aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/intrinsic.texi
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/fortran/intrinsic.texi')
-rw-r--r--gcc/fortran/intrinsic.texi740
1 files changed, 628 insertions, 112 deletions
diff --git a/gcc/fortran/intrinsic.texi b/gcc/fortran/intrinsic.texi
index 8c160e5..3103da3 100644
--- a/gcc/fortran/intrinsic.texi
+++ b/gcc/fortran/intrinsic.texi
@@ -24,15 +24,22 @@ Some basic guidelines for editing this document:
@tex
\gdef\acosd{\mathop{\rm acosd}\nolimits}
-\gdef\asind{\mathop{\rm asind}\nolimits}
-\gdef\atand{\mathop{\rm atand}\nolimits}
-\gdef\acos{\mathop{\rm acos}\nolimits}
-\gdef\asin{\mathop{\rm asin}\nolimits}
-\gdef\atan{\mathop{\rm atan}\nolimits}
\gdef\acosh{\mathop{\rm acosh}\nolimits}
+\gdef\acospi{\mathop{\rm acospi}\nolimits}
+\gdef\acos{\mathop{\rm acos}\nolimits}
+\gdef\asind{\mathop{\rm asind}\nolimits}
\gdef\asinh{\mathop{\rm asinh}\nolimits}
+\gdef\asinpi{\mathop{\rm asinpi}\nolimits}
+\gdef\asin{\mathop{\rm asin}\nolimits}
+\gdef\atan2pi{\mathop{\rm atan2pi}\nolimits}
+\gdef\atand{\mathop{\rm atand}\nolimits}
\gdef\atanh{\mathop{\rm atanh}\nolimits}
+\gdef\atanpi{\mathop{\rm atanpi}\nolimits}
+\gdef\atan{\mathop{\rm atan}\nolimits}
\gdef\cosd{\mathop{\rm cosd}\nolimits}
+\gdef\cospi{\mathop{\rm cospi}\nolimits}
+\gdef\sinpi{\mathop{\rm sinpi}\nolimits}
+\gdef\tanpi{\mathop{\rm tanpi}\nolimits}
@end tex
@@ -49,6 +56,7 @@ Some basic guidelines for editing this document:
* @code{ACOS}: ACOS, Arccosine function
* @code{ACOSD}: ACOSD, Arccosine function, degrees
* @code{ACOSH}: ACOSH, Inverse hyperbolic cosine function
+* @code{ACOSPI}: ACOSPI, Circular arc cosine function
* @code{ADJUSTL}: ADJUSTL, Left adjust a string
* @code{ADJUSTR}: ADJUSTR, Right adjust a string
* @code{AIMAG}: AIMAG, Imaginary part of complex number
@@ -62,12 +70,15 @@ Some basic guidelines for editing this document:
* @code{ASIN}: ASIN, Arcsine function
* @code{ASIND}: ASIND, Arcsine function, degrees
* @code{ASINH}: ASINH, Inverse hyperbolic sine function
+* @code{ASINPI}: ASINPI, Circular arc sine function
* @code{ASSOCIATED}: ASSOCIATED, Status of a pointer or pointer/target pair
* @code{ATAN}: ATAN, Arctangent function
-* @code{ATAND}: ATAND, Arctangent function, degrees
* @code{ATAN2}: ATAN2, Arctangent function
* @code{ATAN2D}: ATAN2D, Arctangent function, degrees
+* @code{ATAN2PI}: ATAN2PI, Circular arc tangent function
+* @code{ATAND}: ATAND, Arctangent function, degrees
* @code{ATANH}: ATANH, Inverse hyperbolic tangent function
+* @code{ATANPI}: ATANPI, Circular arc tangent function
* @code{ATOMIC_ADD}: ATOMIC_ADD, Atomic ADD operation
* @code{ATOMIC_AND}: ATOMIC_AND, Atomic bitwise AND operation
* @code{ATOMIC_CAS}: ATOMIC_CAS, Atomic compare and swap
@@ -116,6 +127,7 @@ Some basic guidelines for editing this document:
* @code{COS}: COS, Cosine function
* @code{COSD}: COSD, Cosine function, degrees
* @code{COSH}: COSH, Hyperbolic cosine function
+* @code{COSPI}: COSPI, Circular cosine function
* @code{COTAN}: COTAN, Cotangent function
* @code{COTAND}: COTAND, Cotangent function, degrees
* @code{COUNT}: COUNT, Count occurrences of TRUE in an array
@@ -170,6 +182,7 @@ Some basic guidelines for editing this document:
* @code{GETGID}: GETGID, Group ID function
* @code{GETLOG}: GETLOG, Get login name
* @code{GETPID}: GETPID, Process ID function
+* @code{GET_TEAM}: GET_TEAM, Get the handle of a team
* @code{GETUID}: GETUID, User ID function
* @code{GMTIME}: GMTIME, Convert time to GMT info
* @code{HOSTNM}: HOSTNM, Get system host name
@@ -295,6 +308,7 @@ Some basic guidelines for editing this document:
* @code{SIN}: SIN, Sine function
* @code{SIND}: SIND, Sine function, degrees
* @code{SINH}: SINH, Hyperbolic sine function
+* @code{SINPI}: SINPI, Circular sine function
* @code{SIZE}: SIZE, Function to determine the size of an array
* @code{SIZEOF}: SIZEOF, Determine the size in bytes of an expression
* @code{SLEEP}: SLEEP, Sleep for the specified number of seconds
@@ -311,6 +325,8 @@ Some basic guidelines for editing this document:
* @code{TAN}: TAN, Tangent function
* @code{TAND}: TAND, Tangent function, degrees
* @code{TANH}: TANH, Hyperbolic tangent function
+* @code{TANPI}: TANPI, Circular tangent function
+* @code{TEAM_NUMBER}: TEAM_NUMBER, Retrieve team id of given team
* @code{THIS_IMAGE}: THIS_IMAGE, Cosubscript index of this image
* @code{TIME}: TIME, Time function
* @code{TIME8}: TIME8, Time function (64-bit)
@@ -752,6 +768,62 @@ Inverse function: @*
+@node ACOSPI
+@section @code{ACOSPI} --- Circular arc cosine function
+@fnindex ACOSPI
+@cindex trigonometric function, cosine, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ACOSPI(X)} computes @math{ \acos(x) / \pi}, which is a measure
+of an angle in half-revolutions.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ACOSPI(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL} with @math{-1 \leq x \leq 1}.
+@end multitable
+
+@item @emph{Return value}:
+The return value has the same type and kind as @var{X}.
+It is expressed in half-revolutions and satisfies
+@math{ 0 \leq \acospi (x) \leq 1}.
+
+@item @emph{Example}:
+@smallexample
+program test_acospi
+ implicit none
+ real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
+ real, parameter :: a = acospi(x), b(3) = acospi(y)
+ call foo(x, y)
+contains
+ subroutine foo(u, v)
+ real, intent(in) :: u, v(:)
+ real :: f, g(size(v))
+ f = acospi(u)
+ g = acospi(v)
+ if (abs(a - f) > 8 * epsilon(f)) stop 1
+ if (any(abs(g - b) > 8 * epsilon(f))) stop 2
+ end subroutine foo
+end program test_acospi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ASINPI} @*
+@ref{ATAN2PI} @*
+@ref{ATANPI} @*
+@end table
+
+
+
@node ADJUSTL
@section @code{ADJUSTL} --- Left adjust a string
@fnindex ADJUSTL
@@ -1467,6 +1539,62 @@ Inverse function: @*
+@node ASINPI
+@section @code{ASINPI} --- Circular arc sine function
+@fnindex ASINPI
+@cindex trigonometric function, sine, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ASINPI(X)} computes @math{ \asin(x) / \pi}, which is a measure
+of an angle in half-revolutions.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ASINPI(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL} with @math{-1 \leq x \leq 1}.
+@end multitable
+
+@item @emph{Return value}:
+The return value has the same type and kind as @var{X}.
+It is expressed in half-revolutions and satisfies
+@math{ -0.5 \leq \asinpi (x) \leq 0.5}.
+
+@item @emph{Example}:
+@smallexample
+program test_asinpi
+ implicit none
+ real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
+ real, parameter :: a = asinpi(x), b(3) = asinpi(y)
+ call foo(x, y)
+contains
+ subroutine foo(u, v)
+ real, intent(in) :: u, v(:)
+ real :: f, g(size(v))
+ f = asinpi(u)
+ g = asinpi(v)
+ if (abs(a - f) > 8 * epsilon(f)) stop 1
+ if (any(abs(g - b) > 8 * epsilon(f))) stop 2
+ end subroutine foo
+end program test_asinpi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ACOSPI} @*
+@ref{ATAN2PI} @*
+@ref{ATANPI} @*
+@end table
+
+
+
@node ASSOCIATED
@section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair
@fnindex ASSOCIATED
@@ -1545,7 +1673,7 @@ Fortran 90 and later
@node ATAN
-@section @code{ATAN} --- Arctangent function
+@section @code{ATAN} --- Arctangent function
@fnindex ATAN
@fnindex DATAN
@cindex trigonometric function, tangent, inverse
@@ -1606,65 +1734,6 @@ Degrees function: @*
-@node ATAND
-@section @code{ATAND} --- Arctangent function, degrees
-@fnindex ATAND
-@fnindex DATAND
-@cindex trigonometric function, tangent, inverse, degrees
-@cindex tangent, inverse, degrees
-
-@table @asis
-@item @emph{Synopsis}:
-@multitable @columnfractions .80
-@item @code{RESULT = ATAND(X)}
-@end multitable
-
-@item @emph{Description}:
-@code{ATAND(X)} computes the arctangent of @var{X} in degrees (inverse of
-@ref{TAND}).
-
-@item @emph{Class}:
-Elemental function
-
-@item @emph{Arguments}:
-@multitable @columnfractions .15 .70
-@item @var{X} @tab The type shall be @code{REAL};
-if @var{Y} is present, @var{X} shall be REAL.
-@item @var{Y} @tab The type and kind type parameter shall be the same as @var{X}.
-@end multitable
-
-@item @emph{Return value}:
-The return value is of the same type and kind as @var{X}.
-The result is in degrees and lies in the range
-@math{-90 \leq \Re \atand(x) \leq 90}.
-
-@item @emph{Example}:
-@smallexample
-program test_atand
- real(8) :: x = 2.866_8
- x = atand(x)
-end program test_atand
-@end smallexample
-
-@item @emph{Specific names}:
-@multitable @columnfractions .23 .23 .20 .30
-@headitem Name @tab Argument @tab Return type @tab Standard
-@item @code{ATAND(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 2023
-@item @code{DATAND(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
-@end multitable
-
-@item @emph{Standard}:
-Fortran 2023
-
-@item @emph{See also}:
-Inverse function: @*
-@ref{TAND} @*
-Radians function: @*
-@ref{ATAN}
-@end table
-
-
-
@node ATAN2
@section @code{ATAN2} --- Arctangent function
@fnindex ATAN2
@@ -1793,6 +1862,117 @@ Radians function: @*
@ref{ATAN2}
@end table
+
+
+@node ATAN2PI
+@section @code{ATAN2PI} --- Circular arc tangent function
+@fnindex ATAN2PI
+@cindex trigonometric function, tangent, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ATAN2PI(Y, X)} computes @math{ {\rm {atan2}}(y, x) / \pi},
+and provides a measure of an angle in half-revolutions within
+the proper quadrant.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = ATAN2PI(Y, X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{Y} @tab The type shall be @code{REAL}.
+@item @var{X} @tab The type and kind type parameter shall be the
+same as @var{Y}. If @var{Y} is zero, then @var{X} shall be nonzero.
+@end multitable
+
+@item @emph{Return value}:
+The return value has the same type and kind type parameter as @var{Y}
+and satisfies @math{-1 \leq {\rm {atan2}}(y, x) / \pi \leq 1}.
+
+@item @emph{Example}:
+@smallexample
+program test_atan2pi
+ real(kind=4) :: x = 1.e0_4, y = 0.5e0_4
+ x = atan2pi(y, x)
+end program test_atan2pi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ACOSPI} @*
+@ref{ASINPI} @*
+@ref{ATANPI} @*
+@end table
+
+
+
+@node ATAND
+@section @code{ATAND} --- Arctangent function, degrees
+@fnindex ATAND
+@fnindex DATAND
+@cindex trigonometric function, tangent, inverse, degrees
+@cindex tangent, inverse, degrees
+
+@table @asis
+@item @emph{Synopsis}:
+@multitable @columnfractions .80
+@item @code{RESULT = ATAND(X)}
+@item @code{RESULT = ATAND(Y, X)}
+@end multitable
+
+@item @emph{Description}:
+@code{ATAND(X)} computes the arctangent of @var{X} in degrees (inverse of
+@ref{TAND}).
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL}.
+@item @var{Y} @tab The type and kind type parameter shall be the same as @var{X}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+If @var{Y} is present, the result is identical to @code{ATAN2D(Y, X)}.
+Otherwise, the result is in degrees and lies in the range
+@math{-90 \leq \atand(x) \leq 90}.
+
+@item @emph{Example}:
+@smallexample
+program test_atand
+ real(8) :: x = 2.866_8
+ real(4) :: x1 = 1.e0_4, y1 = 0.5e0_4
+ x = atand(x)
+ x1 = atand(y1, x1)
+end program test_atand
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .23 .23 .20 .30
+@headitem Name @tab Argument @tab Return type @tab Standard
+@item @code{ATAND(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 2023
+@item @code{DATAND(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
+@end multitable
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{See also}:
+Inverse function: @*
+@ref{TAND} @*
+Radians function: @*
+@ref{ATAN}
+@end table
+
+
+
@node ATANH
@section @code{ATANH} --- Inverse hyperbolic tangent function
@fnindex ATANH
@@ -1846,6 +2026,70 @@ Inverse function: @*
+@node ATANPI
+@section @code{ATANPI} --- Circular arc tangent function
+@fnindex ATANPI
+@cindex trigonometric function, tangent, inverse
+
+@table @asis
+@item @emph{Description}:
+@code{ATANPI(X)} computes @math{ \atan(x) / \pi}.
+@code{ATANPI(Y, X)} computes @math{ {\rm atan2}(y, x) / \pi}.
+These provide a measure of an angle in half-revolutions.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@multitable @columnfractions .80
+@item @code{RESULT = ATANPI(X)}
+@item @code{RESULT = ATANPI(Y, X)}
+@end multitable
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{Y} @tab The type shall be @code{REAL}.
+@item @var{X} @tab If @var{Y} appears, @var{X} shall have the same type
+and kind as @var{Y}. If @var{Y} is zero, then @var{X} shall not be zero.
+If @var{Y} does not appear in a function reference, then @var{X} shall be
+@code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value has the same type and kind as @var{X}.
+It is expressed in half-revolutions and satisfies
+@math{ -0.5 \leq \atanpi (x) \leq 0.5}.
+
+@item @emph{Example}:
+@smallexample
+program test_atanpi
+ implicit none
+ real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
+ real, parameter :: a = atanpi(x), b(3) = atanpi(y)
+ call foo(x, y)
+contains
+ subroutine foo(u, v)
+ real, intent(in) :: u, v(:)
+ real :: f, g(size(v))
+ f = atanpi(u)
+ g = atanpi(v)
+ if (abs(a - f) > 8 * epsilon(f)) stop 1
+ if (any(abs(g - b) > 8 * epsilon(f))) stop 2
+ end subroutine foo
+end program test_atanpi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ACOSPI} @*
+@ref{ASINPI} @*
+@ref{ATAN2PI} @*
+@end table
+
+
+
@node ATOMIC_ADD
@section @code{ATOMIC_ADD} --- Atomic ADD operation
@fnindex ATOMIC_ADD
@@ -4386,6 +4630,57 @@ Inverse function: @*
+@node COSPI
+@section @code{COSPI} --- Circular cosine function
+@fnindex COSPI
+@cindex trigonometric function, cosine
+@cindex cosine
+
+@table @asis
+@item @emph{Description}:
+@code{COSPI(X)} computes @math{\cos(\pi x)} without performing
+an explicit multiplication by @math{\pi}. This is achieved
+through argument reduction where @math{ x = n + r } with
+@math{n} an integer and @math{0 \leq r \le 1}.
+Due to the
+properties of floating-point arithmetic, the useful range
+for @var{X} is defined by
+@code{ABS(X) <= REAL(2,KIND(X))**DIGITS(X)}.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = COSPI(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+The result is in half-revolutions and satisfies
+@math{ -1 \leq \cospi (x) \leq 1}.
+
+@item @emph{Example}:
+@smallexample
+program test_cospi
+ real :: x = 0.0
+ x = cospi(x)
+end program test_cospi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ACOSPI} @*
+@ref{COS} @*
+@end table
+
+
+
@node COTAN
@section @code{COTAN} --- Cotangent function
@fnindex COTAN
@@ -6706,9 +7001,11 @@ Subroutine, function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab An open I/O unit number of type @code{INTEGER}.
-@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
-@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
-on success and a system specific error code otherwise.
+@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(13)}
+of the default kind.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}
+of the default kind.
+Returns 0 on success and a system specific error code otherwise.
@end multitable
@item @emph{Example}:
@@ -7336,6 +7633,59 @@ GNU extension
+@node GET_TEAM
+@section @code{GET_TEAM} --- Get the handle of a team
+@fnindex GET_TEAM
+@cindex coarray, @code{GET_TEAM}
+@cindex images, get a handle to a team
+
+@table @asis
+@item @emph{Synopsis}:
+@code{RESULT = GET_TEAM([LEVEL])}
+
+@item @emph{Description}:
+Returns the handle of the current team, if @var{LEVEL} is not given. Or the
+team specified by @var{LEVEL}, where @var{LEVEL} is one of the constants
+@code{INITIAL_TEAM}, @code{PARENT_TEAM} or @code{CURRENT_TEAM} from the
+intrinsic module @code{ISO_FORTRAN_ENV}. Calling the function with
+@code{PARENT_TEAM} while being on the initial team, returns a handle to the
+initial team. This ensures that always a valid team is returned, given that
+team handles can neither be checked for validity nor compared with each other
+or null.
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Return value}:
+An opaque handle of @code{TEAM_TYPE} from the intrinsic module
+@code{ISO_FORTRAN_ENV}.
+
+@item @emph{Example}:
+@smallexample
+program info
+ use, intrinsic :: iso_fortran_env
+ type(team_type) :: init, curr, par, nt
+
+ init = get_team()
+ curr = get_team(current_team) ! init equals curr here
+ form team(1, nt)
+ change team(nt)
+ curr = get_team() ! or get_team(current_team)
+ par = get_team(parent_team) ! par equals init here
+ end team
+end program info
+@end smallexample
+
+@item @emph{Standard}:
+Fortran 2018 or later
+
+@item @emph{See also}:
+@ref{THIS_IMAGE}, @*
+@ref{ISO_FORTRAN_ENV}
+@end table
+
+
+
@node GETUID
@section @code{GETUID} --- User ID function
@fnindex GETUID
@@ -9958,8 +10308,10 @@ Subroutine, function
@multitable @columnfractions .15 .70
@item @var{NAME} @tab The type shall be @code{CHARACTER} of the default
kind, a valid path within the file system.
-@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
-@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}.
+@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(13)}
+of the default kind.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}
+of the default kind.
Returns 0 on success and a system specific error code otherwise.
@end multitable
@@ -11372,47 +11724,48 @@ Fortran 95 and later
@table @asis
@item @emph{Synopsis}:
-@code{RESULT = NUM_IMAGES(DISTANCE, FAILED)}
+@multitable @columnfractions .80
+@item @code{RESULT = NUM_IMAGES([TEAM])}
+@item @code{RESULT = NUM_IMAGES(TEAM_NUMBER)}
+@end multitable
@item @emph{Description}:
-Returns the number of images.
+Returns the number of images in the current team or the given team.
@item @emph{Class}:
Transformational function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
-@item @var{DISTANCE} @tab (optional, intent(in)) Nonnegative scalar integer
-@item @var{FAILED} @tab (optional, intent(in)) Scalar logical expression
+@item @var{TEAM} @tab (optional, intent(in)) If present, return the number of
+images in the given team; if absent, return the number of images in the
+current team.
+@item @var{TEAM_NUMBER} @tab (intent(in)) The number as given in the
+@code{FORM TEAM} statement.
@end multitable
@item @emph{Return value}:
-Scalar default-kind integer. If @var{DISTANCE} is not present or has value 0,
-the number of images in the current team is returned. For values smaller or
-equal distance to the initial team, it returns the number of images index
-on the ancestor team that has a distance of @var{DISTANCE} from the invoking
-team. If @var{DISTANCE} is larger than the distance to the initial team, the
-number of images of the initial team is returned. If @var{FAILED} is not present
-the total number of images is returned; if it has the value @code{.TRUE.},
-the number of failed images is returned, otherwise, the number of images that
-do have not the failed status.
+Scalar default-kind integer. Can be called without any arguments or a team
+type argument or a team_number argument.
@item @emph{Example}:
@smallexample
+use, intrinsic :: iso_fortran_env
INTEGER :: value[*]
INTEGER :: i
-value = THIS_IMAGE()
-SYNC ALL
-IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
-END IF
+type(team_type) :: t
+
+! When running with 4 images
+print *, num_images() ! 4
+
+form team (mod(this_image(), 2), t)
+print *, num_images(t) ! 2
+print *, num_images(-1) ! 4
@end smallexample
@item @emph{Standard}:
-Fortran 2008 and later. With @var{DISTANCE} or @var{FAILED} argument,
-Technical Specification (TS) 18508 or later
+Fortran 2008 and later. With @var{TEAM} or @var{TEAM_NUMBER} argument,
+Fortran 2018 and later.
@item @emph{See also}:
@ref{THIS_IMAGE}, @*
@@ -13618,6 +13971,57 @@ a GNU extension
+@node SINPI
+@section @code{SINPI} --- Circular sine function
+@fnindex SINPI
+@cindex trigonometric function, sine
+@cindex sine
+
+@table @asis
+@item @emph{Description}:
+@code{SINPI(X)} computes @math{\sin(\pi x)} without performing
+an explicit multiplication by @math{\pi}. This is achieved
+through argument reduction where @math{ |x| = n + r } with
+@math{n} an integer and @math{0 \leq r \le 1}.
+Due to the
+properties of floating-point arithmetic, the useful range
+for @var{X} is defined by
+@code{ABS(X) <= REAL(2,KIND(X))**DIGITS(X)}.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = SINPI(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+The result is in half-revolutions and satisfies
+@math{ -1 \leq \sinpi (x) \leq 1}.
+
+@item @emph{Example}:
+@smallexample
+program test_sinpi
+ real :: x = 0.0
+ x = sinpi(x)
+end program test_sinpi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ASINPI} @*
+@ref{SIN} @*
+@end table
+
+
+
@node SIZE
@section @code{SIZE} --- Determine the size of an array
@fnindex SIZE
@@ -13991,6 +14395,8 @@ The elements that are obtained and stored in the array @code{VALUES}:
Not all these elements are relevant on all systems.
If an element is not relevant, it is returned as 0.
+If the value of an element would overflow the range of default integer,
+a -1 is returned instead.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@@ -14002,9 +14408,11 @@ Subroutine, function
@multitable @columnfractions .15 .70
@item @var{NAME} @tab The type shall be @code{CHARACTER}, of the
default kind and a valid path within the file system.
-@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
-@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
-on success and a system specific error code otherwise.
+@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(13)}
+of the default kind.
+@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}
+of the default kind.
+Returns 0 on success and a system specific error code otherwise.
@end multitable
@item @emph{Example}:
@@ -14467,6 +14875,103 @@ Fortran 77 and later, for a complex argument Fortran 2008 or later
+@node TEAM_NUMBER
+@section @code{TEAM_NUMBER} --- Retrieve team id of given team
+@fnindex TEAM_NUMBER
+@cindex coarray, @code{TEAM_NUMBER}
+@cindex teams, index of given team
+
+@table @asis
+@item @emph{Synopsis}:
+@item @code{RESULT = TEAM_NUMBER([TEAM])}
+
+@item @emph{Description}:
+Returns the team id for the given @var{TEAM} as assigned by @code{FORM TEAM}.
+If @var{TEAM} is absent, returns the team number of the current team.
+
+@item @emph{Class}:
+Transformational function
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{TEAM} @tab (optional, intent(in)) The handle of the team for which
+the number, aka id, is desired.
+@end multitable
+
+@item @emph{Return value}:
+Default integer. The id as given in a call @code{FORM TEAM}. Applying
+@code{TEAM_NUMBER} to the initial team will result in @code{-1} to be returned.
+Returns the id of the current team, if @var{TEAM} is null.
+
+@item @emph{Example}:
+@smallexample
+use, intrinsic :: iso_fortran_env
+type(team_type) :: t
+
+print *, team_number() ! -1
+form team (99, t)
+print *, team_number(t) ! 99
+@end smallexample
+
+@item @emph{Standard}:
+Fortran 2018 and later.
+
+@item @emph{See also}:
+@ref{GET_TEAM}, @*
+@ref{TEAM_NUMBER}
+@end table
+
+
+
+@node TANPI
+@section @code{TANPI} --- Circular tangent function
+@fnindex TANPI
+@cindex trigonometric function, tangent
+@cindex tangent
+
+@table @asis
+@item @emph{Description}:
+@code{TANPI(X)} computes @math{\tan(\pi x)} without performing
+an explicit multiplication by @math{\pi}. This is achieved
+through argument reduction where @math{ |x| = n + r } with
+@math{n} an integer and @math{0 \leq r \le 1}.
+Due to the
+properties of floating-point arithmetic, the useful range
+for @var{X} is defined by
+@code{ABS(X) <= REAL(2,KIND(X))**DIGITS(X)}.
+
+@item @emph{Standard}:
+Fortran 2023
+
+@item @emph{Class}:
+Elemental function
+
+@item @emph{Syntax}:
+@code{RESULT = TANPI(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .70
+@item @var{X} @tab The type shall be @code{REAL}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of the same type and kind as @var{X}.
+
+@item @emph{Example}:
+@smallexample
+program test_tanpi
+ real :: x = 0.0
+ x = tanpi(x)
+end program test_tanpi
+@end smallexample
+
+@item @emph{See also}:
+@ref{ATANPI} @*
+@ref{TAN} @*
+@end table
+
+
+
@node THIS_IMAGE
@section @code{THIS_IMAGE} --- Function that returns the cosubscript index of this image
@fnindex THIS_IMAGE
@@ -14476,9 +14981,8 @@ Fortran 77 and later, for a complex argument Fortran 2008 or later
@table @asis
@item @emph{Synopsis}:
@multitable @columnfractions .80
-@item @code{RESULT = THIS_IMAGE()}
-@item @code{RESULT = THIS_IMAGE(DISTANCE)}
-@item @code{RESULT = THIS_IMAGE(COARRAY [, DIM])}
+@item @code{RESULT = THIS_IMAGE([TEAM])}
+@item @code{RESULT = THIS_IMAGE(COARRAY [, DIM][, TEAM])}
@end multitable
@item @emph{Description}:
@@ -14489,8 +14993,8 @@ Transformational function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
-@item @var{DISTANCE} @tab (optional, intent(in)) Nonnegative scalar integer
-(not permitted together with @var{COARRAY}).
+@item @var{TEAM} @tab (optional, intent(in)) The team for which the index of
+this image is desired. The current team is used, when no team is given.
@item @var{COARRAY} @tab Coarray of any type (optional; if @var{DIM}
present, required).
@item @var{DIM} @tab default integer scalar (optional). If present,
@@ -14499,16 +15003,16 @@ present, required).
@item @emph{Return value}:
Default integer. If @var{COARRAY} is not present, it is scalar; if
-@var{DISTANCE} is not present or has value 0, its value is the image index on
-the invoking image for the current team, for values smaller or equal
-distance to the initial team, it returns the image index on the ancestor team
-that has a distance of @var{DISTANCE} from the invoking team. If
-@var{DISTANCE} is larger than the distance to the initial team, the image
-index of the initial team is returned. Otherwise when the @var{COARRAY} is
+@var{TEAM} is not present, its value is the image index on the invoking image
+for the current team; if @var{TEAM} is present, returns the image index of
+the invoking image as given to the @code{FORM TEAM (..., NEW_INDEX=..)} call,
+or a implementation specific unique number, when @code{NEW_INDEX=} was absent
+from @code{FORM TEAM}. Otherwise when the @var{COARRAY} is
present, if @var{DIM} is not present, a rank-1 array with corank elements is
returned, containing the cosubscripts for @var{COARRAY} specifying the invoking
-image. If @var{DIM} is present, a scalar is returned, with the value of
-the @var{DIM} element of @code{THIS_IMAGE(COARRAY)}.
+image (in the team when @var{TEAM} is present). If @var{DIM} is present, a
+scalar is returned, with the value of the @var{DIM} element of
+@code{THIS_IMAGE(COARRAY)}.
@item @emph{Example}:
@smallexample
@@ -14523,13 +15027,12 @@ IF (THIS_IMAGE() == 1) THEN
END IF
! Check whether the current image is the initial image
-IF (THIS_IMAGE(HUGE(1)) /= THIS_IMAGE())
+IF (THIS_IMAGE(GET_TEAM(INITIAL_TEAM)) /= THIS_IMAGE())
error stop "something is rotten here"
@end smallexample
@item @emph{Standard}:
-Fortran 2008 and later. With @var{DISTANCE} argument,
-Technical Specification (TS) 18508 or later
+Fortran 2008 and later. With @var{TEAM} argument, Fortran 2018 or later
@item @emph{See also}:
@ref{NUM_IMAGES}, @*
@@ -15354,12 +15857,18 @@ parameters of the @code{CHARACTER} type. (Fortran 2008 or later.)
@item @code{CHARACTER_STORAGE_SIZE}:
Size in bits of the character storage unit.
+@item @code{CURRENT_TEAM}:
+The argument to @ref{GET_TEAM} to retrieve a handle of the current team.
+
@item @code{ERROR_UNIT}:
Identifies the preconnected unit used for error reporting.
@item @code{FILE_STORAGE_SIZE}:
Size in bits of the file-storage unit.
+@item @code{INTIAL_TEAM}:
+Argument to @ref{GET_TEAM} to retrieve a handle of the initial team.
+
@item @code{INPUT_UNIT}:
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{READ} statement.
@@ -15397,6 +15906,9 @@ parameters of the @code{LOGICAL} type. (Fortran 2008 or later.)
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{WRITE} statement.
+@item @code{PARENT_TEAM}:
+Argument to @ref{GET_TEAM} to retrieve a handle to the parent team.
+
@item @code{REAL32}, @code{REAL64}, @code{REAL128}:
Kind type parameters to specify a REAL type with a storage
size of 32, 64, and 128 bits. It is negative if a target platform
@@ -15445,6 +15957,10 @@ Derived type with private components to be use with the @code{LOCK} and
@code{UNLOCK} statement. A variable of its type has to be always declared
as coarray and may not appear in a variable-definition context.
(Fortran 2008 or later.)
+@item @code{TEAM_TYPE}:
+An opaque type for handling teams. Note that a variable of type
+@code{TEAM_TYPE} is not comparable with other variables of the same or other
+types nor with null.
@end table
The module also provides the following intrinsic procedures: