_v10p:
return (version >= 10);
case cris_ver_v32p:
return (version >= 32);
default:
/* Invalid cris version. */
return 0;
}
}
/* Returns the register size in unit byte. Returns 0 for an unimplemented
register, -1 for an invalid register. */
static int
cris_register_size (struct gdbarch *gdbarch, int regno)
{
int i;
int spec_regno;
if (regno >= 0 && regno < NUM_GENREGS)
{
/* General registers (R0 - R15) are 32 bits. */
return 4;
}
else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
{
/* Special register (R16 - R31). cris_spec_regs is zero-based.
Adjust regno accordingly. */
spec_regno = regno - NUM_GENREGS;
for (i = 0; cris_spec_regs[i].name != NULL; i++)
{
if (cris_spec_regs[i].number == spec_regno
&& cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
/* Go with the first applicable register. */
return cris_spec_regs[i].reg_size;
}
/* Special register not applicable to this CRIS version. */
return 0;
}
else if (regno >= gdbarch_pc_regnum (gdbarch)
&& regno < gdbarch_num_regs (gdbarch))
{
/* This will apply to CRISv32 only where there are additional registers
after the special registers (pseudo PC and support registers). */
return 4;
}
return -1;
}
/* Nonzero if regno should not be fetched from the target. This is the case
for unimplemented (size 0) and non-existant registers. */
static int
cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
{
return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
|| (cris_register_size (gdbarch, regno) == 0));
}
/* Nonzero if regno should not be written to the target, for various
reasons. */
static int
cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
{
/* There are three kinds of registers we refuse to write to.
1. Those that not implemented.
2. Those that are read-only (depends on the processor mode).
3. Those registers to which a write has no effect. */
if (regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| cris_register_size (gdbarch, regno) == 0)
/* Not implemented. */
return 1;
else if (regno == VR_REGNUM)
/* Read-only. */
return 1;
else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
/* Writing has no effect. */
return 1;
/* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
agent decide whether they are writable. */
return 0;
}
/* Nonzero if regno should not be fetched from the target. This is the case
for unimplemented (size 0) and non-existant registers. */
static int
crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
{
return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
|| (cris_register_size (gdbarch, regno) == 0));
}
/* Nonzero if regno should not be written to the target, for various
reasons. */
static int
crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
{
/* There are three kinds of registers we refuse to write to.
1. Those that not implemented.
2. Those that are read-only (depends on the processor mode).
3. Those registers to which a write has no effect. */
if (regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| cris_register_size (gdbarch, regno) == 0)
/* Not implemented. */
return 1;
else if (regno == VR_REGNUM)
/* Read-only. */
return 1;
else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
/* Writing has no effect. */
return 1;
/* Many special registers are read-only in user mode. Let the debug
agent decide whether they are writable. */
return 0;
}
/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
of data in register regno. */
static struct type *
cris_register_type (struct gdbarch *gdbarch, int regno)
{
if (regno == gdbarch_pc_regnum (gdbarch))
return builtin_type (gdbarch)->builtin_func_ptr;
else if (regno == gdbarch_sp_regnum (gdbarch)
|| regno == CRIS_FP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
|| (regno >= MOF_REGNUM && regno <= USP_REGNUM))
/* Note: R8 taken care of previous clause. */
return builtin_type (gdbarch)->builtin_uint32;
else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
return builtin_type (gdbarch)->builtin_uint16;
else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
return builtin_type (gdbarch)->builtin_uint8;
else
/* Invalid (unimplemented) register. */
return builtin_type (gdbarch)->builtin_int0;
}
static struct type *
crisv32_register_type (struct gdbarch *gdbarch, int regno)
{
if (regno == gdbarch_pc_regnum (gdbarch))
return builtin_type (gdbarch)->builtin_func_ptr;
else if (regno == gdbarch_sp_regnum (gdbarch)
|| regno == CRIS_FP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else if ((regno >= 0 && regno <= ACR_REGNUM)
|| (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
|| (regno == PID_REGNUM)
|| (regno >= S0_REGNUM && regno <= S15_REGNUM))
/* Note: R8 and SP taken care of by previous clause. */
return builtin_type (gdbarch)->builtin_uint32;
else if (regno == WZ_REGNUM)
return builtin_type (gdbarch)->builtin_uint16;
else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
return builtin_type (gdbarch)->builtin_uint8;
else
{
/* Invalid (unimplemented) register. Should not happen as there are
no unimplemented CRISv32 registers. */
warning (_("crisv32_register_type: unknown regno %d"), regno);
return builtin_type (gdbarch)->builtin_int0;
}
}
/* Stores a function return value of type type, where valbuf is the address
of the value to be stored. */
/* In the CRIS ABI, R10 and R11 are used to store return values. */
static void
cris_store_return_value (struct type *type, struct regcache *regcache,
const gdb_byte *valbuf)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST val;
int len = TYPE_LENGTH (type);
if (len <= 4)
{
/* Put the return value in R10. */
val = extract_unsigned_integer (valbuf, len, byte_order);
regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
}
else if (len <= 8)
{
/* Put the return value in R10 and R11. */
val = extract_unsigned_integer (valbuf, 4, byte_order);
regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
}
else
error (_("cris_store_return_value: type length too large."));
}
/* Return the name of register regno as a string. Return NULL for an
invalid or unimplemented register. */
static const char *
cris_special_register_name (struct gdbarch *gdbarch, int regno)
{
int spec_regno;
int i;
/* Special register (R16 - R31). cris_spec_regs is zero-based.
Adjust regno accordingly. */
spec_regno = regno - NUM_GENREGS;
/* Assume nothing about the layout of the cris_spec_regs struct
when searching. */
for (i = 0; cris_spec_regs[i].name != NULL; i++)
{
if (cris_spec_regs[i].number == spec_regno
&& cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
/* Go with the first applicable register. */
return cris_spec_regs[i].name;
}
/* Special register not applicable to this CRIS version. */
return NULL;
}
static const char *
cris_register_name (struct gdbarch *gdbarch, int regno)
{
static const char *cris_genreg_names[] =
{ "r0", "r1", "r2", "r3", \
"r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", \
"r12", "r13", "sp", "pc" };
if (regno >= 0 && regno < NUM_GENREGS)
{
/* General register. */
return cris_genreg_names[regno];
}
else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
{
return cris_special_register_name (gdbarch, regno);
}
else
{
/* Invalid register. */
return NULL;
}
}
static const char *
crisv32_register_name (struct gdbarch *gdbarch, int regno)
{
static const char *crisv32_genreg_names[] =
{ "r0", "r1", "r2", "r3", \
"r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", \
"r12", "r13", "sp", "acr"
};
static const char *crisv32_sreg_names[] =
{ "s0", "s1", "s2", "s3", \
"s4", "s5", "s6", "s7", \
"s8", "s9", "s10", "s11", \
"s12", "s13", "s14", "s15"
};
if (regno >= 0 && regno < NUM_GENREGS)
{
/* General register. */
return crisv32_genreg_names[regno];
}
else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
{
return cris_special_register_name (gdbarch, regno);
}
else if (regno == gdbarch_pc_regnum (gdbarch))
{
return "pc";
}
else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
{
return crisv32_sreg_names[regno - S0_REGNUM];
}
else
{
/* Invalid register. */
return NULL;
}
}
/* Convert DWARF register number REG to the appropriate register
number used by GDB. */
static int
cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
/* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
numbering, MOF is 18).
Adapted from gcc/config/cris/cris.h. */
static int cris_dwarf_regmap[] = {
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
27, -1, -1, -1,
-1, -1, -1, 23,
-1, -1, -1, 27,
-1, -1, -1, -1
};
int regnum = -1;
if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
regnum = cris_dwarf_regmap[reg];
return regnum;
}
/* DWARF-2 frame support. */
static void
cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
struct frame_info *this_frame)
{
/* The return address column. */
if (regnum == gdbarch_pc_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_RA;
/* The call frame address. */
else if (regnum == gdbarch_sp_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_CFA;
}
/* Extract from an array regbuf containing the raw register state a function
return value of type type, and copy that, in virtual format, into
valbuf. */
/* In the CRIS ABI, R10 and R11 are used to store return values. */
static void
cris_extract_return_value (struct type *type, struct regcache *regcache,
gdb_byte *valbuf)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST val;
int len = TYPE_LENGTH (type);
if (len <= 4)
{
/* Get the return value from R10. */
regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
store_unsigned_integer (valbuf, len, byte_order, val);
}
else if (len <= 8)
{
/* Get the return value from R10 and R11. */
regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
store_unsigned_integer (valbuf, 4, byte_order, val);
regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
}
else
error (_("cris_extract_return_value: type length too large"));
}
/* Handle the CRIS return value convention. */
static enum return_value_convention
cris_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION
|| TYPE_LENGTH (type) > 8)
/* Structs, unions, and anything larger than 8 bytes (2 registers)
goes on the stack. */
return RETURN_VALUE_STRUCT_CONVENTION;
if (readbuf)
cris_extract_return_value (type, regcache, readbuf);
if (writebuf)
cris_store_return_value (type, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* Calculates a value that measures how good inst_args constraints an
instruction. It stems from cris_constraint, found in cris-dis.c. */
static int
constraint (unsigned int insn, const char *inst_args,
inst_env_type *inst_env)
{
int retval = 0;
int tmp, i;
const gdb_byte *s = (const gdb_byte *) inst_args;
for (; *s; s++)
switch (*s)
{
case 'm':
if ((insn & 0x30) == 0x30)
return -1;
break;
case 'S':
/* A prefix operand. */
if (inst_env->prefix_found)
break;
else
return -1;
case 'B':
/* A "push" prefix. (This check was REMOVED by san 970921.) Check for
valid "push" size. In case of special register, it may be != 4. */
if (inst_env->prefix_found)
break;
else
return -1;
case 'D':
retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
if (!retval)
return -1;
else
retval += 4;
break;
case 'P':
tmp = (insn >> 0xC) & 0xF;
for (i = 0; cris_spec_regs[i].name != NULL; i++)
{
/* Since we match four bits, we will give a value of
4 - 1 = 3 in a match. If there is a corresponding
exact match of a special register in another pattern, it
will get a value of 4, which will be higher. This should
be correct in that an exact pattern would match better that
a general pattern.
Note that there is a reason for not returning zero; the
pattern for "clear" is partly matched in the bit-pattern
(the two lower bits must be zero), while the bit-pattern
for a move from a special register is matched in the
register constraint.
This also means we will will have a race condition if
there is a partly match in three bits in the bit pattern. */
if (tmp == cris_spec_regs[i].number)
{
retval += 3;
break;
}
}
if (cris_spec_regs[i].name == NULL)
return -1;
break;
}
return retval;
}
/* Returns the number of bits set in the variable value. */
static int
number_of_bits (unsigned int value)
{
int number_of_bits = 0;
while (value != 0)
{
number_of_bits += 1;
value &= (value - 1);
}
return number_of_bits;
}
/* Finds the address that should contain the single step breakpoint(s).
It stems from code in cris-dis.c. */
static int
find_cris_op (unsigned short insn, inst_env_type *inst_env)
{
int i;
int max_level_of_match = -1;
int max_matched = -1;
int level_of_match;
for (i = 0; cris_opcodes[i].name != NULL; i++)
{
if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
&& ((cris_opcodes[i].lose & insn) == 0)
/* Only CRISv10 instructions, please. */
&& (cris_opcodes[i].applicable_version != cris_ver_v32p))
{
level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
if (level_of_match >= 0)
{
level_of_match +=
number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
if (level_of_match > max_level_of_match)
{
max_matched = i;
max_level_of_match = level_of_match;
if (level_of_match == 16)
{
/* All bits matched, cannot find better. */
break;
}
}
}
}
}
return max_matched;
}
/* Attempts to find single-step breakpoints. Returns -1 on failure which is
actually an internal error. */
static int
find_step_target (struct regcache *regcache, inst_env_type *inst_env)
{
int i;
int offset;
unsigned short insn;
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* Create a local register image and set the initial state. */
for (i = 0; i < NUM_GENREGS; i++)
{
inst_env->reg[i] =
(unsigned long) regcache_raw_get_unsigned (regcache, i);
}
offset = NUM_GENREGS;
for (i = 0; i < NUM_SPECREGS; i++)
{
inst_env->preg[i] =
(unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
}
inst_env->branch_found = 0;
inst_env->slot_needed = 0;
inst_env->delay_slot_pc_active = 0;
inst_env->prefix_found = 0;
inst_env->invalid = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
inst_env->byte_order = byte_order;
/* Look for a step target. */
do
{
/* Read an instruction from the client. */
insn = read_memory_unsigned_integer
(inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
/* If the instruction is not in a delay slot the new content of the
PC is [PC] + 2. If the instruction is in a delay slot it is not
that simple. Since a instruction in a delay slot cannot change
the content of the PC, it does not matter what value PC will have.
Just make sure it is a valid instruction. */
if (!inst_env->delay_slot_pc_active)
{
inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
}
else
{
inst_env->delay_slot_pc_active = 0;
inst_env->reg[gdbarch_pc_regnum (gdbarch)]
= inst_env->delay_slot_pc;
}
/* Analyse the present instruction. */
i = find_cris_op (insn, inst_env);
if (i == -1)
{
inst_env->invalid = 1;
}
else
{
cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
}
} while (!inst_env->invalid
&& (inst_env->prefix_found || inst_env->xflag_found
|| inst_env->slot_needed));
return i;
}
/* There is no hardware single-step support. The function find_step_target
digs through the opcodes in order to find all possible targets.
Either one ordinary target or two targets for branches may be found. */
static std::vector<CORE_ADDR>
cris_software_single_step (struct regcache *regcache)
{
struct gdbarch *gdbarch = regcache->arch ();
inst_env_type inst_env;
std::vector<CORE_ADDR> next_pcs;
/* Analyse the present instruction environment and insert
breakpoints. */
int status = find_step_target (regcache, &inst_env);
if (status == -1)
{
/* Could not find a target. Things are likely to go downhill
from here. */
warning (_("CRIS software single step could not find a step target."));
}
else
{
/* Insert at most two breakpoints. One for the next PC content
and possibly another one for a branch, jump, etc. */
CORE_ADDR next_pc
= (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
next_pcs.push_back (next_pc);
if (inst_env.branch_found
&& (CORE_ADDR) inst_env.branch_break_address != next_pc)
{
CORE_ADDR branch_target_address
= (CORE_ADDR) inst_env.branch_break_address;
next_pcs.push_back (branch_target_address);
}
}
return next_pcs;
}
/* Calculates the prefix value for quick offset addressing mode. */
static void
quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to be in a delay slot. You can't have a prefix to this
instruction (not 100% sure). */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
/* A prefix doesn't change the xflag_found. But the rest of the flags
need updating. */
inst_env->slot_needed = 0;
inst_env->prefix_found = 1;
}
/* Updates the autoincrement register. The size of the increment is derived
from the size of the operation. The PC is always kept aligned on even
word addresses. */
static void
process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
{
if (size == INST_BYTE_SIZE)
{
inst_env->reg[cris_get_operand1 (inst)] += 1;
/* The PC must be word aligned, so increase the PC with one
word even if the size is byte. */
if (cris_get_operand1 (inst) == REG_PC)
{
inst_env->reg[REG_PC] += 1;
}
}
else if (size == INST_WORD_SIZE)
{
inst_env->reg[cris_get_operand1 (inst)] += 2;
}
else if (size == INST_DWORD_SIZE)
{
inst_env->reg[cris_get_operand1 (inst)] += 4;
}
else
{
/* Invalid size. */
inst_env->invalid = 1;
}
}
/* Just a forward declaration. */
static unsigned long get_data_from_address (unsigned short *inst,
CORE_ADDR address,
enum bfd_endian byte_order);
/* Calculates the prefix value for the general case of offset addressing
mode. */
static void
bdap_prefix (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to be in a delay slot. */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* The calculation of prefix_value used to be after process_autoincrement,
but that fails for an instruction such as jsr [$r0+12] which is encoded
as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
mustn't be incremented until we have read it and what it points at. */
inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
/* The offset is an indirection of the contents of the operand1 register. */
inst_env->prefix_value +=
get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
inst_env->byte_order);
if (cris_get_mode (inst) == AUTOINC_MODE)
{
process_autoincrement (cris_get_size (inst), inst, inst_env);
}
/* A prefix doesn't change the xflag_found. But the rest of the flags
need updating. */
inst_env->slot_needed = 0;
inst_env->prefix_found = 1;
}
/* Calculates the prefix value for the index addressing mode. */
static void
biap_prefix (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to be in a delay slot. I can't see that it's possible to
have a prefix to this instruction. So I will treat this as invalid. */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
/* The offset is the operand2 value shifted the size of the instruction
to the left. */
inst_env->prefix_value +=
inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
/* If the PC is operand1 (base) the address used is the address after
the main instruction, i.e. address + 2 (the PC is already compensated
for the prefix operation). */
if (cris_get_operand1 (inst) == REG_PC)
{
inst_env->prefix_value += 2;
}
/* A prefix doesn't change the xflag_found. But the rest of the flags
need updating. */
inst_env->slot_needed = 0;
inst_env->xflag_found = 0;
inst_env->prefix_found = 1;
}
/* Calculates the prefix value for the double indirect addressing mode. */
static void
dip_prefix (unsigned short inst, inst_env_type *inst_env)
{
CORE_ADDR address;
/* It's invalid to be in a delay slot. */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* The prefix value is one dereference of the contents of the operand1
register. */
address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
inst_env->prefix_value
= read_memory_unsigned_integer (address, 4, inst_env->byte_order);
/* Check if the mode is autoincrement. */
if (cris_get_mode (inst) == AUTOINC_MODE)
{
inst_env->reg[cris_get_operand1 (inst)] += 4;
}
/* A prefix doesn't change the xflag_found. But the rest of the flags
need updating. */
inst_env->slot_needed = 0;
inst_env->xflag_found = 0;
inst_env->prefix_found = 1;
}
/* Finds the destination for a branch with 8-bits offset. */
static void
eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
{
short offset;
/* If we have a prefix or are in a delay slot it's bad. */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* We have a branch, find out where the branch will land. */
offset = cris_get_branch_short_offset (inst);
/* Check if the offset is signed. */
if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
{
offset |= 0xFF00;
}
/* The offset ends with the sign bit, set it to zero. The address
should always be word aligned. */
offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
inst_env->branch_found = 1;
inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
inst_env->slot_needed = 1;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Finds the destination for a branch with 16-bits offset. */
static void
sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
{
short offset;
/* If we have a prefix or is in a delay slot it's bad. */
if (inst_env->slot_needed || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* We have a branch, find out the offset for the branch. */
offset = read_memory_integer (inst_env->reg[REG_PC], 2,
inst_env->byte_order);
/* The instruction is one word longer than normal, so add one word
to the PC. */
inst_env->reg[REG_PC] += 2;
inst_env->branch_found = 1;
inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
inst_env->slot_needed = 1;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles the ABS instruction. */
static void
abs_op (unsigned short inst, inst_env_type *inst_env)
{
long value;
/* ABS can't have a prefix, so it's bad if it does. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the operation affects the PC. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* It's invalid to change to the PC if we are in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
value = (long) inst_env->reg[REG_PC];
/* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
if (value != SIGNED_DWORD_MASK)
{
value = -value;
inst_env->reg[REG_PC] = (long) value;
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the ADDI instruction. */
static void
addi_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to have the PC as base register. And ADDI can't have
a prefix. */
if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the ASR instruction. */
static void
asr_op (unsigned short inst, inst_env_type *inst_env)
{
int shift_steps;
unsigned long value;
unsigned long signed_extend_mask = 0;
/* ASR can't have a prefix, so check that it doesn't. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the PC is the target register. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* Get the number of bits to shift. */
shift_steps
= cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
value = inst_env->reg[REG_PC];
/* Find out how many bits the operation should apply to. */
if (cris_get_size (inst) == INST_BYTE_SIZE)
{
if (value & SIGNED_BYTE_MASK)
{
signed_extend_mask = 0xFF;
signed_extend_mask = signed_extend_mask >> shift_steps;
signed_extend_mask = ~signed_extend_mask;
}
value = value >> shift_steps;
value |= signed_extend_mask;
value &= 0xFF;
inst_env->reg[REG_PC] &= 0xFFFFFF00;
inst_env->reg[REG_PC] |= value;
}
else if (cris_get_size (inst) == INST_WORD_SIZE)
{
if (value & SIGNED_WORD_MASK)
{
signed_extend_mask = 0xFFFF;
signed_extend_mask = signed_extend_mask >> shift_steps;
signed_extend_mask = ~signed_extend_mask;
}
value = value >> shift_steps;
value |= signed_extend_mask;
value &= 0xFFFF;
inst_env->reg[REG_PC] &= 0xFFFF0000;
inst_env->reg[REG_PC] |= value;
}
else if (cris_get_size (inst) == INST_DWORD_SIZE)
{
if (value & SIGNED_DWORD_MASK)
{
signed_extend_mask = 0xFFFFFFFF;
signed_extend_mask = signed_extend_mask >> shift_steps;
signed_extend_mask = ~signed_extend_mask;
}
value = value >> shift_steps;
value |= signed_extend_mask;
inst_env->reg[REG_PC] = value;
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the ASRQ instruction. */
static void
asrq_op (unsigned short inst, inst_env_type *inst_env)
{
int shift_steps;
unsigned long value;
unsigned long signed_extend_mask = 0;
/* ASRQ can't have a prefix, so check that it doesn't. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the PC is the target register. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The shift size is given as a 5 bit quick value, i.e. we don't
want the sign bit of the quick value. */
shift_steps = cris_get_asr_shift_steps (inst);
value = inst_env->reg[REG_PC];
if (value & SIGNED_DWORD_MASK)
{
signed_extend_mask = 0xFFFFFFFF;
signed_extend_mask = signed_extend_mask >> shift_steps;
signed_extend_mask = ~signed_extend_mask;
}
value = value >> shift_steps;
value |= signed_extend_mask;
inst_env->reg[REG_PC] = value;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the AX, EI and SETF instruction. */
static void
ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the instruction is setting the X flag. */
if (cris_is_xflag_bit_on (inst))
{
inst_env->xflag_found = 1;
}
else
{
inst_env->xflag_found = 0;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->disable_interrupt = 1;
}
/* Checks if the instruction is in assign mode. If so, it updates the assign
register. Note that check_assign assumes that the caller has checked that
there is a prefix to this instruction. The mode check depends on this. */
static void
check_assign (unsigned short inst, inst_env_type *inst_env)
{
/* Check if it's an assign addressing mode. */
if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
{
/* Assign the prefix value to operand 1. */
inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
}
}
/* Handles the 2-operand BOUND instruction. */
static void
two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to have the PC as the index operand. */
if (cris_get_operand2 (inst) == REG_PC)
{
inst_env->invalid = 1;
return;
}
/* Check if we have a prefix. */
if (inst_env->prefix_found)
{
check_assign (inst, inst_env);
}
/* Check if this is an autoincrement mode. */
else if (cris_get_mode (inst) == AUTOINC_MODE)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
process_autoincrement (cris_get_size (inst), inst, inst_env);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the 3-operand BOUND instruction. */
static void
three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's an error if we haven't got a prefix. And it's also an error
if the PC is the destination register. */
if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Clears the status flags in inst_env. */
static void
btst_nop_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's an error if we have got a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Clears the status flags in inst_env. */
static void
clearf_di_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's an error if we have got a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles the CLEAR instruction if it's in register mode. */
static void
reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
{
/* Check if the target is the PC. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* The instruction will clear the instruction's size bits. */
int clear_size = cris_get_clear_size (inst);
if (clear_size == INST_BYTE_SIZE)
{
inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
}
if (clear_size == INST_WORD_SIZE)
{
inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
}
if (clear_size == INST_DWORD_SIZE)
{
inst_env->delay_slot_pc = 0x0;
}
/* The jump will be delayed with one delay slot. So we need a delay
slot. */
inst_env->slot_needed = 1;
inst_env->delay_slot_pc_active = 1;
}
else
{
/* The PC will not change => no delay slot. */
inst_env->slot_needed = 0;
}
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the TEST instruction if it's in register mode. */
static void
reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's an error if we have got a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the CLEAR and TEST instruction if the instruction isn't
in register mode. */
static void
none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
{
/* Check if we are in a prefix mode. */
if (inst_env->prefix_found)
{
/* The only way the PC can change is if this instruction is in
assign addressing mode. */
check_assign (inst, inst_env);
}
/* Indirect mode can't change the PC so just check if the mode is
autoincrement. */
else if (cris_get_mode (inst) == AUTOINC_MODE)
{
process_autoincrement (cris_get_size (inst), inst, inst_env);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Checks that the PC isn't the destination register or the instructions has
a prefix. */
static void
dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to have the PC as the destination. The instruction can't
have a prefix. */
if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Checks that the instruction doesn't have a prefix. */
static void
break_op (unsigned short inst, inst_env_type *inst_env)
{
/* The instruction can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Checks that the PC isn't the destination register and that the instruction
doesn't have a prefix. */
static void
scc_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to have the PC as the destination. The instruction can't
have a prefix. */
if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles the register mode JUMP instruction. */
static void
reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
{
/* It's invalid to do a JUMP in a delay slot. The mode is register, so
you can't have a prefix. */
if ((inst_env->slot_needed) || (inst_env->prefix_found))
{
inst_env->invalid = 1;
return;
}
/* Just change the PC. */
inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles the JUMP instruction for all modes except register. */
static void
none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
{
unsigned long newpc;
CORE_ADDR address;
/* It's invalid to do a JUMP in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
}
else
{
/* Check if we have a prefix. */
if (inst_env->prefix_found)
{
check_assign (inst, inst_env);
/* Get the new value for the PC. */
newpc =
read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
4, inst_env->byte_order);
}
else
{
/* Get the new value for the PC. */
address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
newpc = read_memory_unsigned_integer (address,
4, inst_env->byte_order);
/* Check if we should increment a register. */
if (cris_get_mode (inst) == AUTOINC_MODE)
{
inst_env->reg[cris_get_operand1 (inst)] += 4;
}
}
inst_env->reg[REG_PC] = newpc;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles moves to special registers (aka P-register) for all modes. */
static void
move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
/* The instruction has a prefix that means we are only interested if
the instruction is in assign mode. */
if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
{
/* The prefix handles the problem if we are in a delay slot. */
if (cris_get_operand1 (inst) == REG_PC)
{
/* Just take care of the assign. */
check_assign (inst, inst_env);
}
}
}
else if (cris_get_mode (inst) == AUTOINC_MODE)
{
/* The instruction doesn't have a prefix, the only case left that we
are interested in is the autoincrement mode. */
if (cris_get_operand1 (inst) == REG_PC)
{
/* If the PC is to be incremented it's invalid to be in a
delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The increment depends on the size of the special register. */
if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
{
process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
}
else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
{
process_autoincrement (INST_WORD_SIZE, inst, inst_env);
}
else
{
process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
}
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles moves from special registers (aka P-register) for all modes
except register. */
static void
none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
/* The instruction has a prefix that means we are only interested if
the instruction is in assign mode. */
if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
{
/* The prefix handles the problem if we are in a delay slot. */
if (cris_get_operand1 (inst) == REG_PC)
{
/* Just take care of the assign. */
check_assign (inst, inst_env);
}
}
}
/* The instruction doesn't have a prefix, the only case left that we
are interested in is the autoincrement mode. */
else if (cris_get_mode (inst) == AUTOINC_MODE)
{
if (cris_get_operand1 (inst) == REG_PC)
{
/* If the PC is to be incremented it's invalid to be in a
delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The increment depends on the size of the special register. */
if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
{
process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
}
else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
{
process_autoincrement (INST_WORD_SIZE, inst, inst_env);
}
else
{
process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
}
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles moves from special registers (aka P-register) when the mode
is register. */
static void
reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
{
/* Register mode move from special register can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
if (cris_get_operand1 (inst) == REG_PC)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The destination is the PC, the jump will have a delay slot. */
inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
inst_env->slot_needed = 1;
inst_env->delay_slot_pc_active = 1;
}
else
{
/* If the destination isn't PC, there will be no jump. */
inst_env->slot_needed = 0;
}
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 1;
}
/* Handles the MOVEM from memory to general register instruction. */
static void
move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
/* The prefix handles the problem if we are in a delay slot. Is the
MOVEM instruction going to change the PC? */
if (cris_get_operand2 (inst) >= REG_PC)
{
inst_env->reg[REG_PC] =
read_memory_unsigned_integer (inst_env->prefix_value,
4, inst_env->byte_order);
}
/* The assign value is the value after the increment. Normally, the
assign value is the value before the increment. */
if ((cris_get_operand1 (inst) == REG_PC)
&& (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
{
inst_env->reg[REG_PC] = inst_env->prefix_value;
inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
}
}
else
{
/* Is the MOVEM instruction going to change the PC? */
if (cris_get_operand2 (inst) == REG_PC)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
inst_env->reg[REG_PC] =
read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
4, inst_env->byte_order);
}
/* The increment is not depending on the size, instead it's depending
on the number of registers loaded from memory. */
if ((cris_get_operand1 (inst) == REG_PC)
&& (cris_get_mode (inst) == AUTOINC_MODE))
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the MOVEM to memory from general register instruction. */
static void
move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
/* The assign value is the value after the increment. Normally, the
assign value is the value before the increment. */
if ((cris_get_operand1 (inst) == REG_PC)
&& (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
{
/* The prefix handles the problem if we are in a delay slot. */
inst_env->reg[REG_PC] = inst_env->prefix_value;
inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
}
}
else
{
/* The increment is not depending on the size, instead it's depending
on the number of registers loaded to memory. */
if ((cris_get_operand1 (inst) == REG_PC)
&& (cris_get_mode (inst) == AUTOINC_MODE))
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
}
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the instructions that's not yet implemented, by setting
inst_env->invalid to true. */
static void
not_implemented_op (unsigned short inst, inst_env_type *inst_env)
{
inst_env->invalid = 1;
}
/* Handles the XOR instruction. */
static void
xor_op (unsigned short inst, inst_env_type *inst_env)
{
/* XOR can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the PC is the target. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* It's invalid to change the PC in a delay slot. */
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the MULS instruction. */
static void
muls_op (unsigned short inst, inst_env_type *inst_env)
{
/* MULS/U can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Consider it invalid if the PC is the target. */
if (cris_get_operand2 (inst) == REG_PC)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the MULU instruction. */
static void
mulu_op (unsigned short inst, inst_env_type *inst_env)
{
/* MULS/U can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Consider it invalid if the PC is the target. */
if (cris_get_operand2 (inst) == REG_PC)
{
inst_env->invalid = 1;
return;
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
The MOVE instruction is the move from source to register. */
static void
add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
unsigned long source1, unsigned long source2)
{
unsigned long pc_mask;
unsigned long operation_mask;
/* Find out how many bits the operation should apply to. */
if (cris_get_size (inst) == INST_BYTE_SIZE)
{
pc_mask = 0xFFFFFF00;
operation_mask = 0xFF;
}
else if (cris_get_size (inst) == INST_WORD_SIZE)
{
pc_mask = 0xFFFF0000;
operation_mask = 0xFFFF;
}
else if (cris_get_size (inst) == INST_DWORD_SIZE)
{
pc_mask = 0x0;
operation_mask = 0xFFFFFFFF;
}
else
{
/* The size is out of range. */
inst_env->invalid = 1;
return;
}
/* The instruction just works on uw_operation_mask bits. */
source2 &= operation_mask;
source1 &= operation_mask;
/* Now calculate the result. The opcode's 3 first bits separates
the different actions. */
switch (cris_get_opcode (inst) & 7)
{
case 0: /* add */
source1 += source2;
break;
case 1: /* move */
source1 = source2;
break;
case 2: /* subtract */
source1 -= source2;
break;
case 3: /* compare */
break;
case 4: /* and */
source1 &= source2;
break;
case 5: /* or */
source1 |= source2;
break;
default:
inst_env->invalid = 1;
return;
break;
}
/* Make sure that the result doesn't contain more than the instruction
size bits. */
source2 &= operation_mask;
/* Calculate the new breakpoint address. */
inst_env->reg[REG_PC] &= pc_mask;
inst_env->reg[REG_PC] |= source1;
}
/* Extends the value from either byte or word size to a dword. If the mode
is zero extend then the value is extended with zero. If instead the mode
is signed extend the sign bit of the value is taken into consideration. */
static unsigned long
do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
{
/* The size can be either byte or word, check which one it is.
Don't check the highest bit, it's indicating if it's a zero
or sign extend. */
if (cris_get_size (*inst) & INST_WORD_SIZE)
{
/* Word size. */
value &= 0xFFFF;
/* Check if the instruction is signed extend. If so, check if value has
the sign bit on. */
if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
{
value |= SIGNED_WORD_EXTEND_MASK;
}
}
else
{
/* Byte size. */
value &= 0xFF;
/* Check if the instruction is signed extend. If so, check if value has
the sign bit on. */
if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
{
value |= SIGNED_BYTE_EXTEND_MASK;
}
}
/* The size should now be dword. */
cris_set_size_to_dword (inst);
return value;
}
/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
instruction. The MOVE instruction is the move from source to register. */
static void
reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
inst_env_type *inst_env)
{
unsigned long operand1;
unsigned long operand2;
/* It's invalid to have a prefix to the instruction. This is a register
mode instruction and can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the instruction has PC as its target. */
if (cris_get_operand2 (inst) == REG_PC)
{
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The instruction has the PC as its target register. */
operand1 = inst_env->reg[cris_get_operand1 (inst)];
operand2 = inst_env->reg[REG_PC];
/* Check if it's a extend, signed or zero instruction. */
if (cris_get_opcode (inst) < 4)
{
operand1 = do_sign_or_zero_extend (operand1, &inst);
}
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. The order of the udw_operands is vital. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Returns the data contained at address. The size of the data is derived from
the size of the operation. If the instruction is a zero or signed
extend instruction, the size field is changed in instruction. */
static unsigned long
get_data_from_address (unsigned short *inst, CORE_ADDR address,
enum bfd_endian byte_order)
{
int size = cris_get_size (*inst);
unsigned long value;
/* If it's an extend instruction we don't want the signed extend bit,
because it influences the size. */
if (cris_get_opcode (*inst) < 4)
{
size &= ~SIGNED_EXTEND_BIT_MASK;
}
/* Is there a need for checking the size? Size should contain the number of
bytes to read. */
size = 1 << size;
value = read_memory_unsigned_integer (address, size, byte_order);
/* Check if it's an extend, signed or zero instruction. */
if (cris_get_opcode (*inst) < 4)
{
value = do_sign_or_zero_extend (value, inst);
}
return value;
}
/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
instructions. The MOVE instruction is the move from source to register. */
static void
handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
inst_env_type *inst_env)
{
unsigned long operand2;
unsigned long operand3;
check_assign (inst, inst_env);
if (cris_get_operand2 (inst) == REG_PC)
{
operand2 = inst_env->reg[REG_PC];
/* Get the value of the third operand. */
operand3 = get_data_from_address (&inst, inst_env->prefix_value,
inst_env->byte_order);
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. The order of the udw_operands is vital. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
OR instructions. Note that for this to work as expected, the calling
function must have made sure that there is a prefix to this instruction. */
static void
three_operand_add_sub_cmp_and_or_op (unsigned short inst,
inst_env_type *inst_env)
{
unsigned long operand2;
unsigned long operand3;
if (cris_get_operand1 (inst) == REG_PC)
{
/* The PC will be changed by the instruction. */
operand2 = inst_env->reg[cris_get_operand2 (inst)];
/* Get the value of the third operand. */
operand3 = get_data_from_address (&inst, inst_env->prefix_value,
inst_env->byte_order);
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
instructions. The MOVE instruction is the move from source to register. */
static void
handle_prefix_index_mode_for_aritm_op (unsigned short inst,
inst_env_type *inst_env)
{
if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
{
/* If the instruction is MOVE it's invalid. If the instruction is ADD,
SUB, AND or OR something weird is going on (if everything works these
instructions should end up in the three operand version). */
inst_env->invalid = 1;
return;
}
else
{
/* three_operand_add_sub_cmp_and_or does the same as we should do here
so use it. */
three_operand_add_sub_cmp_and_or_op (inst, inst_env);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
source to register. */
static void
handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
inst_env_type *inst_env)
{
unsigned long operand1;
unsigned long operand2;
unsigned long operand3;
int size;
/* The instruction is either an indirect or autoincrement addressing mode.
Check if the destination register is the PC. */
if (cris_get_operand2 (inst) == REG_PC)
{
/* Must be done here, get_data_from_address may change the size
field. */
size = cris_get_size (inst);
operand2 = inst_env->reg[REG_PC];
/* Get the value of the third operand, i.e. the indirect operand. */
operand1 = inst_env->reg[cris_get_operand1 (inst)];
operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. The order of the udw_operands is vital. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
}
/* If this is an autoincrement addressing mode, check if the increment
changes the PC. */
if ((cris_get_operand1 (inst) == REG_PC)
&& (cris_get_mode (inst) == AUTOINC_MODE))
{
/* Get the size field. */
size = cris_get_size (inst);
/* If it's an extend instruction we don't want the signed extend bit,
because it influences the size. */
if (cris_get_opcode (inst) < 4)
{
size &= ~SIGNED_EXTEND_BIT_MASK;
}
process_autoincrement (size, inst, inst_env);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the two-operand addressing mode, all modes except register, for
the ADD, SUB CMP, AND and OR instruction. */
static void
none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
inst_env_type *inst_env)
{
if (inst_env->prefix_found)
{
if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
{
handle_prefix_index_mode_for_aritm_op (inst, inst_env);
}
else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
{
handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
}
else
{
/* The mode is invalid for a prefixed base instruction. */
inst_env->invalid = 1;
return;
}
}
else
{
handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
}
}
/* Handles the quick addressing mode for the ADD and SUB instruction. */
static void
quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
{
unsigned long operand1;
unsigned long operand2;
/* It's a bad idea to be in a prefix instruction now. This is a quick mode
instruction and can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the instruction has PC as its target. */
if (cris_get_operand2 (inst) == REG_PC)
{
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
operand1 = cris_get_quick_value (inst);
operand2 = inst_env->reg[REG_PC];
/* The size should now be dword. */
cris_set_size_to_dword (&inst);
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
static void
quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
{
unsigned long operand1;
unsigned long operand2;
/* It's a bad idea to be in a prefix instruction now. This is a quick mode
instruction and can't have a prefix. */
if (inst_env->prefix_found)
{
inst_env->invalid = 1;
return;
}
/* Check if the instruction has PC as its target. */
if (cris_get_operand2 (inst) == REG_PC)
{
if (inst_env->slot_needed)
{
inst_env->invalid = 1;
return;
}
/* The instruction has the PC as its target register. */
operand1 = cris_get_quick_value (inst);
operand2 = inst_env->reg[REG_PC];
/* The quick value is signed, so check if we must do a signed extend. */
if (operand1 & SIGNED_QUICK_VALUE_MASK)
{
/* sign extend */
operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
}
/* The size should now be dword. */
cris_set_size_to_dword (&inst);
/* Calculate the PC value after the instruction, i.e. where the
breakpoint should be. */
add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
}
inst_env->slot_needed = 0;
inst_env->prefix_found = 0;
inst_env->xflag_found = 0;
inst_env->disable_interrupt = 0;
}
/* Translate op_type to a function and call it. */
static void
cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
unsigned short inst, inst_env_type *inst_env)
{
switch (op_type)
{
case cris_not_implemented_op:
not_implemented_op (inst, inst_env);
break;
case cris_abs_op:
abs_op (inst, inst_env);
break;
case cris_addi_op:
addi_op (inst, inst_env);
break;
case cris_asr_op:
asr_op (inst, inst_env);
break;
case cris_asrq_op:
asrq_op (inst, inst_env);
break;
case cris_ax_ei_setf_op:
ax_ei_setf_op (inst, inst_env);
break;
case cris_bdap_prefix:
bdap_prefix (inst, inst_env);
break;
case cris_biap_prefix:
biap_prefix (inst, inst_env);
break;
case cris_break_op:
break_op (inst, inst_env);
break;
case cris_btst_nop_op:
btst_nop_op (inst, inst_env);
break;
case cris_clearf_di_op:
clearf_di_op (inst, inst_env);
break;
case cris_dip_prefix:
dip_prefix (inst, inst_env);
break;
case cris_dstep_logshift_mstep_neg_not_op:
dstep_logshift_mstep_neg_not_op (inst, inst_env);
break;
case cris_eight_bit_offset_branch_op:
eight_bit_offset_branch_op (inst, inst_env);
break;
case cris_move_mem_to_reg_movem_op:
move_mem_to_reg_movem_op (inst, inst_env);
break;
case cris_move_reg_to_mem_movem_op:
move_reg_to_mem_movem_op (inst, inst_env);
break;
case cris_move_to_preg_op:
move_to_preg_op (gdbarch, inst, inst_env);
break;
case cris_muls_op:
muls_op (inst, inst_env);
break;
case cris_mulu_op:
mulu_op (inst, inst_env);
break;
case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
break;
case cris_none_reg_mode_clear_test_op:
none_reg_mode_clear_test_op (inst, inst_env);
break;
case cris_none_reg_mode_jump_op:
none_reg_mode_jump_op (inst, inst_env);
break;
case cris_none_reg_mode_move_from_preg_op:
none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
break;
case cris_quick_mode_add_sub_op:
quick_mode_add_sub_op (inst, inst_env);
break;
case cris_quick_mode_and_cmp_move_or_op:
quick_mode_and_cmp_move_or_op (inst, inst_env);
break;
case cris_quick_mode_bdap_prefix:
quick_mode_bdap_prefix (inst, inst_env);
break;
case cris_reg_mode_add_sub_cmp_and_or_move_op:
reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
break;
case cris_reg_mode_clear_op:
reg_mode_clear_op (inst, inst_env);
break;
case cris_reg_mode_jump_op:
reg_mode_jump_op (inst, inst_env);
break;
case cris_reg_mode_move_from_preg_op:
reg_mode_move_from_preg_op (inst, inst_env);
break;
case cris_reg_mode_test_op:
reg_mode_test_op (inst, inst_env);
break;
case cris_scc_op:
scc_op (inst, inst_env);
break;
case cris_sixteen_bit_offset_branch_op:
sixteen_bit_offset_branch_op (inst, inst_env);
break;
case cris_three_operand_add_sub_cmp_and_or_op:
three_operand_add_sub_cmp_and_or_op (inst, inst_env);
break;
case cris_three_operand_bound_op:
three_operand_bound_op (inst, inst_env);
break;
case cris_two_operand_bound_op:
two_operand_bound_op (inst, inst_env);
break;
case cris_xor_op:
xor_op (inst, inst_env);
break;
}
}
/* Originally from <asm/elf.h>. */
typedef unsigned char cris_elf_greg_t[4];
/* Same as user_regs_struct struct in <asm/user.h>. */
#define CRISV10_ELF_NGREG 35
typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
#define CRISV32_ELF_NGREG 32
typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
/* Unpack a cris_elf_gregset_t into GDB's register cache. */
static void
cris_supply_gregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
struct gdbarch *gdbarch = regcache->arch ();
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
int i;
const cris_elf_greg_t *regp = static_cast<const cris_elf_greg_t *>(gregs);
if (len != sizeof (cris_elf_gregset_t)
&& len != sizeof (crisv32_elf_gregset_t))
warning (_("wrong size gregset struct in core file"));
gdb_assert (len >= sizeof (crisv32_elf_gregset_t));
/* The kernel dumps all 32 registers as unsigned longs, but supply_register
knows about the actual size of each register so that's no problem. */
for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
{
if (regnum == -1 || regnum == i)
regcache->raw_supply (i, (char *)®p[i]);
}
if (tdep->cris_version == 32 && (regnum == -1 || regnum == ERP_REGNUM))
{
/* Needed to set pseudo-register PC for CRISv32. */
/* FIXME: If ERP is in a delay slot at this point then the PC will
be wrong. Issue a warning to alert the user. */
regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
(char *)®p[ERP_REGNUM]);
if (*(char *)®p[ERP_REGNUM] & 0x1)
gdb_printf (gdb_stderr, "Warning: PC in delay slot\n");
}
}
static const struct regset cris_regset = {
nullptr,
cris_supply_gregset,
/* We don't need a collect function because we only use this for core files
(via iterate_over_regset_sections). */
nullptr,
REGSET_VARIABLE_SIZE
};
static void cris_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
cb (".reg", sizeof (crisv32_elf_gregset_t), sizeof (crisv32_elf_gregset_t),
&cris_regset, NULL, cb_data);
}
void _initialize_cris_tdep ();
void
_initialize_cris_tdep ()
{
gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
/* CRIS-specific user-commands. */
add_setshow_zuinteger_cmd ("cris-version", class_support,
&usr_cmd_cris_version,
_("Set the current CRIS version."),
_("Show the current CRIS version."),
_("\
Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
Defaults to 10. "),
set_cris_version,
NULL, /* FIXME: i18n: Current CRIS version
is %s. */
&setlist, &showlist);
add_setshow_enum_cmd ("cris-mode", class_support,
cris_modes, &usr_cmd_cris_mode,
_("Set the current CRIS mode."),
_("Show the current CRIS mode."),
_("\
Set to CRIS_MODE_GURU when debugging in guru mode.\n\
Makes GDB use the NRP register instead of the ERP register in certain cases."),
set_cris_mode,
NULL, /* FIXME: i18n: Current CRIS version is %s. */
&setlist, &showlist);
add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
&usr_cmd_cris_dwarf2_cfi,
_("Set the usage of Dwarf-2 CFI for CRIS."),
_("Show the usage of Dwarf-2 CFI for CRIS."),
_("Set this to \"off\" if using gcc-cris < R59."),
set_cris_dwarf2_cfi,
NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
for CRIS is %d. */
&setlist, &showlist);
}
/* Prints out all target specific values. */
static void
cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
if (tdep != NULL)
{
gdb_printf (file, "cris_dump_tdep: tdep->cris_version = %i\n",
tdep->cris_version);
gdb_printf (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
tdep->cris_mode);
gdb_printf (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
tdep->cris_dwarf2_cfi);
}
}
static void
set_cris_version (const char *ignore_args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
usr_cmd_cris_version_valid = 1;
/* Update the current architecture, if needed. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__,
_("cris_gdbarch_update: failed to update architecture."));
}
static void
set_cris_mode (const char *ignore_args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Update the current architecture, if needed. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__,
"cris_gdbarch_update: failed to update architecture.");
}
static void
set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Update the current architecture, if needed. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__,
_("cris_gdbarch_update: failed to update architecture."));
}
static struct gdbarch *
cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
unsigned int cris_version;
if (usr_cmd_cris_version_valid)
{
/* Trust the user's CRIS version setting. */
cris_version = usr_cmd_cris_version;
}
else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
{
cris_version = 32;
}
else
{
/* Assume it's CRIS version 10. */
cris_version = 10;
}
/* Make the current settings visible to the user. */
usr_cmd_cris_version = cris_version;
/* Find a candidate among the list of pre-declared architectures. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
cris_gdbarch_tdep *tdep
= gdbarch_tdep<cris_gdbarch_tdep> (arches->gdbarch);
if (tdep->cris_version == usr_cmd_cris_version
&& tdep->cris_mode == usr_cmd_cris_mode
&& tdep->cris_dwarf2_cfi == usr_cmd_cris_dwarf2_cfi)
return arches->gdbarch;
}
/* No matching architecture was found. Create a new one. */
cris_gdbarch_tdep *tdep = new cris_gdbarch_tdep;
info.byte_order = BFD_ENDIAN_LITTLE;
gdbarch = gdbarch_alloc (&info, tdep);
tdep->cris_version = usr_cmd_cris_version;
tdep->cris_mode = usr_cmd_cris_mode;
tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
set_gdbarch_return_value (gdbarch, cris_return_value);
set_gdbarch_sp_regnum (gdbarch, 14);
/* Length of ordinary registers used in push_word and a few other
places. register_size() is the real way to know how big a
register is. */
set_gdbarch_double_bit (gdbarch, 64);
/* The default definition of a long double is 2 * gdbarch_double_bit,
which means we have to set this explicitly. */
set_gdbarch_long_double_bit (gdbarch, 64);
/* The total amount of space needed to store (in an array called registers)
GDB's copy of the machine's register state. Note: We can not use
cris_register_size at this point, since it relies on gdbarch
being set. */
switch (tdep->cris_version)
{
case 0:
case 1:
case 2:
case 3:
case 8:
case 9:
/* Old versions; not supported. */
return 0;
case 10:
case 11:
/* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
P7 (32 bits), and P15 (32 bits) have been implemented. */
set_gdbarch_pc_regnum (gdbarch, 15);
set_gdbarch_register_type (gdbarch, cris_register_type);
/* There are 32 registers (some of which may not be implemented). */
set_gdbarch_num_regs (gdbarch, 32);
set_gdbarch_register_name (gdbarch, cris_register_name);
set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
break;
case 32:
/* CRIS v32. General registers R0 - R15 (32 bits), special registers
P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
and pseudo-register PC (32 bits). */
set_gdbarch_pc_regnum (gdbarch, 32);
set_gdbarch_register_type (gdbarch, crisv32_register_type);
/* 32 registers + pseudo-register PC + 16 support registers. */
set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
set_gdbarch_register_name (gdbarch, crisv32_register_name);
set_gdbarch_cannot_store_register
(gdbarch, crisv32_cannot_store_register);
set_gdbarch_cannot_fetch_register
(gdbarch, crisv32_cannot_fetch_register);
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
set_gdbarch_single_step_through_delay
(gdbarch, crisv32_single_step_through_delay);
break;
default:
/* Unknown version. */
return 0;
}
/* Dummy frame functions (shared between CRISv10 and CRISv32 since they
have the same ABI). */
set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
set_gdbarch_frame_align (gdbarch, cris_frame_align);
set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
/* The stack grows downward. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
set_gdbarch_iterate_over_regset_sections (gdbarch, cris_iterate_over_regset_sections);
if (tdep->cris_dwarf2_cfi == 1)
{
/* Hook in the Dwarf-2 frame sniffer. */
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
dwarf2_append_unwinders (gdbarch);
}
if (tdep->cris_mode != cris_mode_guru)
{
frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
}
frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
frame_base_set_default (gdbarch, &cris_frame_base);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
return gdbarch;
}
|