aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-lookup.c
blob: 8accb2ed99e52935e576dbe48e4a99beb5cacead (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
/* Symbol, variable and name lookup.
   Copyright (C) 2019-2024 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <elf.h>
#include <string.h>
#include <assert.h>

/* Grow the pptrtab so that it is at least NEW_LEN long.  */
static int
grow_pptrtab (ctf_dict_t *fp, size_t new_len)
{
  uint32_t *new_pptrtab;

  if ((new_pptrtab = realloc (fp->ctf_pptrtab, sizeof (uint32_t)
			      * new_len)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));

  fp->ctf_pptrtab = new_pptrtab;

  memset (fp->ctf_pptrtab + fp->ctf_pptrtab_len, 0,
	  sizeof (uint32_t) * (new_len - fp->ctf_pptrtab_len));

  fp->ctf_pptrtab_len = new_len;
  return 0;
}

/* Update entries in the pptrtab that relate to types newly added in the
   child.  */
static int
refresh_pptrtab (ctf_dict_t *fp, ctf_dict_t *pfp)
{
  uint32_t i;
  for (i = fp->ctf_pptrtab_typemax; i <= fp->ctf_typemax; i++)
    {
      ctf_id_t type = LCTF_INDEX_TO_TYPE (fp, i, 1);
      ctf_id_t reffed_type;

      if (ctf_type_kind (fp, type) != CTF_K_POINTER)
	continue;

      reffed_type = ctf_type_reference (fp, type);

      if (LCTF_TYPE_ISPARENT (fp, reffed_type))
	{
	  uint32_t idx = LCTF_TYPE_TO_INDEX (fp, reffed_type);

	  /* Guard against references to invalid types.  No need to consider
	     the CTF dict corrupt in this case: this pointer just can't be a
	     pointer to any type we know about.  */
	  if (idx <= pfp->ctf_typemax)
	    {
	      if (idx >= fp->ctf_pptrtab_len
		  && grow_pptrtab (fp, pfp->ctf_ptrtab_len) < 0)
		return -1;			/* errno is set for us.  */

	      fp->ctf_pptrtab[idx] = i;
	    }
	}
    }

  fp->ctf_pptrtab_typemax = fp->ctf_typemax;

  return 0;
}

/* Compare the given input string and length against a table of known C storage
   qualifier keywords.  We just ignore these in ctf_lookup_by_name, below.  To
   do this quickly, we use a pre-computed Perfect Hash Function similar to the
   technique originally described in the classic paper:

   R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
   Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.

   For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
   for the current set of qualifiers yields a unique H in the range [0 .. 20].
   The hash can be modified when the keyword set changes as necessary.  We also
   store the length of each keyword and check it prior to the final strcmp().

   TODO: just use gperf.  */

static int
isqualifier (const char *s, size_t len)
{
  static const struct qual
  {
    const char *q_name;
    size_t q_len;
  } qhash[] = {
    {"static", 6}, {"", 0}, {"", 0}, {"", 0},
    {"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
    {"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
    {"", 0}, {"", 0}, {"const", 5}, {"register", 8},
    {"", 0}, {"restrict", 8}, {"_Restrict", 9}
  };

  int h = s[len - 1] + (int) len - 105;
  const struct qual *qp;

  if (h < 0 || (size_t) h >= sizeof (qhash) / sizeof (qhash[0]))
    return 0;

  qp = &qhash[h];

  return ((size_t) len == qp->q_len &&
	  strncmp (qp->q_name, s, qp->q_len) == 0);
}

/* Attempt to convert the given C type name into the corresponding CTF type ID.
   It is not possible to do complete and proper conversion of type names
   without implementing a more full-fledged parser, which is necessary to
   handle things like types that are function pointers to functions that
   have arguments that are function pointers, and fun stuff like that.
   Instead, this function implements a very simple conversion algorithm that
   finds the things that we actually care about: structs, unions, enums,
   integers, floats, typedefs, and pointers to any of these named types.  */

static ctf_id_t
ctf_lookup_by_name_internal (ctf_dict_t *fp, ctf_dict_t *child,
			     const char *name)
{
  static const char delimiters[] = " \t\n\r\v\f*";

  const ctf_lookup_t *lp;
  const char *p, *q, *end;
  ctf_id_t type = 0;
  ctf_id_t ntype, ptype;

  if (name == NULL)
    return (ctf_set_typed_errno (fp, EINVAL));

  for (p = name, end = name + strlen (name); *p != '\0'; p = q)
    {
      while (isspace ((int) *p))
	p++;			/* Skip leading whitespace.  */

      if (p == end)
	break;

      if ((q = strpbrk (p + 1, delimiters)) == NULL)
	q = end;		/* Compare until end.  */

      if (*p == '*')
	{
	  /* Find a pointer to type by looking in child->ctf_pptrtab (if child
	     is set) and fp->ctf_ptrtab.  If we can't find a pointer to the
	     given type, see if we can compute a pointer to the type resulting
	     from resolving the type down to its base type and use that instead.
	     This helps with cases where the CTF data includes "struct foo *"
	     but not "foo_t *" and the user tries to access "foo_t *" in the
	     debugger.

	     There is extra complexity here because uninitialized elements in
	     the pptrtab and ptrtab are set to zero, but zero (as the type ID
	     meaning the unimplemented type) is a valid return type from
	     ctf_lookup_by_name.  (Pointers to types are never of type 0, so
	     this is unambiguous, just fiddly to deal with.)  */

	  uint32_t idx = LCTF_TYPE_TO_INDEX (fp, type);
	  int in_child = 0;

	  ntype = CTF_ERR;
	  if (child && idx < child->ctf_pptrtab_len)
	    {
	      ntype = child->ctf_pptrtab[idx];
	      if (ntype)
		in_child = 1;
	      else
		ntype = CTF_ERR;
	    }

	  if (ntype == CTF_ERR)
	    {
	      ntype = fp->ctf_ptrtab[idx];
	      if (ntype == 0)
		ntype = CTF_ERR;
	    }

	  /* Try resolving to its base type and check again.  */
	  if (ntype == CTF_ERR)
	    {
	      if (child)
		ntype = ctf_type_resolve_unsliced (child, type);
	      else
		ntype = ctf_type_resolve_unsliced (fp, type);

	      if (ntype == CTF_ERR)
		goto notype;

	      idx = LCTF_TYPE_TO_INDEX (fp, ntype);

	      ntype = CTF_ERR;
	      if (child && idx < child->ctf_pptrtab_len)
		{
		  ntype = child->ctf_pptrtab[idx];
		  if (ntype)
		    in_child = 1;
		  else
		    ntype = CTF_ERR;
		}

	      if (ntype == CTF_ERR)
		{
		  ntype = fp->ctf_ptrtab[idx];
		  if (ntype == 0)
		    ntype = CTF_ERR;
		}
	      if (ntype == CTF_ERR)
		goto notype;
	    }

	  type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)
				     || in_child);

	  /* We are looking up a type in the parent, but the pointed-to type is
	     in the child.  Switch to looking in the child: if we need to go
	     back into the parent, we can recurse again.  */
	  if (in_child)
	    {
	      fp = child;
	      child = NULL;
	    }

	  q = p + 1;
	  continue;
	}

      if (isqualifier (p, (size_t) (q - p)))
	continue;		/* Skip qualifier keyword.  */

      for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
	{
	  /* TODO: This is not MT-safe.  */
	  if ((lp->ctl_prefix[0] == '\0' ||
	       strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
	      (size_t) (q - p) >= lp->ctl_len)
	    {
	      for (p += lp->ctl_len; isspace ((int) *p); p++)
		continue;	/* Skip prefix and next whitespace.  */

	      if ((q = strchr (p, '*')) == NULL)
		q = end;	/* Compare until end.  */

	      while (isspace ((int) q[-1]))
		q--;		/* Exclude trailing whitespace.  */

	      /* Expand and/or allocate storage for a slice of the name, then
		 copy it in.  */

	      if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
		{
		  memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
		  fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
		}
	      else
		{
		  free (fp->ctf_tmp_typeslice);
		  fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
		  if (fp->ctf_tmp_typeslice == NULL)
		    return ctf_set_typed_errno (fp, ENOMEM);
		}

	      if ((type = (ctf_id_t) (uintptr_t)
		   ctf_dynhash_lookup (lp->ctl_hash,
				       fp->ctf_tmp_typeslice)) == 0)
		goto notype;

	      break;
	    }
	}

      if (lp->ctl_prefix == NULL)
	goto notype;
    }

  if (*p != '\0' || type == 0)
    return (ctf_set_typed_errno (fp, ECTF_SYNTAX));

  return type;

 notype:
  ctf_set_errno (fp, ECTF_NOTYPE);
  if (fp->ctf_parent != NULL)
    {
      /* Need to look up in the parent, from the child's perspective.
	 Make sure the pptrtab is up to date.  */

      if (fp->ctf_pptrtab_typemax < fp->ctf_typemax)
	{
	  if (refresh_pptrtab (fp, fp->ctf_parent) < 0)
	    return CTF_ERR;			/* errno is set for us.  */
	}

      if ((ptype = ctf_lookup_by_name_internal (fp->ctf_parent, fp,
						name)) != CTF_ERR)
	return ptype;
      return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
    }

  return CTF_ERR;
}

ctf_id_t
ctf_lookup_by_name (ctf_dict_t *fp, const char *name)
{
  return ctf_lookup_by_name_internal (fp, NULL, name);
}

/* Return the pointer to the internal CTF type data corresponding to the
   given type ID.  If the ID is invalid, the function returns NULL.
   This function is not exported outside of the library.  */

const ctf_type_t *
ctf_lookup_by_id (ctf_dict_t **fpp, ctf_id_t type)
{
  ctf_dict_t *fp = *fpp;
  ctf_id_t idx;

  if ((fp = ctf_get_dict (fp, type)) == NULL)
    {
      (void) ctf_set_errno (*fpp, ECTF_NOPARENT);
      return NULL;
    }

  idx = LCTF_TYPE_TO_INDEX (fp, type);
  if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
    {
      *fpp = fp;		/* Possibly the parent CTF dict.  */
      return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
    }

  (void) ctf_set_errno (*fpp, ECTF_BADID);
  return NULL;
}

typedef struct ctf_lookup_idx_key
{
  ctf_dict_t *clik_fp;
  const char *clik_name;
  uint32_t *clik_names;
} ctf_lookup_idx_key_t;

/* A bsearch function for variable names.  */

static int
ctf_lookup_var (const void *key_, const void *lookup_)
{
  const ctf_lookup_idx_key_t *key = key_;
  const ctf_varent_t *lookup = lookup_;

  return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, lookup->ctv_name)));
}

/* Given a variable name, return the type of the variable with that name.
   Look only in this dict, not in the parent. */

ctf_id_t
ctf_lookup_variable_here (ctf_dict_t *fp, const char *name)
{
  ctf_dvdef_t *dvd = ctf_dvd_lookup (fp, name);
  ctf_varent_t *ent;
  ctf_lookup_idx_key_t key = { fp, name, NULL };

  if (dvd != NULL)
    return dvd->dvd_type;

  /* This array is sorted, so we can bsearch for it.  */

  ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
		 ctf_lookup_var);

  if (ent == NULL)
      return (ctf_set_typed_errno (fp, ECTF_NOTYPEDAT));

  return ent->ctv_type;
}

/* As above, but look in the parent too.  */

ctf_id_t
ctf_lookup_variable (ctf_dict_t *fp, const char *name)
{
  ctf_id_t type;

  if ((type = ctf_lookup_variable_here (fp, name)) == CTF_ERR)
    {
      if (ctf_errno (fp) == ECTF_NOTYPEDAT && fp->ctf_parent != NULL)
	{
	  if ((type = ctf_lookup_variable_here (fp->ctf_parent, name)) != CTF_ERR)
	    return type;
	  return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
	}

      return -1;				/* errno is set for us.  */
    }

  return type;
}

/* Look up a single enumerator by enumeration constant name.  Returns the ID of
   the enum it is contained within and optionally its value.  Error out with
   ECTF_DUPLICATE if multiple exist (which can happen in some older dicts).  See
   ctf_lookup_enumerator_next in that case.  Enumeration constants in non-root
   types are not returned, but constants in parents are, if not overridden by
   an enum in the child..  */

ctf_id_t
ctf_lookup_enumerator (ctf_dict_t *fp, const char *name, int64_t *enum_value)
{
  ctf_id_t type;
  int enum_int_value;

  if (ctf_dynset_lookup (fp->ctf_conflicting_enums, name))
    return (ctf_set_typed_errno (fp, ECTF_DUPLICATE));

  /* CTF_K_UNKNOWN suffices for things like enumeration constants that aren't
     actually types at all (ending up in the global name table).  */
  type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name);
  /* Nonexistent type? It may be in the parent.  */
  if (type == 0 && fp->ctf_parent)
    {
      if ((type = ctf_lookup_enumerator (fp->ctf_parent, name, enum_value)) == 0)
	return ctf_set_typed_errno (fp, ECTF_NOENUMNAM);
      return type;
    }

  /* Nothing more to do if this type didn't exist or we don't have to look up
     the enum value.  */
  if (type == 0)
    return ctf_set_typed_errno (fp, ECTF_NOENUMNAM);

  if (enum_value == NULL)
    return type;

  if (ctf_enum_value (fp, type, name, &enum_int_value) < 0)
    return CTF_ERR;
  *enum_value = enum_int_value;

  return type;
}

/* Return all enumeration constants with a given name in a given dict, similar
   to ctf_lookup_enumerator above but capable of returning multiple values.
   Enumerators in parent dictionaries are not returned: enumerators in
   hidden types *are* returned.  */

ctf_id_t
ctf_lookup_enumerator_next (ctf_dict_t *fp, const char *name,
			    ctf_next_t **it, int64_t *val)
{
  ctf_next_t *i = *it;
  int found = 0;

  /* We use ctf_type_next() to iterate across all types, but then traverse each
     enumerator found by hand: traversing enumerators is very easy, and it would
     probably be more confusing to use two nested iterators than to do it this
     way.  We use ctn_next to work over enums, then ctn_en and ctn_n to work
     over enumerators within each enum.  */
  if (!i)
    {
      if ((i = ctf_next_create ()) == NULL)
	return ctf_set_typed_errno (fp, ENOMEM);

      i->cu.ctn_fp = fp;
      i->ctn_iter_fun = (void (*) (void)) ctf_lookup_enumerator_next;
      i->ctn_increment = 0;
      i->ctn_tp = NULL;
      i->u.ctn_en = NULL;
      i->ctn_n = 0;
      *it = i;
    }

  if ((void (*) (void)) ctf_lookup_enumerator_next != i->ctn_iter_fun)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));

  if (fp != i->cu.ctn_fp)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));

  do
    {
      const char *this_name;

      /* At end of enum? Traverse to next one, if any are left.  */

      if (i->u.ctn_en == NULL || i->ctn_n == 0)
	{
	  const ctf_type_t *tp;
	  ctf_dtdef_t *dtd;

	  do
	    i->ctn_type = ctf_type_next (i->cu.ctn_fp, &i->ctn_next, NULL, 1);
	  while (i->ctn_type != CTF_ERR
		 && ctf_type_kind_unsliced (i->cu.ctn_fp, i->ctn_type)
		 != CTF_K_ENUM);

	  if (i->ctn_type == CTF_ERR)
	    {
	      /* Conveniently, when the iterator over all types is done, so is the
		 iteration as a whole: so we can just pass all errors from the
		 internal iterator straight back out..  */
	      ctf_next_destroy (i);
	      *it = NULL;
	      return CTF_ERR;			/* errno is set for us.  */
	    }

	  if ((tp = ctf_lookup_by_id (&fp, i->ctn_type)) == NULL)
	    return CTF_ERR;			/* errno is set for us.  */
	  i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);

	  dtd = ctf_dynamic_type (fp, i->ctn_type);

	  if (dtd == NULL)
	    {
	      (void) ctf_get_ctt_size (fp, tp, NULL, &i->ctn_increment);
	      i->u.ctn_en = (const ctf_enum_t *) ((uintptr_t) tp +
						  i->ctn_increment);
	    }
	  else
	    i->u.ctn_en = (const ctf_enum_t *) dtd->dtd_vlen;
	}

      this_name = ctf_strptr (fp, i->u.ctn_en->cte_name);

      i->ctn_n--;

      if (strcmp (name, this_name) == 0)
	{
	  if (val)
	    *val = i->u.ctn_en->cte_value;
	  found = 1;

	  /* Constant found in this enum: try the next one.  (Constant names
	     cannot be duplicated within a given enum.)  */

	  i->ctn_n = 0;
	}

      i->u.ctn_en++;
    }
  while (!found);

  return i->ctn_type;
}

typedef struct ctf_symidx_sort_arg_cb
{
  ctf_dict_t *fp;
  uint32_t *names;
} ctf_symidx_sort_arg_cb_t;

static int
sort_symidx_by_name (const void *one_, const void *two_, void *arg_)
{
  const uint32_t *one = one_;
  const uint32_t *two = two_;
  ctf_symidx_sort_arg_cb_t *arg = arg_;

  return (strcmp (ctf_strptr (arg->fp, arg->names[*one]),
		  ctf_strptr (arg->fp, arg->names[*two])));
}

/* Sort a symbol index section by name.  Takes a 1:1 mapping of names to the
   corresponding symbol table.  Returns a lexicographically sorted array of idx
   indexes (and thus, of indexes into the corresponding func info / data object
   section).  */

static uint32_t *
ctf_symidx_sort (ctf_dict_t *fp, uint32_t *idx, size_t *nidx,
			 size_t len)
{
  uint32_t *sorted;
  size_t i;

  if ((sorted = malloc (len)) == NULL)
    {
      ctf_set_errno (fp, ENOMEM);
      return NULL;
    }

  *nidx = len / sizeof (uint32_t);
  for (i = 0; i < *nidx; i++)
    sorted[i] = i;

  if (!(fp->ctf_header->cth_flags & CTF_F_IDXSORTED))
    {
      ctf_symidx_sort_arg_cb_t arg = { fp, idx };
      ctf_dprintf ("Index section unsorted: sorting.\n");
      ctf_qsort_r (sorted, *nidx, sizeof (uint32_t), sort_symidx_by_name, &arg);
      fp->ctf_header->cth_flags |= CTF_F_IDXSORTED;
    }

  return sorted;
}

/* Given a symbol index, return the name of that symbol from the table provided
   by ctf_link_shuffle_syms, or failing that from the secondary string table, or
   the null string.  */
static const char *
ctf_lookup_symbol_name (ctf_dict_t *fp, unsigned long symidx)
{
  const ctf_sect_t *sp = &fp->ctf_ext_symtab;
  ctf_link_sym_t sym;
  int err;

  if (fp->ctf_dynsymidx)
    {
      err = EINVAL;
      if (symidx > fp->ctf_dynsymmax)
	goto try_parent;

      ctf_link_sym_t *symp = fp->ctf_dynsymidx[symidx];

      if (!symp)
	goto try_parent;

      return symp->st_name;
    }

  err = ECTF_NOSYMTAB;
  if (sp->cts_data == NULL)
    goto try_parent;

  if (symidx >= fp->ctf_nsyms)
    goto try_parent;

  switch (sp->cts_entsize)
    {
    case sizeof (Elf64_Sym):
      {
	const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
	ctf_elf64_to_link_sym (fp, &sym, symp, symidx);
      }
      break;
    case sizeof (Elf32_Sym):
      {
	const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
	ctf_elf32_to_link_sym (fp, &sym, symp, symidx);
      }
      break;
    default:
      ctf_set_errno (fp, ECTF_SYMTAB);
      return _CTF_NULLSTR;
    }

  assert (!sym.st_nameidx_set);

  return sym.st_name;

 try_parent:
  if (fp->ctf_parent)
    {
      const char *ret;
      ret = ctf_lookup_symbol_name (fp->ctf_parent, symidx);
      if (ret == NULL)
	ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
      return ret;
    }
  else
    {
      ctf_set_errno (fp, err);
      return _CTF_NULLSTR;
    }
}

/* Given a symbol name, return the index of that symbol, or -1 on error or if
   not found.  If is_function is >= 0, return only function or data object
   symbols, respectively.  */
static unsigned long
ctf_lookup_symbol_idx (ctf_dict_t *fp, const char *symname, int try_parent,
		       int is_function)
{
  const ctf_sect_t *sp = &fp->ctf_ext_symtab;
  ctf_link_sym_t sym;
  void *known_idx;
  int err;
  ctf_dict_t *cache = fp;

  if (fp->ctf_dynsyms)
    {
      err = EINVAL;

      ctf_link_sym_t *symp;

      if (((symp = ctf_dynhash_lookup (fp->ctf_dynsyms, symname)) == NULL)
	  || (symp->st_type != STT_OBJECT && is_function == 0)
	  || (symp->st_type != STT_FUNC && is_function == 1))
	goto try_parent;

      return symp->st_symidx;
    }

  err = ECTF_NOSYMTAB;
  if (sp->cts_data == NULL)
    goto try_parent;

  /* First, try a hash lookup to see if we have already spotted this symbol
     during a past iteration: create the hash first if need be.  The
     lifespan of the strings is equal to the lifespan of the cts_data, so we
     don't need to strdup them.  If this dict was opened as part of an
     archive, and this archive has a crossdict_cache to cache results that
     are the same across all dicts in an archive, use it.  */

  if (fp->ctf_archive && fp->ctf_archive->ctfi_crossdict_cache)
    cache = fp->ctf_archive->ctfi_crossdict_cache;

  if (!cache->ctf_symhash_func)
    if ((cache->ctf_symhash_func = ctf_dynhash_create (ctf_hash_string,
						       ctf_hash_eq_string,
						       NULL, NULL)) == NULL)
      goto oom;

  if (!cache->ctf_symhash_objt)
    if ((cache->ctf_symhash_objt = ctf_dynhash_create (ctf_hash_string,
						       ctf_hash_eq_string,
						       NULL, NULL)) == NULL)
      goto oom;

  if (is_function != 0 &&
      ctf_dynhash_lookup_kv (cache->ctf_symhash_func, symname, NULL, &known_idx))
    return (unsigned long) (uintptr_t) known_idx;

  if (is_function != 1 &&
      ctf_dynhash_lookup_kv (cache->ctf_symhash_objt, symname, NULL, &known_idx))
    return (unsigned long) (uintptr_t) known_idx;

  /* Hash lookup unsuccessful: linear search, populating the hashtab for later
     lookups as we go.  */

  for (; cache->ctf_symhash_latest < sp->cts_size / sp->cts_entsize;
       cache->ctf_symhash_latest++)
    {
      ctf_dynhash_t *h;

      switch (sp->cts_entsize)
	{
	case sizeof (Elf64_Sym):
	  {
	    Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data;

	    ctf_elf64_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
				   cache->ctf_symhash_latest);
	  }
	  break;
	case sizeof (Elf32_Sym):
	  {
	    Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data;
	    ctf_elf32_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
				   cache->ctf_symhash_latest);
	    break;
	  }
	default:
	  ctf_set_errno (fp, ECTF_SYMTAB);
	  return (unsigned long) -1;
	}

      if (sym.st_type == STT_FUNC)
	h = cache->ctf_symhash_func;
      else if (sym.st_type == STT_OBJECT)
	h = cache->ctf_symhash_objt;
      else
	continue;					/* Not of interest.  */

      if (!ctf_dynhash_lookup_kv (h, sym.st_name,
				  NULL, NULL))
	if (ctf_dynhash_cinsert (h, sym.st_name,
				 (const void *) (uintptr_t)
				 cache->ctf_symhash_latest) < 0)
	  goto oom;
      if (strcmp (sym.st_name, symname) == 0)
	return cache->ctf_symhash_latest++;
    }

  /* Searched everything, still not found.  */

  return (unsigned long) -1;

 try_parent:
  if (fp->ctf_parent && try_parent)
    {
      unsigned long psym;

      if ((psym = ctf_lookup_symbol_idx (fp->ctf_parent, symname, try_parent,
					 is_function))
          != (unsigned long) -1)
        return psym;

      ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
      return (unsigned long) -1;
    }
  else
    {
      ctf_set_errno (fp, err);
      return (unsigned long) -1;
    }
oom:
  ctf_set_errno (fp, ENOMEM);
  ctf_err_warn (fp, 0, 0, _("cannot allocate memory for symbol "
			    "lookup hashtab"));
  return (unsigned long) -1;

}

ctf_id_t
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
			int functions);

/* Iterate over all symbols with types: if FUNC, function symbols,
   otherwise, data symbols.  The name argument is not optional.  The return
   order is arbitrary, though is likely to be in symbol index or name order.
   Changing the value of 'functions' in the middle of iteration has
   unpredictable effects (probably skipping symbols, etc) and is not
   recommended.  Adding symbols while iteration is underway may also lead
   to other symbols being skipped.  */

ctf_id_t
ctf_symbol_next (ctf_dict_t *fp, ctf_next_t **it, const char **name,
		 int functions)
{
  ctf_id_t sym = CTF_ERR;
  ctf_next_t *i = *it;
  int err;

  if (!i)
    {
      if ((i = ctf_next_create ()) == NULL)
	return ctf_set_typed_errno (fp, ENOMEM);

      i->cu.ctn_fp = fp;
      i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
      i->ctn_n = 0;
      *it = i;
    }

  if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));

  if (fp != i->cu.ctn_fp)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));

  /* Check the dynamic set of names first, to allow previously-written names
     to be replaced with dynamic ones (there is still no way to remove them,
     though).

     We intentionally use raw access, not ctf_lookup_by_symbol, to avoid
     incurring additional sorting cost for unsorted symtypetabs coming from the
     compiler, to allow ctf_symbol_next to work in the absence of a symtab, and
     finally because it's easier to work out what the name of each symbol is if
     we do that.  */

  ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
  void *dyn_name = NULL, *dyn_value = NULL;
  size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;

  if (i->ctn_n < dyn_els)
    {
      err = ctf_dynhash_next (dynh, &i->ctn_next, &dyn_name, &dyn_value);

      /* This covers errors and also end-of-iteration.  */
      if (err != 0)
	{
	  ctf_next_destroy (i);
	  *it = NULL;
	  return ctf_set_typed_errno (fp, err);
	}

      *name = dyn_name;
      sym = (ctf_id_t) (uintptr_t) dyn_value;
      i->ctn_n++;

      return sym;
    }

  return ctf_symbol_next_static (fp, it, name, functions);
}

/* ctf_symbol_next, but only for static symbols.  Mostly an internal
   implementation detail of ctf_symbol_next, but also used to simplify
   serialization.  */
ctf_id_t
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
			int functions)
{
  ctf_id_t sym = CTF_ERR;
  ctf_next_t *i = *it;
  ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
  size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;

  /* Only relevant for direct internal-to-library calls, not via
     ctf_symbol_next (but important then).  */

  if (!i)
    {
      if ((i = ctf_next_create ()) == NULL)
	return ctf_set_typed_errno (fp, ENOMEM);

      i->cu.ctn_fp = fp;
      i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
      i->ctn_n = dyn_els;
      *it = i;
    }

  if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));

  if (fp != i->cu.ctn_fp)
    return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));

  /* TODO-v4: Indexed after non-indexed portions?  */

  if ((!functions && fp->ctf_objtidx_names) ||
      (functions && fp->ctf_funcidx_names))
    {
      ctf_header_t *hp = fp->ctf_header;
      uint32_t *idx = functions ? fp->ctf_funcidx_names : fp->ctf_objtidx_names;
      uint32_t *tab;
      size_t len;

      if (functions)
	{
	  len = (hp->cth_varoff - hp->cth_funcidxoff) / sizeof (uint32_t);
	  tab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
	}
      else
	{
	  len = (hp->cth_funcidxoff - hp->cth_objtidxoff) / sizeof (uint32_t);
	  tab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
	}

      do
	{
	  if (i->ctn_n - dyn_els >= len)
	    goto end;

	  *name = ctf_strptr (fp, idx[i->ctn_n - dyn_els]);
	  sym = tab[i->ctn_n - dyn_els];
	  i->ctn_n++;
	}
      while (sym == -1u || sym == 0);
    }
  else
    {
      /* Skip over pads in ctf_sxlate, padding for typeless symbols in the
	 symtypetab itself, and symbols in the wrong table.  */
      for (; i->ctn_n - dyn_els < fp->ctf_nsyms; i->ctn_n++)
	{
	  ctf_header_t *hp = fp->ctf_header;
	  size_t n = i->ctn_n - dyn_els;

	  if (fp->ctf_sxlate[n] == -1u)
	    continue;

	  sym = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[n]);

	  if (sym == 0)
	    continue;

	  if (functions)
	    {
	      if (fp->ctf_sxlate[n] >= hp->cth_funcoff
		  && fp->ctf_sxlate[n] < hp->cth_objtidxoff)
		break;
	    }
	  else
	    {
	      if (fp->ctf_sxlate[n] >= hp->cth_objtoff
		  && fp->ctf_sxlate[n] < hp->cth_funcoff)
		break;
	    }
	}

      if (i->ctn_n - dyn_els >= fp->ctf_nsyms)
	goto end;

      *name = ctf_lookup_symbol_name (fp, i->ctn_n - dyn_els);
      i->ctn_n++;
    }

  return sym;

 end:
  ctf_next_destroy (i);
  *it = NULL;
  return (ctf_set_typed_errno (fp, ECTF_NEXT_END));
}

/* A bsearch function for function and object index names.  */

static int
ctf_lookup_idx_name (const void *key_, const void *idx_)
{
  const ctf_lookup_idx_key_t *key = key_;
  const uint32_t *idx = idx_;

  return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, key->clik_names[*idx])));
}

/* Given a symbol name or (failing that) number, look up that symbol in the
   function or object index table (which must exist).  Return 0 if not found
   there (or pad).  */

static ctf_id_t
ctf_try_lookup_indexed (ctf_dict_t *fp, unsigned long symidx,
			const char *symname, int is_function)
{
  struct ctf_header *hp = fp->ctf_header;
  uint32_t *symtypetab;
  uint32_t *names;
  uint32_t *sxlate;
  size_t nidx;

  if (symname == NULL)
    symname = ctf_lookup_symbol_name (fp, symidx);

  /* Dynamic dict with no static portion: just return.  */
  if (!hp)
    {
      ctf_dprintf ("%s not found in idx: dict is dynamic\n", symname);
      return 0;
    }

  ctf_dprintf ("Looking up type of object with symtab idx %lx or name %s in "
	       "indexed symtypetab\n", symidx, symname);

  if (symname[0] == '\0')
    return CTF_ERR;					/* errno is set for us.  */

  if (is_function)
    {
      if (!fp->ctf_funcidx_sxlate)
	{
	  if ((fp->ctf_funcidx_sxlate
	       = ctf_symidx_sort (fp, (uint32_t *)
				  (fp->ctf_buf + hp->cth_funcidxoff),
				  &fp->ctf_nfuncidx,
				  hp->cth_varoff - hp->cth_funcidxoff))
	      == NULL)
	    {
	      ctf_err_warn (fp, 0, 0, _("cannot sort function symidx"));
	      return CTF_ERR;				/* errno is set for us.  */
	    }
	}
      symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
      sxlate = fp->ctf_funcidx_sxlate;
      names = fp->ctf_funcidx_names;
      nidx = fp->ctf_nfuncidx;
    }
  else
    {
      if (!fp->ctf_objtidx_sxlate)
	{
	  if ((fp->ctf_objtidx_sxlate
	       = ctf_symidx_sort (fp, (uint32_t *)
				  (fp->ctf_buf + hp->cth_objtidxoff),
				  &fp->ctf_nobjtidx,
				  hp->cth_funcidxoff - hp->cth_objtidxoff))
	      == NULL)
	    {
	      ctf_err_warn (fp, 0, 0, _("cannot sort object symidx"));
	      return CTF_ERR;				/* errno is set for us. */
	    }
	}

      symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
      sxlate = fp->ctf_objtidx_sxlate;
      names = fp->ctf_objtidx_names;
      nidx = fp->ctf_nobjtidx;
    }

  ctf_lookup_idx_key_t key = { fp, symname, names };
  uint32_t *idx;

  idx = bsearch (&key, sxlate, nidx, sizeof (uint32_t), ctf_lookup_idx_name);

  if (!idx)
    {
      ctf_dprintf ("%s not found in idx\n", symname);
      return 0;
    }

  /* Should be impossible, but be paranoid.  */
  if ((idx - sxlate) > (ptrdiff_t) nidx)
    return (ctf_set_typed_errno (fp, ECTF_CORRUPT));

  ctf_dprintf ("Symbol %lx (%s) is of type %x\n", symidx, symname,
	       symtypetab[*idx]);
  return symtypetab[*idx];
}

/* Given a symbol name or (if NULL) symbol index, return the type of the
   function or data object described by the corresponding entry in the symbol
   table.  We can only return symbols in read-only dicts and in dicts for which
   ctf_link_shuffle_syms has been called to assign symbol indexes to symbol
   names.

   If try_parent is false, do not check the parent dict too.

   If is_function is > -1, only look for data objects or functions in
   particular.  */

ctf_id_t
ctf_lookup_by_sym_or_name (ctf_dict_t *fp, unsigned long symidx,
			   const char *symname, int try_parent,
			   int is_function)
{
  const ctf_sect_t *sp = &fp->ctf_ext_symtab;
  ctf_id_t type = 0;
  int err = 0;

  /* Shuffled dynsymidx present?  Use that.  For now, the dynsymidx and
     shuffled-symbol lookup only support dynamically-added symbols, because
     this interface is meant for use by linkers, and linkers are only going
     to report symbols against newly-created, freshly-ctf_link'ed dicts: so
     there will be no static component in any case.  */
  if (fp->ctf_dynsymidx)
    {
      const ctf_link_sym_t *sym;

      if (symname)
	ctf_dprintf ("Looking up type of object with symname %s in "
		     "writable dict symtypetab\n", symname);
      else
	ctf_dprintf ("Looking up type of object with symtab idx %lx in "
		     "writable dict symtypetab\n", symidx);

      /* No name? Need to look it up.  */
      if (!symname)
	{
	  err = EINVAL;
	  if (symidx > fp->ctf_dynsymmax)
	    goto try_parent;

	  sym = fp->ctf_dynsymidx[symidx];
	  err = ECTF_NOTYPEDAT;
	  if (!sym || (sym->st_type != STT_OBJECT && sym->st_type != STT_FUNC)
	      || (sym->st_type != STT_OBJECT && is_function == 0)
	      || (sym->st_type != STT_FUNC && is_function == 1))
	    goto try_parent;

	  if (!ctf_assert (fp, !sym->st_nameidx_set))
	    return CTF_ERR;
	  symname = sym->st_name;
     }

      if (fp->ctf_objthash == NULL
	  || is_function == 1
	  || (type = (ctf_id_t) (uintptr_t)
	      ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0)
	{
	  if (fp->ctf_funchash == NULL
	      || is_function == 0
	      || (type = (ctf_id_t) (uintptr_t)
		  ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0)
	    goto try_parent;
	}

      return type;
    }

  /* Dict not shuffled: look for a dynamic sym first, and look it up
     directly.  */
  if (symname)
    {
      if (fp->ctf_objthash != NULL
	  && is_function != 1
	  && ((type = (ctf_id_t) (uintptr_t)
	       ctf_dynhash_lookup (fp->ctf_objthash, symname)) != 0))
	return type;

      if (fp->ctf_funchash != NULL
	  && is_function != 0
	  && ((type = (ctf_id_t) (uintptr_t)
	       ctf_dynhash_lookup (fp->ctf_funchash, symname)) != 0))
	return type;
    }

  err = ECTF_NOSYMTAB;
  if (sp->cts_data == NULL && symname == NULL &&
      ((is_function && !fp->ctf_funcidx_names) ||
       (!is_function && !fp->ctf_objtidx_names)))
    goto try_parent;

  /* This covers both out-of-range lookups by index and a dynamic dict which
     hasn't been shuffled yet.  */
  err = EINVAL;
  if (symname == NULL && symidx >= fp->ctf_nsyms)
    goto try_parent;

  /* Try an indexed lookup.  */

  if (fp->ctf_objtidx_names && is_function != 1)
    {
      if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 0)) == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */
    }
  if (type == 0 && fp->ctf_funcidx_names && is_function != 0)
    {
      if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 1)) == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */
    }
  if (type != 0)
    return type;

  /* Indexed but no symbol found -> not present, try the parent.  */
  err = ECTF_NOTYPEDAT;
  if (fp->ctf_objtidx_names && fp->ctf_funcidx_names)
    goto try_parent;

  /* Table must be nonindexed.  */

  ctf_dprintf ("Looking up object type %lx in 1:1 dict symtypetab\n", symidx);

  if (symname != NULL)
    if ((symidx = ctf_lookup_symbol_idx (fp, symname, try_parent, is_function))
	== (unsigned long) -1)
      goto try_parent;

  if (fp->ctf_sxlate[symidx] == -1u)
    goto try_parent;

  type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);

  if (type == 0)
    goto try_parent;

  return type;

 try_parent:
  if (!try_parent)
    return ctf_set_errno (fp, err);

  if (fp->ctf_parent)
    {
      ctf_id_t ret = ctf_lookup_by_sym_or_name (fp->ctf_parent, symidx,
						symname, try_parent,
						is_function);
      if (ret == CTF_ERR)
	ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
      return ret;
    }
  else
    return (ctf_set_typed_errno (fp, err));
}

/* Given a symbol table index, return the type of the function or data object
   described by the corresponding entry in the symbol table.  */
ctf_id_t
ctf_lookup_by_symbol (ctf_dict_t *fp, unsigned long symidx)
{
  return ctf_lookup_by_sym_or_name (fp, symidx, NULL, 1, -1);
}

/* Given a symbol name, return the type of the function or data object described
   by the corresponding entry in the symbol table.  */
ctf_id_t
ctf_lookup_by_symbol_name (ctf_dict_t *fp, const char *symname)
{
  return ctf_lookup_by_sym_or_name (fp, 0, symname, 1, -1);
}

/* Given a symbol table index, return the info for the function described
   by the corresponding entry in the symbol table, which may be a function
   symbol or may be a data symbol that happens to be a function pointer.  */

int
ctf_func_info (ctf_dict_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
{
  ctf_id_t type;

  if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
    return -1;					/* errno is set for us.  */

  if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
    return (ctf_set_errno (fp, ECTF_NOTFUNC));

  return ctf_func_type_info (fp, type, fip);
}

/* Given a symbol table index, return the arguments for the function described
   by the corresponding entry in the symbol table.  */

int
ctf_func_args (ctf_dict_t *fp, unsigned long symidx, uint32_t argc,
	       ctf_id_t *argv)
{
  ctf_id_t type;

  if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
    return -1;					/* errno is set for us.  */

  if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
    return (ctf_set_errno (fp, ECTF_NOTFUNC));

  return ctf_func_type_args (fp, type, argc, argv);
}