1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
|
\input texinfo @c -*-texinfo-*-
@setfilename gprof.info
@c Copyright (C) 1988-2024 Free Software Foundation, Inc.
@settitle GNU gprof
@setchapternewpage odd
@c man begin INCLUDE
@include bfdver.texi
@c man end
@ifnottex
@c This is a dir.info fragment to support semi-automated addition of
@c manuals to an info tree. zoo@cygnus.com is developing this facility.
@dircategory Software development
@direntry
* gprof: (gprof). Profiling your program's execution
@end direntry
@end ifnottex
@copying
This file documents the gprof profiler of the GNU system.
@c man begin COPYRIGHT
Copyright @copyright{} 1988-2024 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the
section entitled ``GNU Free Documentation License''.
@c man end
@end copying
@finalout
@smallbook
@titlepage
@title GNU gprof
@subtitle The @sc{gnu} Profiler
@ifset VERSION_PACKAGE
@subtitle @value{VERSION_PACKAGE}
@end ifset
@subtitle Version @value{VERSION}
@author Jay Fenlason and Richard Stallman
@page
This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
can use it to determine which parts of a program are taking most of the
execution time. We assume that you know how to write, compile, and
execute programs. @sc{gnu} @code{gprof} was written by Jay Fenlason.
Eric S. Raymond made some minor corrections and additions in 2003.
@vskip 0pt plus 1filll
Copyright @copyright{} 1988-2024 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the
section entitled ``GNU Free Documentation License''.
@end titlepage
@contents
@ifnottex
@node Top
@top Profiling a Program: Where Does It Spend Its Time?
This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
can use it to determine which parts of a program are taking most of the
execution time. We assume that you know how to write, compile, and
execute programs. @sc{gnu} @code{gprof} was written by Jay Fenlason.
This manual is for @code{gprof}
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
version @value{VERSION}.
This document is distributed under the terms of the GNU Free
Documentation License version 1.3. A copy of the license is included
in the section entitled ``GNU Free Documentation License''.
@menu
* Introduction:: What profiling means, and why it is useful.
* Compiling:: How to compile your program for profiling.
* Executing:: Executing your program to generate profile data
* Invoking:: How to run @code{gprof}, and its options
* Output:: Interpreting @code{gprof}'s output
* Inaccuracy:: Potential problems you should be aware of
* How do I?:: Answers to common questions
* Incompatibilities:: (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
* Details:: Details of how profiling is done
* GNU Free Documentation License:: GNU Free Documentation License
@end menu
@end ifnottex
@node Introduction
@chapter Introduction to Profiling
@ifset man
@c man title gprof display call graph profile data
@smallexample
@c man begin SYNOPSIS
gprof [ -[abcDhilLrsTvwxyz] ] [ -[ABCeEfFJnNOpPqQRStZ][@var{name}] ]
[ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
[ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
[ --[no-]annotated-source[=@var{name}] ]
[ --[no-]exec-counts[=@var{name}] ]
[ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
[ --[no-]time=@var{name}] [ --all-lines ] [ --brief ]
[ --debug[=@var{level}] ] [ --function-ordering ]
[ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
[ --display-unused-functions ] [ --file-format=@var{name} ]
[ --file-info ] [ --help ] [ --line ] [ --inline-file-names ]
[ --min-count=@var{n} ] [ --no-static ] [ --print-path ]
[ --separate-files ] [ --static-call-graph ] [ --sum ]
[ --table-length=@var{len} ] [ --traditional ] [ --version ]
[ --width=@var{n} ] [ --ignore-non-functions ]
[ --demangle[=@var{STYLE}] ] [ --no-demangle ]
[--external-symbol-table=name]
[ @var{image-file} ] [ @var{profile-file} @dots{} ]
@c man end
@end smallexample
@c man begin DESCRIPTION
@code{gprof} produces an execution profile of C, Pascal, or Fortran77
programs. The effect of called routines is incorporated in the profile
of each caller. The profile data is taken from the call graph profile file
(@file{gmon.out} default) which is created by programs
that are compiled with the @samp{-pg} option of
@code{cc}, @code{pc}, and @code{f77}.
The @samp{-pg} option also links in versions of the library routines
that are compiled for profiling. @code{Gprof} reads the given object
file (the default is @code{a.out}) and establishes the relation between
its symbol table and the call graph profile from @file{gmon.out}.
If more than one profile file is specified, the @code{gprof}
output shows the sum of the profile information in the given profile files.
@code{Gprof} calculates the amount of time spent in each routine.
Next, these times are propagated along the edges of the call graph.
Cycles are discovered, and calls into a cycle are made to share the time
of the cycle.
@c man end
@c man begin BUGS
The granularity of the sampling is shown, but remains
statistical at best.
We assume that the time for each execution of a function
can be expressed by the total time for the function divided
by the number of times the function is called.
Thus the time propagated along the call graph arcs to the function's
parents is directly proportional to the number of times that
arc is traversed.
Parents that are not themselves profiled will have the time of
their profiled children propagated to them, but they will appear
to be spontaneously invoked in the call graph listing, and will
not have their time propagated further.
Similarly, signal catchers, even though profiled, will appear
to be spontaneous (although for more obscure reasons).
Any profiled children of signal catchers should have their times
propagated properly, unless the signal catcher was invoked during
the execution of the profiling routine, in which case all is lost.
The profiled program must call @code{exit}(2)
or return normally for the profiling information to be saved
in the @file{gmon.out} file.
@c man end
@c man begin FILES
@table @code
@item @file{a.out}
the namelist and text space.
@item @file{gmon.out}
dynamic call graph and profile.
@item @file{gmon.sum}
summarized dynamic call graph and profile.
@end table
@c man end
@c man begin SEEALSO
monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
``An Execution Profiler for Modular Programs'',
by S. Graham, P. Kessler, M. McKusick;
Software - Practice and Experience,
Vol. 13, pp. 671-685, 1983.
``gprof: A Call Graph Execution Profiler'',
by S. Graham, P. Kessler, M. McKusick;
Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
SIGPLAN Notices, Vol. 17, No 6, pp. 120-126, June 1982.
@c man end
@end ifset
Profiling allows you to learn where your program spent its time and which
functions called which other functions while it was executing. This
information can show you which pieces of your program are slower than you
expected, and might be candidates for rewriting to make your program
execute faster. It can also tell you which functions are being called more
or less often than you expected. This may help you spot bugs that had
otherwise been unnoticed.
Since the profiler uses information collected during the actual execution
of your program, it can be used on programs that are too large or too
complex to analyze by reading the source. However, how your program is run
will affect the information that shows up in the profile data. If you
don't use some feature of your program while it is being profiled, no
profile information will be generated for that feature.
Profiling has several steps:
@itemize @bullet
@item
You must compile and link your program with profiling enabled.
@xref{Compiling, ,Compiling a Program for Profiling}.
@item
You must execute your program to generate a profile data file.
@xref{Executing, ,Executing the Program}.
@item
You must run @code{gprof} to analyze the profile data.
@xref{Invoking, ,@code{gprof} Command Summary}.
@end itemize
The next three chapters explain these steps in greater detail.
@c man begin DESCRIPTION
Several forms of output are available from the analysis.
The @dfn{flat profile} shows how much time your program spent in each function,
and how many times that function was called. If you simply want to know
which functions burn most of the cycles, it is stated concisely here.
@xref{Flat Profile, ,The Flat Profile}.
The @dfn{call graph} shows, for each function, which functions called it, which
other functions it called, and how many times. There is also an estimate
of how much time was spent in the subroutines of each function. This can
suggest places where you might try to eliminate function calls that use a
lot of time. @xref{Call Graph, ,The Call Graph}.
The @dfn{annotated source} listing is a copy of the program's
source code, labeled with the number of times each line of the
program was executed. @xref{Annotated Source, ,The Annotated Source
Listing}.
@c man end
To better understand how profiling works, you may wish to read
a description of its implementation.
@xref{Implementation, ,Implementation of Profiling}.
@node Compiling
@chapter Compiling a Program for Profiling
The first step in generating profile information for your program is
to compile and link it with profiling enabled.
To compile a source file for profiling, specify the @samp{-pg} option when
you run the compiler. (This is in addition to the options you normally
use.)
To link the program for profiling, if you use a compiler such as @code{cc}
to do the linking, simply specify @samp{-pg} in addition to your usual
options. The same option, @samp{-pg}, alters either compilation or linking
to do what is necessary for profiling. Here are examples:
@example
cc -g -c myprog.c utils.c -pg
cc -o myprog myprog.o utils.o -pg
@end example
The @samp{-pg} option also works with a command that both compiles and links:
@example
cc -o myprog myprog.c utils.c -g -pg
@end example
Note: The @samp{-pg} option must be part of your compilation options
as well as your link options. If it is not then no call-graph data
will be gathered and when you run @code{gprof} you will get an error
message like this:
@example
gprof: gmon.out file is missing call-graph data
@end example
If you add the @samp{-Q} switch to suppress the printing of the call
graph data you will still be able to see the time samples:
@example
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
44.12 0.07 0.07 zazLoop
35.29 0.14 0.06 main
20.59 0.17 0.04 bazMillion
@end example
If you run the linker @code{ld} directly instead of through a compiler
such as @code{cc}, you may have to specify a profiling startup file
@file{gcrt0.o} as the first input file instead of the usual startup
file @file{crt0.o}. In addition, you would probably want to
specify the profiling C library, @file{libc_p.a}, by writing
@samp{-lc_p} instead of the usual @samp{-lc}. This is not absolutely
necessary, but doing this gives you number-of-calls information for
standard library functions such as @code{read} and @code{open}. For
example:
@example
ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
@end example
If you are running the program on a system which supports shared
libraries you may run into problems with the profiling support code in
a shared library being called before that library has been fully
initialised. This is usually detected by the program encountering a
segmentation fault as soon as it is run. The solution is to link
against a static version of the library containing the profiling
support code, which for @code{gcc} users can be done via the
@samp{-static} or @samp{-static-libgcc} command-line option. For
example:
@example
gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
@end example
If you compile only some of the modules of the program with @samp{-pg}, you
can still profile the program, but you won't get complete information about
the modules that were compiled without @samp{-pg}. The only information
you get for the functions in those modules is the total time spent in them;
there is no record of how many times they were called, or from where. This
will not affect the flat profile (except that the @code{calls} field for
the functions will be blank), but will greatly reduce the usefulness of the
call graph.
If you wish to perform line-by-line profiling you should use the
@code{gcov} tool instead of @code{gprof}. See that tool's manual or
info pages for more details of how to do this.
Note, older versions of @code{gcc} produce line-by-line profiling
information that works with @code{gprof} rather than @code{gcov} so
there is still support for displaying this kind of information in
@code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
It also worth noting that @code{gcc} implements a
@samp{-finstrument-functions} command-line option which will insert
calls to special user supplied instrumentation routines at the entry
and exit of every function in their program. This can be used to
implement an alternative profiling scheme.
@node Executing
@chapter Executing the Program
Once the program is compiled for profiling, you must run it in order to
generate the information that @code{gprof} needs. Simply run the program
as usual, using the normal arguments, file names, etc. The program should
run normally, producing the same output as usual. It will, however, run
somewhat slower than normal because of the time spent collecting and
writing the profile data.
The way you run the program---the arguments and input that you give
it---may have a dramatic effect on what the profile information shows. The
profile data will describe the parts of the program that were activated for
the particular input you use. For example, if the first command you give
to your program is to quit, the profile data will show the time used in
initialization and in cleanup, but not much else.
Your program will write the profile data into a file called @file{gmon.out}
just before exiting. If there is already a file called @file{gmon.out},
its contents are overwritten. You can rename the file afterwards if you
are concerned that it may be overwritten. If your system libc allows you
may be able to write the profile data under a different name. Set the
GMON_OUT_PREFIX environment variable; this name will be appended with
the PID of the running program.
In order to write the @file{gmon.out} file properly, your program must exit
normally: by returning from @code{main} or by calling @code{exit}. Calling
the low-level function @code{_exit} does not write the profile data, and
neither does abnormal termination due to an unhandled signal.
The @file{gmon.out} file is written in the program's @emph{current working
directory} at the time it exits. This means that if your program calls
@code{chdir}, the @file{gmon.out} file will be left in the last directory
your program @code{chdir}'d to. If you don't have permission to write in
this directory, the file is not written, and you will get an error message.
Older versions of the @sc{gnu} profiling library may also write a file
called @file{bb.out}. This file, if present, contains an human-readable
listing of the basic-block execution counts. Unfortunately, the
appearance of a human-readable @file{bb.out} means the basic-block
counts didn't get written into @file{gmon.out}.
The Perl script @code{bbconv.pl}, included with the @code{gprof}
source distribution, will convert a @file{bb.out} file into
a format readable by @code{gprof}. Invoke it like this:
@smallexample
bbconv.pl < bb.out > @var{bh-data}
@end smallexample
This translates the information in @file{bb.out} into a form that
@code{gprof} can understand. But you still need to tell @code{gprof}
about the existence of this translated information. To do that, include
@var{bb-data} on the @code{gprof} command line, @emph{along with
@file{gmon.out}}, like this:
@smallexample
gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
@end smallexample
@node Invoking
@chapter @code{gprof} Command Summary
After you have a profile data file @file{gmon.out}, you can run @code{gprof}
to interpret the information in it. The @code{gprof} program prints a
flat profile and a call graph on standard output. Typically you would
redirect the output of @code{gprof} into a file with @samp{>}.
You run @code{gprof} like this:
@smallexample
gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
@end smallexample
@noindent
Here square-brackets indicate optional arguments.
If you omit the executable file name, the file @file{a.out} is used. If
you give no profile data file name, the file @file{gmon.out} is used. If
any file is not in the proper format, or if the profile data file does not
appear to belong to the executable file, an error message is printed.
You can give more than one profile data file by entering all their names
after the executable file name; then the statistics in all the data files
are summed together.
The order of these options does not matter.
@menu
* Output Options:: Controlling @code{gprof}'s output style
* Analysis Options:: Controlling how @code{gprof} analyzes its data
* Miscellaneous Options::
* Deprecated Options:: Options you no longer need to use, but which
have been retained for compatibility
* Symspecs:: Specifying functions to include or exclude
@end menu
@node Output Options
@section Output Options
@c man begin OPTIONS
These options specify which of several output formats
@code{gprof} should produce.
Many of these options take an optional @dfn{symspec} to specify
functions to be included or excluded. These options can be
specified multiple times, with different symspecs, to include
or exclude sets of symbols. @xref{Symspecs, ,Symspecs}.
Specifying any of these options overrides the default (@samp{-p -q}),
which prints a flat profile and call graph analysis
for all functions.
@table @code
@item -A[@var{symspec}]
@itemx --annotated-source[=@var{symspec}]
The @samp{-A} option causes @code{gprof} to print annotated source code.
If @var{symspec} is specified, print output only for matching symbols.
@xref{Annotated Source, ,The Annotated Source Listing}.
@item -b
@itemx --brief
If the @samp{-b} option is given, @code{gprof} doesn't print the
verbose blurbs that try to explain the meaning of all of the fields in
the tables. This is useful if you intend to print out the output, or
are tired of seeing the blurbs.
@item -B
The @samp{-B} option causes @code{gprof} to print the call graph analysis.
@item -C[@var{symspec}]
@itemx --exec-counts[=@var{symspec}]
The @samp{-C} option causes @code{gprof} to
print a tally of functions and the number of times each was called.
If @var{symspec} is specified, print tally only for matching symbols.
If the profile data file contains basic-block count records, specifying
the @samp{-l} option, along with @samp{-C}, will cause basic-block
execution counts to be tallied and displayed.
@item -i
@itemx --file-info
The @samp{-i} option causes @code{gprof} to display summary information
about the profile data file(s) and then exit. The number of histogram,
call graph, and basic-block count records is displayed.
@item -I @var{dirs}
@itemx --directory-path=@var{dirs}
The @samp{-I} option specifies a list of search directories in
which to find source files. Environment variable @var{GPROF_PATH}
can also be used to convey this information.
Used mostly for annotated source output.
@item -J[@var{symspec}]
@itemx --no-annotated-source[=@var{symspec}]
The @samp{-J} option causes @code{gprof} not to
print annotated source code.
If @var{symspec} is specified, @code{gprof} prints annotated source,
but excludes matching symbols.
@item -L
@itemx --print-path
Normally, source filenames are printed with the path
component suppressed. The @samp{-L} option causes @code{gprof}
to print the full pathname of
source filenames, which is determined
from symbolic debugging information in the image file
and is relative to the directory in which the compiler
was invoked.
@item -p[@var{symspec}]
@itemx --flat-profile[=@var{symspec}]
The @samp{-p} option causes @code{gprof} to print a flat profile.
If @var{symspec} is specified, print flat profile only for matching symbols.
@xref{Flat Profile, ,The Flat Profile}.
@item -P[@var{symspec}]
@itemx --no-flat-profile[=@var{symspec}]
The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
If @var{symspec} is specified, @code{gprof} prints a flat profile,
but excludes matching symbols.
@item -q[@var{symspec}]
@itemx --graph[=@var{symspec}]
The @samp{-q} option causes @code{gprof} to print the call graph analysis.
If @var{symspec} is specified, print call graph only for matching symbols
and their children.
@xref{Call Graph, ,The Call Graph}.
@item -Q[@var{symspec}]
@itemx --no-graph[=@var{symspec}]
The @samp{-Q} option causes @code{gprof} to suppress printing the
call graph.
If @var{symspec} is specified, @code{gprof} prints a call graph,
but excludes matching symbols.
@item -t
@itemx --table-length=@var{num}
The @samp{-t} option causes the @var{num} most active source lines in
each source file to be listed when source annotation is enabled. The
default is 10.
@item -y
@itemx --separate-files
This option affects annotated source output only.
Normally, @code{gprof} prints annotated source files
to standard-output. If this option is specified,
annotated source for a file named @file{path/@var{filename}}
is generated in the file @file{@var{filename}-ann}. If the underlying
file system would truncate @file{@var{filename}-ann} so that it
overwrites the original @file{@var{filename}}, @code{gprof} generates
annotated source in the file @file{@var{filename}.ann} instead (if the
original file name has an extension, that extension is @emph{replaced}
with @file{.ann}).
@item -Z[@var{symspec}]
@itemx --no-exec-counts[=@var{symspec}]
The @samp{-Z} option causes @code{gprof} not to
print a tally of functions and the number of times each was called.
If @var{symspec} is specified, print tally, but exclude matching symbols.
@item -r
@itemx --function-ordering
The @samp{--function-ordering} option causes @code{gprof} to print a
suggested function ordering for the program based on profiling data.
This option suggests an ordering which may improve paging, tlb and
cache behavior for the program on systems which support arbitrary
ordering of functions in an executable.
The exact details of how to force the linker to place functions
in a particular order is system dependent and out of the scope of this
manual.
@item -R @var{map_file}
@itemx --file-ordering @var{map_file}
The @samp{--file-ordering} option causes @code{gprof} to print a
suggested .o link line ordering for the program based on profiling data.
This option suggests an ordering which may improve paging, tlb and
cache behavior for the program on systems which do not support arbitrary
ordering of functions in an executable.
Use of the @samp{-a} argument is highly recommended with this option.
The @var{map_file} argument is a pathname to a file which provides
function name to object file mappings. The format of the file is similar to
the output of the program @code{nm}.
@smallexample
@group
c-parse.o:00000000 T yyparse
c-parse.o:00000004 C yyerrflag
c-lang.o:00000000 T maybe_objc_method_name
c-lang.o:00000000 T print_lang_statistics
c-lang.o:00000000 T recognize_objc_keyword
c-decl.o:00000000 T print_lang_identifier
c-decl.o:00000000 T print_lang_type
@dots{}
@end group
@end smallexample
To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
@kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
@item -T
@itemx --traditional
The @samp{-T} option causes @code{gprof} to print its output in
``traditional'' BSD style.
@item -w @var{width}
@itemx --width=@var{width}
Sets width of output lines to @var{width}.
Currently only used when printing the function index at the bottom
of the call graph.
@item -x
@itemx --all-lines
This option affects annotated source output only.
By default, only the lines at the beginning of a basic-block
are annotated. If this option is specified, every line in
a basic-block is annotated by repeating the annotation for the
first line. This behavior is similar to @code{tcov}'s @samp{-a}.
@item --demangle[=@var{style}]
@itemx --no-demangle
These options control whether C++ symbol names should be demangled when
printing output. The default is to demangle symbols. The
@code{--no-demangle} option may be used to turn off demangling. Different
compilers have different mangling styles. The optional demangling style
argument can be used to choose an appropriate demangling style for your
compiler.
@end table
@node Analysis Options
@section Analysis Options
@table @code
@item -a
@itemx --no-static
The @samp{-a} option causes @code{gprof} to suppress the printing of
statically declared (private) functions. (These are functions whose
names are not listed as global, and which are not visible outside the
file/function/block where they were defined.) Time spent in these
functions, calls to/from them, etc., will all be attributed to the
function that was loaded directly before it in the executable file.
@c This is compatible with Unix @code{gprof}, but a bad idea.
This option affects both the flat profile and the call graph.
@item -c
@itemx --static-call-graph
The @samp{-c} option causes the call graph of the program to be
augmented by a heuristic which examines the text space of the object
file and identifies function calls in the binary machine code.
Since normal call graph records are only generated when functions are
entered, this option identifies children that could have been called,
but never were. Calls to functions that were not compiled with
profiling enabled are also identified, but only if symbol table
entries are present for them.
Calls to dynamic library routines are typically @emph{not} found
by this option.
Parents or children identified via this heuristic
are indicated in the call graph with call counts of @samp{0}.
@item -D
@itemx --ignore-non-functions
The @samp{-D} option causes @code{gprof} to ignore symbols which
are not known to be functions. This option will give more accurate
profile data on systems where it is supported (Solaris and HPUX for
example).
@item -k @var{from}/@var{to}
The @samp{-k} option allows you to delete from the call graph any arcs from
symbols matching symspec @var{from} to those matching symspec @var{to}.
@item -l
@itemx --line
The @samp{-l} option enables line-by-line profiling, which causes
histogram hits to be charged to individual source code lines,
instead of functions. This feature only works with programs compiled
by older versions of the @code{gcc} compiler. Newer versions of
@code{gcc} are designed to work with the @code{gcov} tool instead.
If the program was compiled with basic-block counting enabled,
this option will also identify how many times each line of
code was executed.
While line-by-line profiling can help isolate where in a large function
a program is spending its time, it also significantly increases
the running time of @code{gprof}, and magnifies statistical
inaccuracies.
@xref{Sampling Error, ,Statistical Sampling Error}.
@item --inline-file-names
This option causes @code{gprof} to print the source file after each
symbol in both the flat profile and the call graph. The full path to the
file is printed if used with the @samp{-L} option.
@item -m @var{num}
@itemx --min-count=@var{num}
This option affects execution count output only.
Symbols that are executed less than @var{num} times are suppressed.
@item -n@var{symspec}
@itemx --time=@var{symspec}
The @samp{-n} option causes @code{gprof}, in its call graph analysis,
to only propagate times for symbols matching @var{symspec}.
@item -N@var{symspec}
@itemx --no-time=@var{symspec}
The @samp{-n} option causes @code{gprof}, in its call graph analysis,
not to propagate times for symbols matching @var{symspec}.
@item -S@var{filename}
@itemx --external-symbol-table=@var{filename}
The @samp{-S} option causes @code{gprof} to read an external symbol table
file, such as @file{/proc/kallsyms}, rather than read the symbol table
from the given object file (the default is @code{a.out}). This is useful
for profiling kernel modules.
@item -z
@itemx --display-unused-functions
If you give the @samp{-z} option, @code{gprof} will mention all
functions in the flat profile, even those that were never called, and
that had no time spent in them. This is useful in conjunction with the
@samp{-c} option for discovering which routines were never called.
@end table
@node Miscellaneous Options
@section Miscellaneous Options
@table @code
@item -d[@var{num}]
@itemx --debug[=@var{num}]
The @samp{-d @var{num}} option specifies debugging options.
If @var{num} is not specified, enable all debugging.
@xref{Debugging, ,Debugging @code{gprof}}.
@item -h
@itemx --help
The @samp{-h} option prints command line usage.
@item -O@var{name}
@itemx --file-format=@var{name}
Selects the format of the profile data files. Recognized formats are
@samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
@samp{prof} (not yet supported).
@item -s
@itemx --sum
The @samp{-s} option causes @code{gprof} to summarize the information
in the profile data files it read in, and write out a profile data
file called @file{gmon.sum}, which contains all the information from
the profile data files that @code{gprof} read in. The file @file{gmon.sum}
may be one of the specified input files; the effect of this is to
merge the data in the other input files into @file{gmon.sum}.
Eventually you can run @code{gprof} again without @samp{-s} to analyze the
cumulative data in the file @file{gmon.sum}.
@item -v
@itemx --version
The @samp{-v} flag causes @code{gprof} to print the current version
number, and then exit.
@end table
@node Deprecated Options
@section Deprecated Options
These options have been replaced with newer versions that use symspecs.
@table @code
@item -e @var{function_name}
The @samp{-e @var{function}} option tells @code{gprof} to not print
information about the function @var{function_name} (and its
children@dots{}) in the call graph. The function will still be listed
as a child of any functions that call it, but its index number will be
shown as @samp{[not printed]}. More than one @samp{-e} option may be
given; only one @var{function_name} may be indicated with each @samp{-e}
option.
@item -E @var{function_name}
The @code{-E @var{function}} option works like the @code{-e} option, but
time spent in the function (and children who were not called from
anywhere else), will not be used to compute the percentages-of-time for
the call graph. More than one @samp{-E} option may be given; only one
@var{function_name} may be indicated with each @samp{-E} option.
@item -f @var{function_name}
The @samp{-f @var{function}} option causes @code{gprof} to limit the
call graph to the function @var{function_name} and its children (and
their children@dots{}). More than one @samp{-f} option may be given;
only one @var{function_name} may be indicated with each @samp{-f}
option.
@item -F @var{function_name}
The @samp{-F @var{function}} option works like the @code{-f} option, but
only time spent in the function and its children (and their
children@dots{}) will be used to determine total-time and
percentages-of-time for the call graph. More than one @samp{-F} option
may be given; only one @var{function_name} may be indicated with each
@samp{-F} option. The @samp{-F} option overrides the @samp{-E} option.
@end table
@c man end
Note that only one function can be specified with each @code{-e},
@code{-E}, @code{-f} or @code{-F} option. To specify more than one
function, use multiple options. For example, this command:
@example
gprof -e boring -f foo -f bar myprogram > gprof.output
@end example
@noindent
lists in the call graph all functions that were reached from either
@code{foo} or @code{bar} and were not reachable from @code{boring}.
@node Symspecs
@section Symspecs
Many of the output options allow functions to be included or excluded
using @dfn{symspecs} (symbol specifications), which observe the
following syntax:
@example
filename_containing_a_dot
| funcname_not_containing_a_dot
| linenumber
| ( [ any_filename ] `:' ( any_funcname | linenumber ) )
@end example
Here are some sample symspecs:
@table @samp
@item main.c
Selects everything in file @file{main.c}---the
dot in the string tells @code{gprof} to interpret
the string as a filename, rather than as
a function name. To select a file whose
name does not contain a dot, a trailing colon
should be specified. For example, @samp{odd:} is
interpreted as the file named @file{odd}.
@item main
Selects all functions named @samp{main}.
Note that there may be multiple instances of the same function name
because some of the definitions may be local (i.e., static). Unless a
function name is unique in a program, you must use the colon notation
explained below to specify a function from a specific source file.
Sometimes, function names contain dots. In such cases, it is necessary
to add a leading colon to the name. For example, @samp{:.mul} selects
function @samp{.mul}.
In some object file formats, symbols have a leading underscore.
@code{gprof} will normally not print these underscores. When you name a
symbol in a symspec, you should type it exactly as @code{gprof} prints
it in its output. For example, if the compiler produces a symbol
@samp{_main} from your @code{main} function, @code{gprof} still prints
it as @samp{main} in its output, so you should use @samp{main} in
symspecs.
@item main.c:main
Selects function @samp{main} in file @file{main.c}.
@item main.c:134
Selects line 134 in file @file{main.c}.
@end table
@node Output
@chapter Interpreting @code{gprof}'s Output
@code{gprof} can produce several different output styles, the
most important of which are described below. The simplest output
styles (file information, execution count, and function and file ordering)
are not described here, but are documented with the respective options
that trigger them.
@xref{Output Options, ,Output Options}.
@menu
* Flat Profile:: The flat profile shows how much time was spent
executing directly in each function.
* Call Graph:: The call graph shows which functions called which
others, and how much time each function used
when its subroutine calls are included.
* Line-by-line:: @code{gprof} can analyze individual source code lines
* Annotated Source:: The annotated source listing displays source code
labeled with execution counts
@end menu
@node Flat Profile
@section The Flat Profile
@cindex flat profile
The @dfn{flat profile} shows the total amount of time your program
spent executing each function. Unless the @samp{-z} option is given,
functions with no apparent time spent in them, and no apparent calls
to them, are not mentioned. Note that if a function was not compiled
for profiling, and didn't run long enough to show up on the program
counter histogram, it will be indistinguishable from a function that
was never called.
This is part of a flat profile for a small program:
@smallexample
@group
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write
16.67 0.06 0.01 mcount
0.00 0.06 0.00 236 0.00 0.00 tzset
0.00 0.06 0.00 192 0.00 0.00 tolower
0.00 0.06 0.00 47 0.00 0.00 strlen
0.00 0.06 0.00 45 0.00 0.00 strchr
0.00 0.06 0.00 1 0.00 50.00 main
0.00 0.06 0.00 1 0.00 0.00 memcpy
0.00 0.06 0.00 1 0.00 10.11 print
0.00 0.06 0.00 1 0.00 0.00 profil
0.00 0.06 0.00 1 0.00 50.00 report
@dots{}
@end group
@end smallexample
@noindent
The functions are sorted first by decreasing run-time spent in them,
then by decreasing number of calls, then alphabetically by name. The
functions @samp{mcount} and @samp{profil} are part of the profiling
apparatus and appear in every flat profile; their time gives a measure of
the amount of overhead due to profiling.
Just before the column headers, a statement appears indicating
how much time each sample counted as.
This @dfn{sampling period} estimates the margin of error in each of the time
figures. A time figure that is not much larger than this is not
reliable. In this example, each sample counted as 0.01 seconds,
suggesting a 100 Hz sampling rate.
The program's total execution time was 0.06
seconds, as indicated by the @samp{cumulative seconds} field. Since
each sample counted for 0.01 seconds, this means only six samples
were taken during the run. Two of the samples occurred while the
program was in the @samp{open} function, as indicated by the
@samp{self seconds} field. Each of the other four samples
occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
and @samp{mcount}.
Since only six samples were taken, none of these values can
be regarded as particularly reliable.
In another run,
the @samp{self seconds} field for
@samp{mcount} might well be @samp{0.00} or @samp{0.02}.
@xref{Sampling Error, ,Statistical Sampling Error},
for a complete discussion.
The remaining functions in the listing (those whose
@samp{self seconds} field is @samp{0.00}) didn't appear
in the histogram samples at all. However, the call graph
indicated that they were called, so therefore they are listed,
sorted in decreasing order by the @samp{calls} field.
Clearly some time was spent executing these functions,
but the paucity of histogram samples prevents any
determination of how much time each took.
Here is what the fields in each line mean:
@table @code
@item % time
This is the percentage of the total execution time your program spent
in this function. These should all add up to 100%.
@item cumulative seconds
This is the cumulative total number of seconds the computer spent
executing this functions, plus the time spent in all the functions
above this one in this table.
@item self seconds
This is the number of seconds accounted for by this function alone.
The flat profile listing is sorted first by this number.
@item calls
This is the total number of times the function was called. If the
function was never called, or the number of times it was called cannot
be determined (probably because the function was not compiled with
profiling enabled), the @dfn{calls} field is blank.
@item self ms/call
This represents the average number of milliseconds spent in this
function per call, if this function is profiled. Otherwise, this field
is blank for this function.
@item total ms/call
This represents the average number of milliseconds spent in this
function and its descendants per call, if this function is profiled.
Otherwise, this field is blank for this function.
This is the only field in the flat profile that uses call graph analysis.
@item name
This is the name of the function. The flat profile is sorted by this
field alphabetically after the @dfn{self seconds} and @dfn{calls}
fields are sorted.
@end table
@node Call Graph
@section The Call Graph
@cindex call graph
The @dfn{call graph} shows how much time was spent in each function
and its children. From this information, you can find functions that,
while they themselves may not have used much time, called other
functions that did use unusual amounts of time.
Here is a sample call from a small program. This call came from the
same @code{gprof} run as the flat profile example in the previous
section.
@smallexample
@group
granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
index % time self children called name
<spontaneous>
[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]
-----------------------------------------------
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
-----------------------------------------------
0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]
0.00 0.00 8/16 skipspace [44]
-----------------------------------------------
[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]
0.01 0.02 244+260 offtime <cycle 2> [7]
0.00 0.00 236+1 tzset <cycle 2> [26]
-----------------------------------------------
@end group
@end smallexample
The lines full of dashes divide this table into @dfn{entries}, one for each
function. Each entry has one or more lines.
In each entry, the primary line is the one that starts with an index number
in square brackets. The end of this line says which function the entry is
for. The preceding lines in the entry describe the callers of this
function and the following lines describe its subroutines (also called
@dfn{children} when we speak of the call graph).
The entries are sorted by time spent in the function and its subroutines.
The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The
Flat Profile}) is never mentioned in the call graph.
@menu
* Primary:: Details of the primary line's contents.
* Callers:: Details of caller-lines' contents.
* Subroutines:: Details of subroutine-lines' contents.
* Cycles:: When there are cycles of recursion,
such as @code{a} calls @code{b} calls @code{a}@dots{}
@end menu
@node Primary
@subsection The Primary Line
The @dfn{primary line} in a call graph entry is the line that
describes the function which the entry is about and gives the overall
statistics for this function.
For reference, we repeat the primary line from the entry for function
@code{report} in our main example, together with the heading line that
shows the names of the fields:
@smallexample
@group
index % time self children called name
@dots{}
[3] 100.0 0.00 0.05 1 report [3]
@end group
@end smallexample
Here is what the fields in the primary line mean:
@table @code
@item index
Entries are numbered with consecutive integers. Each function
therefore has an index number, which appears at the beginning of its
primary line.
Each cross-reference to a function, as a caller or subroutine of
another, gives its index number as well as its name. The index number
guides you if you wish to look for the entry for that function.
@item % time
This is the percentage of the total time that was spent in this
function, including time spent in subroutines called from this
function.
The time spent in this function is counted again for the callers of
this function. Therefore, adding up these percentages is meaningless.
@item self
This is the total amount of time spent in this function. This
should be identical to the number printed in the @code{seconds} field
for this function in the flat profile.
@item children
This is the total amount of time spent in the subroutine calls made by
this function. This should be equal to the sum of all the @code{self}
and @code{children} entries of the children listed directly below this
function.
@item called
This is the number of times the function was called.
If the function called itself recursively, there are two numbers,
separated by a @samp{+}. The first number counts non-recursive calls,
and the second counts recursive calls.
In the example above, the function @code{report} was called once from
@code{main}.
@item name
This is the name of the current function. The index number is
repeated after it.
If the function is part of a cycle of recursion, the cycle number is
printed between the function's name and the index number
(@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
For example, if function @code{gnurr} is part of
cycle number one, and has index number twelve, its primary line would
be end like this:
@example
gnurr <cycle 1> [12]
@end example
@end table
@node Callers
@subsection Lines for a Function's Callers
A function's entry has a line for each function it was called by.
These lines' fields correspond to the fields of the primary line, but
their meanings are different because of the difference in context.
For reference, we repeat two lines from the entry for the function
@code{report}, the primary line and one caller-line preceding it, together
with the heading line that shows the names of the fields:
@smallexample
index % time self children called name
@dots{}
0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
@end smallexample
Here are the meanings of the fields in the caller-line for @code{report}
called from @code{main}:
@table @code
@item self
An estimate of the amount of time spent in @code{report} itself when it was
called from @code{main}.
@item children
An estimate of the amount of time spent in subroutines of @code{report}
when @code{report} was called from @code{main}.
The sum of the @code{self} and @code{children} fields is an estimate
of the amount of time spent within calls to @code{report} from @code{main}.
@item called
Two numbers: the number of times @code{report} was called from @code{main},
followed by the total number of non-recursive calls to @code{report} from
all its callers.
@item name and index number
The name of the caller of @code{report} to which this line applies,
followed by the caller's index number.
Not all functions have entries in the call graph; some
options to @code{gprof} request the omission of certain functions.
When a caller has no entry of its own, it still has caller-lines
in the entries of the functions it calls.
If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.
@end table
If the identity of the callers of a function cannot be determined, a
dummy caller-line is printed which has @samp{<spontaneous>} as the
``caller's name'' and all other fields blank. This can happen for
signal handlers.
@c What if some calls have determinable callers' names but not all?
@c FIXME - still relevant?
@node Subroutines
@subsection Lines for a Function's Subroutines
A function's entry has a line for each of its subroutines---in other
words, a line for each other function that it called. These lines'
fields correspond to the fields of the primary line, but their meanings
are different because of the difference in context.
For reference, we repeat two lines from the entry for the function
@code{main}, the primary line and a line for a subroutine, together
with the heading line that shows the names of the fields:
@smallexample
index % time self children called name
@dots{}
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
@end smallexample
Here are the meanings of the fields in the subroutine-line for @code{main}
calling @code{report}:
@table @code
@item self
An estimate of the amount of time spent directly within @code{report}
when @code{report} was called from @code{main}.
@item children
An estimate of the amount of time spent in subroutines of @code{report}
when @code{report} was called from @code{main}.
The sum of the @code{self} and @code{children} fields is an estimate
of the total time spent in calls to @code{report} from @code{main}.
@item called
Two numbers, the number of calls to @code{report} from @code{main}
followed by the total number of non-recursive calls to @code{report}.
This ratio is used to determine how much of @code{report}'s @code{self}
and @code{children} time gets credited to @code{main}.
@xref{Assumptions, ,Estimating @code{children} Times}.
@item name
The name of the subroutine of @code{main} to which this line applies,
followed by the subroutine's index number.
If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.
@end table
@node Cycles
@subsection How Mutually Recursive Functions Are Described
@cindex cycle
@cindex recursion cycle
The graph may be complicated by the presence of @dfn{cycles of
recursion} in the call graph. A cycle exists if a function calls
another function that (directly or indirectly) calls (or appears to
call) the original function. For example: if @code{a} calls @code{b},
and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
Whenever there are call paths both ways between a pair of functions, they
belong to the same cycle. If @code{a} and @code{b} call each other and
@code{b} and @code{c} call each other, all three make one cycle. Note that
even if @code{b} only calls @code{a} if it was not called from @code{a},
@code{gprof} cannot determine this, so @code{a} and @code{b} are still
considered a cycle.
The cycles are numbered with consecutive integers. When a function
belongs to a cycle, each time the function name appears in the call graph
it is followed by @samp{<cycle @var{number}>}.
The reason cycles matter is that they make the time values in the call
graph paradoxical. The ``time spent in children'' of @code{a} should
include the time spent in its subroutine @code{b} and in @code{b}'s
subroutines---but one of @code{b}'s subroutines is @code{a}! How much of
@code{a}'s time should be included in the children of @code{a}, when
@code{a} is indirectly recursive?
The way @code{gprof} resolves this paradox is by creating a single entry
for the cycle as a whole. The primary line of this entry describes the
total time spent directly in the functions of the cycle. The
``subroutines'' of the cycle are the individual functions of the cycle, and
all other functions that were called directly by them. The ``callers'' of
the cycle are the functions, outside the cycle, that called functions in
the cycle.
Here is an example portion of a call graph which shows a cycle containing
functions @code{a} and @code{b}. The cycle was entered by a call to
@code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
@smallexample
index % time self children called name
----------------------------------------
1.77 0 1/1 main [2]
[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
1.02 0 3 b <cycle 1> [4]
0.75 0 2 a <cycle 1> [5]
----------------------------------------
3 a <cycle 1> [5]
[4] 52.85 1.02 0 0 b <cycle 1> [4]
2 a <cycle 1> [5]
0 0 3/6 c [6]
----------------------------------------
1.77 0 1/1 main [2]
2 b <cycle 1> [4]
[5] 38.86 0.75 0 1 a <cycle 1> [5]
3 b <cycle 1> [4]
0 0 3/6 c [6]
----------------------------------------
@end smallexample
@noindent
(The entire call graph for this program contains in addition an entry for
@code{main}, which calls @code{a}, and an entry for @code{c}, with callers
@code{a} and @code{b}.)
@smallexample
index % time self children called name
<spontaneous>
[1] 100.00 0 1.93 0 start [1]
0.16 1.77 1/1 main [2]
----------------------------------------
0.16 1.77 1/1 start [1]
[2] 100.00 0.16 1.77 1 main [2]
1.77 0 1/1 a <cycle 1> [5]
----------------------------------------
1.77 0 1/1 main [2]
[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
1.02 0 3 b <cycle 1> [4]
0.75 0 2 a <cycle 1> [5]
0 0 6/6 c [6]
----------------------------------------
3 a <cycle 1> [5]
[4] 52.85 1.02 0 0 b <cycle 1> [4]
2 a <cycle 1> [5]
0 0 3/6 c [6]
----------------------------------------
1.77 0 1/1 main [2]
2 b <cycle 1> [4]
[5] 38.86 0.75 0 1 a <cycle 1> [5]
3 b <cycle 1> [4]
0 0 3/6 c [6]
----------------------------------------
0 0 3/6 b <cycle 1> [4]
0 0 3/6 a <cycle 1> [5]
[6] 0.00 0 0 6 c [6]
----------------------------------------
@end smallexample
The @code{self} field of the cycle's primary line is the total time
spent in all the functions of the cycle. It equals the sum of the
@code{self} fields for the individual functions in the cycle, found
in the entry in the subroutine lines for these functions.
The @code{children} fields of the cycle's primary line and subroutine lines
count only subroutines outside the cycle. Even though @code{a} calls
@code{b}, the time spent in those calls to @code{b} is not counted in
@code{a}'s @code{children} time. Thus, we do not encounter the problem of
what to do when the time in those calls to @code{b} includes indirect
recursive calls back to @code{a}.
The @code{children} field of a caller-line in the cycle's entry estimates
the amount of time spent @emph{in the whole cycle}, and its other
subroutines, on the times when that caller called a function in the cycle.
The @code{called} field in the primary line for the cycle has two numbers:
first, the number of times functions in the cycle were called by functions
outside the cycle; second, the number of times they were called by
functions in the cycle (including times when a function in the cycle calls
itself). This is a generalization of the usual split into non-recursive and
recursive calls.
The @code{called} field of a subroutine-line for a cycle member in the
cycle's entry says how many time that function was called from functions in
the cycle. The total of all these is the second number in the primary line's
@code{called} field.
In the individual entry for a function in a cycle, the other functions in
the same cycle can appear as subroutines and as callers. These lines show
how many times each function in the cycle called or was called from each other
function in the cycle. The @code{self} and @code{children} fields in these
lines are blank because of the difficulty of defining meanings for them
when recursion is going on.
@node Line-by-line
@section Line-by-line Profiling
@code{gprof}'s @samp{-l} option causes the program to perform
@dfn{line-by-line} profiling. In this mode, histogram
samples are assigned not to functions, but to individual
lines of source code. This only works with programs compiled with
older versions of the @code{gcc} compiler. Newer versions of @code{gcc}
use a different program - @code{gcov} - to display line-by-line
profiling information.
With the older versions of @code{gcc} the program usually has to be
compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
to generate debugging symbols for tracking source code lines.
Note, in much older versions of @code{gcc} the program had to be
compiled with the @samp{-a} command-line option as well.
The flat profile is the most useful output table
in line-by-line mode.
The call graph isn't as useful as normal, since
the current version of @code{gprof} does not propagate
call graph arcs from source code lines to the enclosing function.
The call graph does, however, show each line of code
that called each function, along with a count.
Here is a section of @code{gprof}'s output, without line-by-line profiling.
Note that @code{ct_init} accounted for four histogram hits, and
13327 calls to @code{init_block}.
@smallexample
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
30.77 0.13 0.04 6335 6.31 6.31 ct_init
Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
index % time self children called name
0.00 0.00 1/13496 name_too_long
0.00 0.00 40/13496 deflate
0.00 0.00 128/13496 deflate_fast
0.00 0.00 13327/13496 ct_init
[7] 0.0 0.00 0.00 13496 init_block
@end smallexample
Now let's look at some of @code{gprof}'s output from the same program run,
this time with line-by-line profiling enabled. Note that @code{ct_init}'s
four histogram hits are broken down into four lines of source code---one hit
occurred on each of lines 349, 351, 382 and 385. In the call graph,
note how
@code{ct_init}'s 13327 calls to @code{init_block} are broken down
into one call from line 396, 3071 calls from line 384, 3730 calls
from line 385, and 6525 calls from 387.
@smallexample
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self
time seconds seconds calls name
7.69 0.10 0.01 ct_init (trees.c:349)
7.69 0.11 0.01 ct_init (trees.c:351)
7.69 0.12 0.01 ct_init (trees.c:382)
7.69 0.13 0.01 ct_init (trees.c:385)
Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
% time self children called name
0.00 0.00 1/13496 name_too_long (gzip.c:1440)
0.00 0.00 1/13496 deflate (deflate.c:763)
0.00 0.00 1/13496 ct_init (trees.c:396)
0.00 0.00 2/13496 deflate (deflate.c:727)
0.00 0.00 4/13496 deflate (deflate.c:686)
0.00 0.00 5/13496 deflate (deflate.c:675)
0.00 0.00 12/13496 deflate (deflate.c:679)
0.00 0.00 16/13496 deflate (deflate.c:730)
0.00 0.00 128/13496 deflate_fast (deflate.c:654)
0.00 0.00 3071/13496 ct_init (trees.c:384)
0.00 0.00 3730/13496 ct_init (trees.c:385)
0.00 0.00 6525/13496 ct_init (trees.c:387)
[6] 0.0 0.00 0.00 13496 init_block (trees.c:408)
@end smallexample
@node Annotated Source
@section The Annotated Source Listing
@code{gprof}'s @samp{-A} option triggers an annotated source listing,
which lists the program's source code, each function labeled with the
number of times it was called. You may also need to specify the
@samp{-I} option, if @code{gprof} can't find the source code files.
With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
-pg -a} augments your program with basic-block counting code, in
addition to function counting code. This enables @code{gprof} to
determine how many times each line of code was executed. With newer
versions of @code{gcc} support for displaying basic-block counts is
provided by the @code{gcov} program.
For example, consider the following function, taken from gzip,
with line numbers added:
@smallexample
1 ulg updcrc(s, n)
2 uch *s;
3 unsigned n;
4 @{
5 register ulg c;
6
7 static ulg crc = (ulg)0xffffffffL;
8
9 if (s == NULL) @{
10 c = 0xffffffffL;
11 @} else @{
12 c = crc;
13 if (n) do @{
14 c = crc_32_tab[...];
15 @} while (--n);
16 @}
17 crc = c;
18 return c ^ 0xffffffffL;
19 @}
@end smallexample
@code{updcrc} has at least five basic-blocks.
One is the function itself. The
@code{if} statement on line 9 generates two more basic-blocks, one
for each branch of the @code{if}. A fourth basic-block results from
the @code{if} on line 13, and the contents of the @code{do} loop form
the fifth basic-block. The compiler may also generate additional
basic-blocks to handle various special cases.
A program augmented for basic-block counting can be analyzed with
@samp{gprof -l -A}.
The @samp{-x} option is also helpful,
to ensure that each line of code is labeled at least once.
Here is @code{updcrc}'s
annotated source listing for a sample @code{gzip} run:
@smallexample
ulg updcrc(s, n)
uch *s;
unsigned n;
2 ->@{
register ulg c;
static ulg crc = (ulg)0xffffffffL;
2 -> if (s == NULL) @{
1 -> c = 0xffffffffL;
1 -> @} else @{
1 -> c = crc;
1 -> if (n) do @{
26312 -> c = crc_32_tab[...];
26312,1,26311 -> @} while (--n);
@}
2 -> crc = c;
2 -> return c ^ 0xffffffffL;
2 ->@}
@end smallexample
In this example, the function was called twice, passing once through
each branch of the @code{if} statement. The body of the @code{do}
loop was executed a total of 26312 times. Note how the @code{while}
statement is annotated. It began execution 26312 times, once for
each iteration through the loop. One of those times (the last time)
it exited, while it branched back to the beginning of the loop 26311 times.
@node Inaccuracy
@chapter Inaccuracy of @code{gprof} Output
@menu
* Sampling Error:: Statistical margins of error
* Assumptions:: Estimating children times
@end menu
@node Sampling Error
@section Statistical Sampling Error
The run-time figures that @code{gprof} gives you are based on a sampling
process, so they are subject to statistical inaccuracy. If a function runs
only a small amount of time, so that on the average the sampling process
ought to catch that function in the act only once, there is a pretty good
chance it will actually find that function zero times, or twice.
By contrast, the number-of-calls and basic-block figures are derived
by counting, not sampling. They are completely accurate and will not
vary from run to run if your program is deterministic and single
threaded. In multi-threaded applications, or single threaded
applications that link with multi-threaded libraries, the counts are
only deterministic if the counting function is thread-safe. (Note:
beware that the mcount counting function in glibc is @emph{not}
thread-safe). @xref{Implementation, ,Implementation of Profiling}.
The @dfn{sampling period} that is printed at the beginning of the flat
profile says how often samples are taken. The rule of thumb is that a
run-time figure is accurate if it is considerably bigger than the sampling
period.
The actual amount of error can be predicted.
For @var{n} samples, the @emph{expected} error
is the square-root of @var{n}. For example,
if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
@var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
or ten percent of the observed value.
Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
the expected error in @code{bar}'s run-time is 1 second,
or one percent of the observed value.
It is likely to
vary this much @emph{on the average} from one profiling run to the next.
(@emph{Sometimes} it will vary more.)
This does not mean that a small run-time figure is devoid of information.
If the program's @emph{total} run-time is large, a small run-time for one
function does tell you that that function used an insignificant fraction of
the whole program's time. Usually this means it is not worth optimizing.
One way to get more accuracy is to give your program more (but similar)
input data so it will take longer. Another way is to combine the data from
several runs, using the @samp{-s} option of @code{gprof}. Here is how:
@enumerate
@item
Run your program once.
@item
Issue the command @samp{mv gmon.out gmon.sum}.
@item
Run your program again, the same as before.
@item
Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
@example
gprof -s @var{executable-file} gmon.out gmon.sum
@end example
@item
Repeat the last two steps as often as you wish.
@item
Analyze the cumulative data using this command:
@example
gprof @var{executable-file} gmon.sum > @var{output-file}
@end example
@end enumerate
@node Assumptions
@section Estimating @code{children} Times
Some of the figures in the call graph are estimates---for example, the
@code{children} time values and all the time figures in caller and
subroutine lines.
There is no direct information about these measurements in the profile
data itself. Instead, @code{gprof} estimates them by making an assumption
about your program that might or might not be true.
The assumption made is that the average time spent in each call to any
function @code{foo} is not correlated with who called @code{foo}. If
@code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
@code{children} time, by assumption.
This assumption is usually true enough, but for some programs it is far
from true. Suppose that @code{foo} returns very quickly when its argument
is zero; suppose that @code{a} always passes zero as an argument, while
other callers of @code{foo} pass other arguments. In this program, all the
time spent in @code{foo} is in the calls from callers other than @code{a}.
But @code{gprof} has no way of knowing this; it will blindly and
incorrectly charge 2 seconds of time in @code{foo} to the children of
@code{a}.
@c FIXME - has this been fixed?
We hope some day to put more complete data into @file{gmon.out}, so that
this assumption is no longer needed, if we can figure out how. For the
novice, the estimated figures are usually more useful than misleading.
@node How do I?
@chapter Answers to Common Questions
@table @asis
@item How can I get more exact information about hot spots in my program?
Looking at the per-line call counts only tells part of the story.
Because @code{gprof} can only report call times and counts by function,
the best way to get finer-grained information on where the program
is spending its time is to re-factor large functions into sequences
of calls to smaller ones. Beware however that this can introduce
artificial hot spots since compiling with @samp{-pg} adds a significant
overhead to function calls. An alternative solution is to use a
non-intrusive profiler, e.g.@: oprofile.
@item How do I find which lines in my program were executed the most times?
Use the @code{gcov} program.
@item How do I find which lines in my program called a particular function?
Use @samp{gprof -l} and lookup the function in the call graph.
The callers will be broken down by function and line number.
@item How do I analyze a program that runs for less than a second?
Try using a shell script like this one:
@example
for i in `seq 1 100`; do
fastprog
mv gmon.out gmon.out.$i
done
gprof -s fastprog gmon.out.*
gprof fastprog gmon.sum
@end example
If your program is completely deterministic, all the call counts
will be simple multiples of 100 (i.e., a function called once in
each run will appear with a call count of 100).
@end table
@node Incompatibilities
@chapter Incompatibilities with Unix @code{gprof}
@sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
file @file{gmon.out}, and provide essentially the same information. But
there are a few differences.
@itemize @bullet
@item
@sc{gnu} @code{gprof} uses a new, generalized file format with support
for basic-block execution counts and non-realtime histograms. A magic
cookie and version number allows @code{gprof} to easily identify
new style files. Old BSD-style files can still be read.
@xref{File Format, ,Profiling Data File Format}.
@item
For a recursive function, Unix @code{gprof} lists the function as a
parent and as a child, with a @code{calls} field that lists the number
of recursive calls. @sc{gnu} @code{gprof} omits these lines and puts
the number of recursive calls in the primary line.
@item
When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
@code{gprof} still lists it as a subroutine of functions that call it.
@item
@sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
in the form @samp{from/to}, instead of @samp{from to}.
@item
In the annotated source listing,
if there are multiple basic blocks on the same line,
@sc{gnu} @code{gprof} prints all of their counts, separated by commas.
@ignore - it does this now
@item
The function names printed in @sc{gnu} @code{gprof} output do not include
the leading underscores that are added internally to the front of all
C identifiers on many operating systems.
@end ignore
@item
The blurbs, field widths, and output formats are different. @sc{gnu}
@code{gprof} prints blurbs after the tables, so that you can see the
tables without skipping the blurbs.
@end itemize
@node Details
@chapter Details of Profiling
@menu
* Implementation:: How a program collects profiling information
* File Format:: Format of @samp{gmon.out} files
* Internals:: @code{gprof}'s internal operation
* Debugging:: Using @code{gprof}'s @samp{-d} option
@end menu
@node Implementation
@section Implementation of Profiling
Profiling works by changing how every function in your program is compiled
so that when it is called, it will stash away some information about where
it was called from. From this, the profiler can figure out what function
called it, and can count how many times it was called. This change is made
by the compiler when your program is compiled with the @samp{-pg} option,
which causes every function to call @code{mcount}
(or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
as one of its first operations.
The @code{mcount} routine, included in the profiling library,
is responsible for recording in an in-memory call graph table
both its parent routine (the child) and its parent's parent. This is
typically done by examining the stack frame to find both
the address of the child, and the return address in the original parent.
Since this is a very machine-dependent operation, @code{mcount}
itself is typically a short assembly-language stub routine
that extracts the required
information, and then calls @code{__mcount_internal}
(a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
@code{__mcount_internal} is responsible for maintaining
the in-memory call graph, which records @code{frompc}, @code{selfpc},
and the number of times each of these call arcs was traversed.
GCC Version 2 provides a magical function (@code{__builtin_return_address}),
which allows a generic @code{mcount} function to extract the
required information from the stack frame. However, on some
architectures, most notably the SPARC, using this builtin can be
very computationally expensive, and an assembly language version
of @code{mcount} is used for performance reasons.
Number-of-calls information for library routines is collected by using a
special version of the C library. The programs in it are the same as in
the usual C library, but they were compiled with @samp{-pg}. If you
link your program with @samp{gcc @dots{} -pg}, it automatically uses the
profiling version of the library.
Profiling also involves watching your program as it runs, and keeping a
histogram of where the program counter happens to be every now and then.
Typically the program counter is looked at around 100 times per second of
run time, but the exact frequency may vary from system to system.
This is done is one of two ways. Most UNIX-like operating systems
provide a @code{profil()} system call, which registers a memory
array with the kernel, along with a scale
factor that determines how the program's address space maps
into the array.
Typical scaling values cause every 2 to 8 bytes of address space
to map into a single array slot.
On every tick of the system clock
(assuming the profiled program is running), the value of the
program counter is examined and the corresponding slot in
the memory array is incremented. Since this is done in the kernel,
which had to interrupt the process anyway to handle the clock
interrupt, very little additional system overhead is required.
However, some operating systems, most notably Linux 2.0 (and earlier),
do not provide a @code{profil()} system call. On such a system,
arrangements are made for the kernel to periodically deliver
a signal to the process (typically via @code{setitimer()}),
which then performs the same operation of examining the
program counter and incrementing a slot in the memory array.
Since this method requires a signal to be delivered to
user space every time a sample is taken, it uses considerably
more overhead than kernel-based profiling. Also, due to the
added delay required to deliver the signal, this method is
less accurate as well.
A special startup routine allocates memory for the histogram and
either calls @code{profil()} or sets up
a clock signal handler.
This routine (@code{monstartup}) can be invoked in several ways.
On Linux systems, a special profiling startup file @code{gcrt0.o},
which invokes @code{monstartup} before @code{main},
is used instead of the default @code{crt0.o}.
Use of this special startup file is one of the effects
of using @samp{gcc @dots{} -pg} to link.
On SPARC systems, no special startup files are used.
Rather, the @code{mcount} routine, when it is invoked for
the first time (typically when @code{main} is called),
calls @code{monstartup}.
If the compiler's @samp{-a} option was used, basic-block counting
is also enabled. Each object file is then compiled with a static array
of counts, initially zero.
In the executable code, every time a new basic-block begins
(i.e., when an @code{if} statement appears), an extra instruction
is inserted to increment the corresponding count in the array.
At compile time, a paired array was constructed that recorded
the starting address of each basic-block. Taken together,
the two arrays record the starting address of every basic-block,
along with the number of times it was executed.
The profiling library also includes a function (@code{mcleanup}) which is
typically registered using @code{atexit()} to be called as the
program exits, and is responsible for writing the file @file{gmon.out}.
Profiling is turned off, various headers are output, and the histogram
is written, followed by the call-graph arcs and the basic-block counts.
The output from @code{gprof} gives no indication of parts of your program that
are limited by I/O or swapping bandwidth. This is because samples of the
program counter are taken at fixed intervals of the program's run time.
Therefore, the
time measurements in @code{gprof} output say nothing about time that your
program was not running. For example, a part of the program that creates
so much data that it cannot all fit in physical memory at once may run very
slowly due to thrashing, but @code{gprof} will say it uses little time. On
the other hand, sampling by run time has the advantage that the amount of
load due to other users won't directly affect the output you get.
@node File Format
@section Profiling Data File Format
The old BSD-derived file format used for profile data does not contain a
magic cookie that allows one to check whether a data file really is a
@code{gprof} file. Furthermore, it does not provide a version number, thus
rendering changes to the file format almost impossible. @sc{gnu} @code{gprof}
uses a new file format that provides these features. For backward
compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
format, but not all features are supported with it. For example,
basic-block execution counts cannot be accommodated by the old file
format.
The new file format is defined in header file @file{gmon_out.h}. It
consists of a header containing the magic cookie and a version number,
as well as some spare bytes available for future extensions. All data
in a profile data file is in the native format of the target for which
the profile was collected. @sc{gnu} @code{gprof} adapts automatically
to the byte-order in use.
In the new file format, the header is followed by a sequence of
records. Currently, there are three different record types: histogram
records, call-graph arc records, and basic-block execution count
records. Each file can contain any number of each record type. When
reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
compatible with each other and compute the union of all records. For
example, for basic-block execution counts, the union is simply the sum
of all execution counts for each basic-block.
@subsection Histogram Records
Histogram records consist of a header that is followed by an array of
bins. The header contains the text-segment range that the histogram
spans, the size of the histogram in bytes (unlike in the old BSD
format, this does not include the size of the header), the rate of the
profiling clock, and the physical dimension that the bin counts
represent after being scaled by the profiling clock rate. The
physical dimension is specified in two parts: a long name of up to 15
characters and a single character abbreviation. For example, a
histogram representing real-time would specify the long name as
``seconds'' and the abbreviation as ``s''. This feature is useful for
architectures that support performance monitor hardware (which,
fortunately, is becoming increasingly common). For example, under DEC
OSF/1, the ``uprofile'' command can be used to produce a histogram of,
say, instruction cache misses. In this case, the dimension in the
histogram header could be set to ``i-cache misses'' and the abbreviation
could be set to ``1'' (because it is simply a count, not a physical
dimension). Also, the profiling rate would have to be set to 1 in
this case.
Histogram bins are 16-bit numbers and each bin represent an equal
amount of text-space. For example, if the text-segment is one
thousand bytes long and if there are ten bins in the histogram, each
bin represents one hundred bytes.
@subsection Call-Graph Records
Call-graph records have a format that is identical to the one used in
the BSD-derived file format. It consists of an arc in the call graph
and a count indicating the number of times the arc was traversed
during program execution. Arcs are specified by a pair of addresses:
the first must be within caller's function and the second must be
within the callee's function. When performing profiling at the
function level, these addresses can point anywhere within the
respective function. However, when profiling at the line-level, it is
better if the addresses are as close to the call-site/entry-point as
possible. This will ensure that the line-level call-graph is able to
identify exactly which line of source code performed calls to a
function.
@subsection Basic-Block Execution Count Records
Basic-block execution count records consist of a header followed by a
sequence of address/count pairs. The header simply specifies the
length of the sequence. In an address/count pair, the address
identifies a basic-block and the count specifies the number of times
that basic-block was executed. Any address within the basic-address can
be used.
@node Internals
@section @code{gprof}'s Internal Operation
Like most programs, @code{gprof} begins by processing its options.
During this stage, it may building its symspec list
(@code{sym_ids.c:@-sym_id_add}), if
options are specified which use symspecs.
@code{gprof} maintains a single linked list of symspecs,
which will eventually get turned into 12 symbol tables,
organized into six include/exclude pairs---one
pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
the call graph arcs (INCL_ARCS/EXCL_ARCS),
printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
timing propagation in the call graph (INCL_TIME/EXCL_TIME),
the annotated source listing (INCL_ANNO/EXCL_ANNO),
and the execution count listing (INCL_EXEC/EXCL_EXEC).
After option processing, @code{gprof} finishes
building the symspec list by adding all the symspecs in
@code{default_excluded_list} to the exclude lists
EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
EXCL_FLAT as well.
These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
Next, the BFD library is called to open the object file,
verify that it is an object file,
and read its symbol table (@code{core.c:@-core_init}),
using @code{bfd_canonicalize_symtab} after mallocing
an appropriately sized array of symbols. At this point,
function mappings are read (if the @samp{--file-ordering} option
has been specified), and the core text space is read into
memory (if the @samp{-c} option was given).
@code{gprof}'s own symbol table, an array of Sym structures,
is now built.
This is done in one of two ways, by one of two routines, depending
on whether line-by-line profiling (@samp{-l} option) has been
enabled.
For normal profiling, the BFD canonical symbol table is scanned.
For line-by-line profiling, every
text space address is examined, and a new symbol table entry
gets created every time the line number changes.
In either case, two passes are made through the symbol
table---one to count the size of the symbol table required,
and the other to actually read the symbols. In between the
two passes, a single array of type @code{Sym} is created of
the appropriate length.
Finally, @code{symtab.c:@-symtab_finalize}
is called to sort the symbol table and remove duplicate entries
(entries with the same memory address).
The symbol table must be a contiguous array for two reasons.
First, the @code{qsort} library function (which sorts an array)
will be used to sort the symbol table.
Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
which finds symbols
based on memory address, uses a binary search algorithm
which requires the symbol table to be a sorted array.
Function symbols are indicated with an @code{is_func} flag.
Line number symbols have no special flags set.
Additionally, a symbol can have an @code{is_static} flag
to indicate that it is a local symbol.
With the symbol table read, the symspecs can now be translated
into Syms (@code{sym_ids.c:@-sym_id_parse}). Remember that a single
symspec can match multiple symbols.
An array of symbol tables
(@code{syms}) is created, each entry of which is a symbol table
of Syms to be included or excluded from a particular listing.
The master symbol table and the symspecs are examined by nested
loops, and every symbol that matches a symspec is inserted
into the appropriate syms table. This is done twice, once to
count the size of each required symbol table, and again to build
the tables, which have been malloced between passes.
From now on, to determine whether a symbol is on an include
or exclude symspec list, @code{gprof} simply uses its
standard symbol lookup routine on the appropriate table
in the @code{syms} array.
Now the profile data file(s) themselves are read
(@code{gmon_io.c:@-gmon_out_read}),
first by checking for a new-style @samp{gmon.out} header,
then assuming this is an old-style BSD @samp{gmon.out}
if the magic number test failed.
New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
For the first histogram record, allocate a memory array to hold
all the bins, and read them in.
When multiple profile data files (or files with multiple histogram
records) are read, the memory ranges of each pair of histogram records
must be either equal, or non-overlapping. For each pair of histogram
records, the resolution (memory region size divided by the number of
bins) must be the same. The time unit must be the same for all
histogram records. If the above containts are met, all histograms
for the same memory range are merged.
As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
the parent and child addresses
are matched to symbol table entries, and a call graph arc is
created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
check against INCL_ARCS/EXCL_ARCS. As each arc is added,
a linked list is maintained of the parent's child arcs, and of the child's
parent arcs.
Both the child's call count and the arc's call count are
incremented by the record's call count.
Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
but only if line-by-line profiling has been selected.
Each basic-block address is matched to a corresponding line
symbol in the symbol table, and an entry made in the symbol's
bb_addr and bb_calls arrays. Again, if multiple basic-block
records are present for the same address, the call counts
are cumulative.
A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
If histograms were present in the data files, assign them to symbols
(@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
bins and assigning them to symbols. Since the symbol table
is sorted in order of ascending memory addresses, we can
simple follow along in the symbol table as we make our pass
over the sample bins.
This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
Depending on the histogram
scale factor, a sample bin may span multiple symbols,
in which case a fraction of the sample count is allocated
to each symbol, proportional to the degree of overlap.
This effect is rare for normal profiling, but overlaps
are more common during line-by-line profiling, and can
cause each of two adjacent lines to be credited with half
a hit, for example.
If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
First, if @samp{-c} was specified, a machine-dependent
routine (@code{find_call}) scans through each symbol's machine code,
looking for subroutine call instructions, and adding them
to the call graph with a zero call count.
A topological sort is performed by depth-first numbering
all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
children are always numbered less than their parents,
then making a array of pointers into the symbol table and sorting it into
numerical order, which is reverse topological
order (children appear before parents).
Cycles are also detected at this point, all members
of which are assigned the same topological number.
Two passes are now made through this sorted array of symbol pointers.
The first pass, from end to beginning (parents to children),
computes the fraction of child time to propagate to each parent
and a print flag.
The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
with a parent's include or exclude (print or no print) property
being propagated to its children, unless they themselves explicitly appear
in INCL_GRAPH or EXCL_GRAPH.
A second pass, from beginning to end (children to parents) actually
propagates the timings along the call graph, subject
to a check against INCL_TIME/EXCL_TIME.
With the print flag, fractions, and timings now stored in the symbol
structures, the topological sort array is now discarded, and a
new array of pointers is assembled, this time sorted by propagated time.
Finally, print the various outputs the user requested, which is now fairly
straightforward. The call graph (@code{cg_print.c:@-cg_print}) and
flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
already computed. The annotated source listing
(@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
information, if present, to label each line of code with call counts,
otherwise only the function call counts are presented.
The function ordering code is marginally well documented
in the source code itself (@code{cg_print.c}). Basically,
the functions with the most use and the most parents are
placed first, followed by other functions with the most use,
followed by lower use functions, followed by unused functions
at the end.
@node Debugging
@section Debugging @code{gprof}
If @code{gprof} was compiled with debugging enabled,
the @samp{-d} option triggers debugging output
(to stdout) which can be helpful in understanding its operation.
The debugging number specified is interpreted as a sum of the following
options:
@table @asis
@item 2 - Topological sort
Monitor depth-first numbering of symbols during call graph analysis
@item 4 - Cycles
Shows symbols as they are identified as cycle heads
@item 16 - Tallying
As the call graph arcs are read, show each arc and how
the total calls to each function are tallied
@item 32 - Call graph arc sorting
Details sorting individual parents/children within each call graph entry
@item 64 - Reading histogram and call graph records
Shows address ranges of histograms as they are read, and each
call graph arc
@item 128 - Symbol table
Reading, classifying, and sorting the symbol table from the object file.
For line-by-line profiling (@samp{-l} option), also shows line numbers
being assigned to memory addresses.
@item 256 - Static call graph
Trace operation of @samp{-c} option
@item 512 - Symbol table and arc table lookups
Detail operation of lookup routines
@item 1024 - Call graph propagation
Shows how function times are propagated along the call graph
@item 2048 - Basic-blocks
Shows basic-block records as they are read from profile data
(only meaningful with @samp{-l} option)
@item 4096 - Symspecs
Shows symspec-to-symbol pattern matching operation
@item 8192 - Annotate source
Tracks operation of @samp{-A} option
@end table
@node GNU Free Documentation License
@appendix GNU Free Documentation License
@include fdl.texi
@bye
NEEDS AN INDEX
-T - "traditional BSD style": How is it different? Should the
differences be documented?
example flat file adds up to 100.01%...
note: time estimates now only go out to one decimal place (0.0), where
they used to extend two (78.67).
|