aboutsummaryrefslogtreecommitdiff
path: root/ld/ld.texi
diff options
context:
space:
mode:
Diffstat (limited to 'ld/ld.texi')
-rw-r--r--ld/ld.texi498
1 files changed, 4 insertions, 494 deletions
diff --git a/ld/ld.texi b/ld/ld.texi
index c21d849..3367075 100644
--- a/ld/ld.texi
+++ b/ld/ld.texi
@@ -5302,7 +5302,7 @@ __stop_SECNAME, where SECNAME is the name of the section. These
indicate the start address and end address of the output section
respectively. Note: most section names are not representable as
C identifiers because they contain a @samp{.} character.
-@page
+
@node Output Section Data
@subsection Output Section Data
@cindex data
@@ -5353,28 +5353,10 @@ whereas this will work:
@smallexample
SECTIONS @{@ .text : @{@ *(.text) ; LONG(1) @}@ .data : @{@ *(.data) @}@ @}@
@end smallexample
-@page
+
@cindex output section strings
@kindex ASCII (@var{expression}) ``@var{string}''
@kindex ASCIZ ``@var{string}''
-@code{ASCII strings}
-@sp 1
-@multitable @columnfractions .25 .20 .30 .20 .05
-@item
-ASCIZ
-@tab
-@tab
-"<string"
-@tab
-@item
-ASCII
-@tab
-(<size>)
-@tab
-"<string"
-@tab
-@end multitable
-@sp 1
You can include a zero-terminated string in an output section by using
@code{ASCIZ}. The keyword is followed by a string which is stored at
the current value of the location counter including adding a zero byte
@@ -5399,490 +5381,18 @@ it must be enclosed in double quotes.
The string can have C escape characters like '\n', '\r', '\t' and
octal numbers. The '\"' escape is not supported. Nor are escaped hex
values.
-@sp 2
+
Example 1: This is string of 16 characters and will create a 32 byte
area:
@smallexample
ASCII (32) "This is 16 bytes"
@end smallexample
-@sp 2
+
Example 2: This is a string of 16 characters and will create a 17 byte
area:
@smallexample
ASCIZ "This is 16 bytes"
@end smallexample
-@page
-@cindex output section strings
-@kindex DIGEST "<label>[#<endian>]" "CRC64-ECMA" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" "CRC64-ISO" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" "CRC64-ISO-R" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" "CRC64-WE" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" "CRC64-XZ" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" "CRC32" (@var{expr}, @var{expr})
-@kindex DIGEST "<label>[#<endian>]" POLY (@var{<parms>}) (@var{expr}, @var{expr})
-
-@code{CRC Calculation}
-@sp 1
-@multitable @columnfractions .20 .27 .28 .25
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC32"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC64-ECMA"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC64-GO-ISO"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC64-GO-ISO-R"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC64-WE"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-"CRC64-XZ"
-@tab
-(start, end)
-@item
-DIGEST
-@tab
-"<label>[#<endian>]"
-@tab
-POLY (<params>)
-@tab
-(start, end)
-@item
-DIGEST TABLE
-@tab
-"<label>[#<endian>]"
-@tab
-@tab
-(start, end)
-@end multitable
-
-You can calculate the CRC of a part of an output section through the
-@code{DIGEST} command. The default section is the @code{".text"} section.
-The commands take parameters for a label, a @code{polynome} and then two more,
-specifying range of the checked area. The end address is the first address
-past the checked area.
-
-The checksum is generated in little endian format, but this can be overridden by
-adding a @code{#BE} or @code{#LE} modifier to the label string.
-The generated label does not include the modifier. The endian can also be
-specified on the command line using @code{-BE} or @code{-LE}.
-
-@sp 1
-There is one predefined 32-bit polynome
-
-@multitable @columnfractions .3 .4 .4
-@item
-* @code{CRC32}
-@tab
-@code{0x04C11DB7}
-@tab
-@end multitable
-
-There are five predefined 64-bit polynomes
-
-@multitable @columnfractions .3 .4 .4
-@item
-* @code{CRC64-ECMA}
-@tab
-@code{0x42F0E1EBA9EA3693}
-@tab
-@item
-* @code{CRC64-ISO}
-@tab
-@code{0x000000000000001B}
-@tab
-@item
-* @code{CRC64-ISO-R}
-@tab
-@code{0xD800000000000000}
-@tab
-@item
-* @code{CRC64-WE}
-@tab
-@code{0x42F0E1EBA9EA3693}
-@tab
-@item
-* @code{CRC64-XZ}
-@tab
-@code{0x42F0E1EBA9EA3693}
-@tab
-@end multitable
-@sp 1
-You can also select your own @code{polynome} using the @code{DIGEST POLY}.
-
-It takes the following @code{parameters} separated by commas.
-
-@multitable @columnfractions .3 .7
-@item
-@code{size}
-@tab
-size of CRC (32 or 64)
-@item
-@code{polynome}
-@tab
-@item
-@code{initial}
-@tab
-initial value of crc before calculation
-@item
-@code{xor}
-@tab
-xor result before return
-@item
-@code{input reflect}
-@tab
-bitreverse input data
-@item
-@code{output reflect}
-@tab
-bitreverse result (before xor'ing)
-@item
-@code{reciprocal}
-@tab
-bitreverse polynome before generating table
-@end multitable
-
-The parameters are explained in detail in
-
-@code{http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html}
-
-Some of the predefined polynomes are the same, but differs in the other
-parameters.
-@page
-The 32-bit <polynome> command defines the following global symbols.
-
-@multitable @columnfractions .3 .7
-@item
-@code{___CRC32___}
-@tab
-address of the CRC32 checksum
-@item
-@code{___CRC32_START___}
-@tab
-first address in the checked area.
-@item
-@code{___CRC32_END___}
-@tab
-first address past the checked area.
-@end multitable
-@sp 2
-The 64-bit <polynome> command defines the following global symbols.
-
-@multitable @columnfractions .3 .7
-@item
-@code{___CRC64___}
-@tab
-address of the CRC64 checksum
-@item
-@code{___CRC64_START___}
-@tab
-first address in the checked area.
-@item
-@code{___CRC64_END___}
-@tab
-first address past the checked area.
-@end multitable
-@sp 2
-Note: The generated CRC value must be stored outside the checked area.
-@sp 2
-Example 1: This request a CRC check using the @code{ECMA} algorithm
-
-@smallexample
- DIGEST "C64" "CRC64-ECMA" (START_CHECK,END_TEXT)
-@end smallexample
-
-The user can retrieve the CRC value through the @code{C64} label.
-@sp 2
-Example 2: This request a CRC check using the @code{ISO} algorithm
-
- The checksum is stored as big endian
-
-@smallexample
- DIGEST "C64I#BE" "CRC64-ISO" (START_CHECK,END_TEXT)
-@end smallexample
-
-The user can retrieve the big endian CRC value through the @code{C64I} label.
-@sp 2
-Example 3: This request a CRC check using a user defined @code{polynome}
-
- The setup is the "CRC32" algorithm
-
-@smallexample
- DIGEST "CRC" POLY (32, 0x04C11DB7,~0,~0,1,1,0) (START_CHECK,END_TEXT)
-@end smallexample
-
-The user can retrieve the CRC value through the @code{CRC} label.
-@sp 2
-Example 4: This request a CRC check using the @code{CRC32} polynome
-
-@smallexample
- DIGEST "C32.SE" (START_CHECK,END_TEXT)
-@end smallexample
-
-The user can retrieve the CRC value through the @code{C32} label.
-
-@page
-@cindex output section strings
-@kindex DIGEST TABLE "<label>[#<endian>]"
-@page
-The @code{DIGEST TABLE} command creates a 1 or 2 kByte table for a table-driven
-CRC calculation. This speeds up the CRC calculation over a non-table-driver
-version since you can handle 8 bits at a time, instead of 1 bit.
-
-The table generated is for the @code{polynome} selected using a
-@code{DIGEST <polynome>} command.
-
-The command will define the label supplied as a parameter.
-The table will be in small endian, unless the @code{.BE} or @code{.LE} extension
-is given to the label.
-It also defines a symbol based on the size of the polynome.
-
-@enumerate
-@item
-@code{___CRC32_TABLE___} address of the CRC32 table, or
-@item
-@code{___CRC64_TABLE___} address of the CRC64 table
-@end enumerate
-
-@sp 2
-Example 1: Generate a 1 kB table
-
-(assuming a previous @code{DIGEST "CRC32"} command)
-
-@smallexample
- DIGEST TABLE "crc_tab32"
-@end smallexample
-
-The user must declare @code{extern uint32_t *crc_tab32;} in his code.
-@sp 2
-Example 2: Generate a 2 kB table in big endian format.
-
-(assuming a previous @code{DIGEST "CRC64-###"} command)
-
-@smallexample
- DIGEST TABLE "crc_tab64.be"
-@end smallexample
-
-The user must declare @code{extern uint64_t *crc_tab64;} in his code.
-
-Using the tables:
- The user must include CRC code in the application to test the CRC
-@sp 2
-
-@multitable @columnfractions .15 .85
-@item
-Example 1:
-@tab
-Calculating CRC-64
-@end multitable
-@sp 1
-@multitable @columnfractions .05 .95
-@item
-@tab
-Copyright (c) 2016 Lammert Bies
-@item
-@tab
-Copyright (c) 2021 Bastian Molkenthin
-@item
-@tab
-Copyright (c) 2023 Ulf Samuelsson
-@end multitable
-@sp 2
-@smallexample
-#define SHIFT(t) ((sizeof(t)-1)*8)
-uint64_t calc_crc64
- (algorithm_desc_t * dsc, const unsigned char *input_str, size_t num_bytes)
-@{
- uint64_t crc;
- const unsigned char *ptr;
- uint64_t *crc_tab = dsc->crc_tab;
- uint64_t index;
-
- if ((ptr = input_str) == NULL)
- return 0;
-
- if (crc_tab == NULL)
- return 0;
-
-
- crc = dsc->initial;
- if (dsc->reciprocal)
- @{
- for (uint32_t i = 0; i < num_bytes; i++)
- @{
- index = ((crc >> 0) ^ (uint64_t) * ptr++) & 0x00000000000000FFull;
- crc = (crc >> 8) ^ crc_tab[index];
- @}
- @}
- else
- @{
- uint32_t shift = SHIFT (uint64_t);
- for (uint32_t i = 0; i < num_bytes; i++)
- @{
- const unsigned char c = *ptr++;
- uint64_t rc = (uint64_t) (dsc->ireflect ? reflect8 (c) : c);
- crc = (crc ^ (rc << shift));
- index = (uint32_t) (crc >> shift);
- crc = (crc << 8);
- crc = (crc ^ (crc_tab[index]));
- @}
- @}
- crc = (dsc->oreflect ? reflect64 (crc) : crc);
- crc = crc ^ dsc->xor_val;
- return crc;
-@} /* calc_crc64 */
-@end smallexample
-@page
-@multitable @columnfractions .15 .85
-@item
-Example 2:
-@tab
-Calculating CRC-32
-@end multitable
-@sp 1
-@multitable @columnfractions .05 .95
-@item
-@tab
-Copyright (c) 2016 Lammert Bies
-@item
-@tab
-Copyright (c) 2021 Bastian Molkenthin
-@item
-@tab
-Copyright (c) 2023 Ulf Samuelsson
-@end multitable
-@sp 2
-@smallexample
-#define SHIFT(t) ((sizeof(t)-1)*8)
-uint32_t
-calc_crc32 (algorithm_desc_t * dsc, const unsigned char *input_str,
- size_t num_bytes)
-@{
- uint32_t crc;
- const unsigned char *ptr;
- uint32_t index;
- uint32_t *crc_tab = dsc->crc_tab;
-
- if ((ptr = input_str) == NULL)
- return 0;
-
- if (crc_tab == NULL)
- return 0;
-
- crc = dsc->initial;
-
- if (dsc->reciprocal)
- @{
- for (uint32_t i = 0; i < num_bytes; i++)
- @{
- index = ((crc >> 0) ^ (uint32_t) * ptr++) & 0x000000FFul;
- crc = (crc >> 8) ^ crc_tab[index];
- @}
- @}
- else
- @{
- uint32_t shift = SHIFT (uint32_t);
- for (uint32_t i = 0; i < num_bytes; i++)
- @{
- const unsigned char c = *ptr++;
- uint32_t rc = (uint32_t) (dsc->ireflect ? reflect8 (c) : c);
- crc = (crc ^ (rc << shift));
- index = (uint32_t) (crc >> shift);
- crc = (crc << 8);
- crc = (crc ^ (crc_tab[index]));
- @}
- @}
- crc = (dsc->oreflect ? reflect32 (crc) : crc);
- crc = crc ^ dsc->xor_val;
- return crc;
-@} /* calc_crc32 */
-@end smallexample
-@page
-@multitable @columnfractions .15 .85
-@item
-Example 3:
-@tab
-Calculating CRC-32 using optimized routine
-@end multitable
-@sp 1
-@multitable @columnfractions .05 .95
-@item
-@tab
-Copyright (c) 2016 Lammert Bies
-@item
-@tab
-Copyright (c) 2021 Bastian Molkenthin
-@item
-@tab
-Copyright (c) 2023 Ulf Samuelsson
-@end multitable
-@sp 2
-@smallexample
-#define SHIFT(t) ((sizeof(t)-1)*8)
-extern uint32_t *crc_tab;
-
-uint32_t
-calc_crc32 (const unsigned char *input_str, size_t num_bytes)
-@{
- uint32_t crc;
- const unsigned char *ptr;
- uint32_t index;
- uint32_t shift = SHIFT (uint32_t);
-
- if ((ptr = input_str) == NULL)
- return 0;
-
- crc = 0xFFFFFFFF;
- for (uint32_t i = 0; i < num_bytes; i++)
- @{
- const unsigned char c = *ptr++;
- crc = (crc ^ (c << shift));
- index = (uint32_t) (crc >> shift);
- crc = (crc << 8);
- crc = (crc ^ (crc_tab[index]));
- @}
- return crc ^ 0xFFFFFFFF;
-@} /* calc_crc32 */
-@end smallexample
-@page
-@cindex output section strings
-@kindex TIMESTAMP
-
-The @code{TIMESTAMP} command creates 64-bit integer with the number of seconds
-since Epoch (1970-01-01 00:00).
@kindex FILL(@var{expression})
@cindex holes, filling