Age | Commit message (Collapse) | Author | Files | Lines |
|
This updates the copyright headers to include 2025. I did this by
running gdb/copyright.py and then manually modifying a few files as
noted by the script.
Approved-By: Eli Zaretskii <eliz@gnu.org>
|
|
It was pointed out that the recently added gdb.opt/inline-entry.exp
test would fail when run using gcc 7 and earlier, on an x86-64 target:
https://inbox.sourceware.org/gdb-patches/9fe35ea1-d99b-444d-bd1b-e3a1f108dd77@suse.de
Bernd Edlinger points out that, for gcc, the test relies on the
-gstatement-frontiers work which was added in gcc 8.x:
https://inbox.sourceware.org/gdb-patches/DU2PR08MB10263357597688D9D66EA745CE4242@DU2PR08MB10263.eurprd08.prod.outlook.com
For gcc 7.x and older, without the -gstatement-frontiers work, the
compiler uses DW_AT_entry_pc differently, which leads to a poorer
debug experience.
Here is the interesting source line from inline-entry.c:
if ((global && bar (1)) || bar (2))
And here's some of the relevant disassembly output:
Dump of assembler code for function main:
0x401020 <+0>: mov 0x3006(%rip),%eax (1)
0x401026 <+6>: test %eax,%eax (2)
0x401028 <+8>: mov 0x2ffe(%rip),%eax (3)
0x40102e <+14>: je 0x401038 <main+24> (4)
0x401030 <+16>: sub $0x1,%eax (5)
0x401033 <+19>: jne 0x40103d <main+29> (6)
Lines (1), (2), and (4) represent the check of 'global'. However,
line (3) is actually the first instruction for 'bar' which has been
inlined. Lines (5) and (6) are also part of the first inlined 'bar'
function.
If the check of 'global' returns false then the first call to 'bar'
should never happen, this is accomplished by the branch at (4) being
taken.
For gcc 8+, gcc generates a DW_AT_entry_pc with the value 0x401030,
this is where GDB places a breakpoint for 'bar', and this address is
after the branch at line (4), and so, if the call to 'bar' never
happens, the breakpoint is never hit.
For gcc 7 and older, gcc generates a DW_AT_entry_pc with the value
0x401028, which is the first address associated with the inline 'bar'
function. Unfortunately, this address is also before the check of
'global' has completed, this means that GDB hits the 'bar' breakpoint
before the inferior has decided if 'bar' should actually be called or
not.
I don't think there's really much GDB can do in the older gcc
versions, we are placing the breakpoint at the entry point, and this
is within bar. Given that this test does really depend on the newer
gcc behaviour, I think the only sensible solution is to skip this test
when an older version of gcc is being used.
I've incorporated the check for -gstatement-frontiers support that
Bernd suggested and now the test will be skipped for older versions of
GCC.
Approved-By: Tom de Vries <tdevries@suse.de>
|
|
The entry PC for a DIE, e.g. an inline function, might not be the base
address of the DIE. Currently though, in block::entry_pc(), GDB
always returns the base address (low-pc or the first address of the
first range) as the entry PC.
This commit extends the block class to carry the entry PC as a
separate member variable. Then the DWARF reader is extended to read
and set the entry PC for the block. Now in block::entry_pc(), if the
entry PC has been set, this is the value returned.
If the entry-pc has not been set to a specific value then the old
behaviour of block::entry_pc() remains, GDB will use the block's base
address. Not every DIE will set the entry-pc, but GDB still needs to
have an entry-pc for every block, so the existing logic supplies the
entry-pc for any block where the entry-pc was not set.
The DWARF-5 spec for reading the entry PC is a super-set of the spec
as found in DWARF-4. For example, if there is no DW_AT_entry_pc then
DWARF-4 says to use DW_AT_low_pc while DWARF-5 says to use the base
address, which is DW_AT_low_pc or the first address in the first range
specified by DW_AT_ranges if there is no DW_AT_low_pc.
I have taken the approach of just implementing the DWARF-5 spec for
everyone. There doesn't seem to be any benefit to deliberately
ignoring a ranges based entry PC value for DWARF-4. If some naughty
compiler has emitted that, then lets use it.
Similarly, DWARF-4 says that DW_AT_entry_pc is an address. DWARF-5
allows an address or a constant, where the constant is an offset from
the base address. I allow both approaches for all DWARF versions.
There doesn't seem to be any downsides to this approach.
I ran into an issue when testing this patch where GCC would have the
DW_AT_entry_pc point to an empty range. When GDB parses the ranges
any empty ranges are ignored. As a consequence, the entry-pc appears
to be outside the address range of a block.
The empty range problem is certainly something that we can, and should
address, but that is not the focus of this patch, so for now I'm
ignoring that problem. What I have done is added a check: if the
DW_AT_entry_pc is outside the range of a block then the entry-pc is
ignored, GDB will then fall-back to its default algorithm for
computing the entry-pc.
If/when in the future we address the empty range problem, these
DW_AT_entry_pc attributes will suddenly become valid and GDB will
start using them. Until then, GDB continues to operate as it always
has.
An early version of this patch stored the entry-pc within the block
like this:
std::optional<CORE_ADDR> m_entry_pc;
However, a concern was raised that this, on a 64-bit host, effectively
increases the size of block by 16-bytes (8-bytes for the CORE_ADDR,
and 8-bytes for the std::optional's bool plus padding).
If we remove the std::optional part and just use a CORE_ADDR then we
need to have a "special" address to indicate if m_entry_pc is in use
or not. I don't really like using special addresses; different
targets can access different address ranges, even zero is a valid
address on some targets.
However, Bernd Edlinger suggested storing the entry-pc as an offset,
and I think that will resolve my concerns. So, we store the entry-pc
as a signed offset from the block's base address (the first address of
the first range, or the start() address value if there are now
ranges). Remember, ranges can be out of order, in which case the
first address of the first range might be greater than the entry-pc.
When GDB needs to read the entry-pc we can add the offset onto the
blocks base address to recalculate it.
With this done, on a 64-bit host, block only needs to increase by
8-bytes.
The inline-entry.exp test was originally contributed by Bernd here:
https://inbox.sourceware.org/gdb-patches/AS1PR01MB94659E4D9B3F4A6006CC605FE4922@AS1PR01MB9465.eurprd01.prod.exchangelabs.com
though I have made some edits, making more use of lib/gdb.exp
functions, making the gdb_test output patterns a little tighter, and
updating the test to run with Clang. I also moved the test to
gdb.opt/ as that seemed like a better home for it.
Co-Authored-By: Bernd Edlinger <bernd.edlinger@hotmail.de>
|
|
Before this change resolve_dynamic_array_or_string was called for
all TYPE_CODE_ARRAY and TYPE_CODE_STRING types, but, in the end,
this function always called create_array_type_with_stride, which
creates a TYPE_CODE_ARRAY type.
Suppose we have
subroutine vla_array (arr1, arr2)
character (len=*):: arr1 (:)
character (len=5):: arr2 (:)
print *, arr1 ! break-here
print *, arr2
end subroutine vla_array
The "print arr1" and "print arr2" command at the "break-here" line
gives the following output:
(gdb) print arr1
$1 = <incomplete type>
(gdb) print arr2
$2 = ('abcde', 'abcde', 'abcde')
(gdb) ptype arr1
type = Type
End Type
(gdb) ptype arr2
type = character*5 (3)
Dwarf info using IntelĀ® Fortran Compiler for such case contains following:
<1><fd>: Abbrev Number: 12 (DW_TAG_string_type)
<fe> DW_AT_name : (indirect string, offset: 0xd2): .str.ARR1
<102> DW_AT_string_length: 3 byte block: 97 23 8 (DW_OP_push_object_address; DW_OP_plus_uconst: 8)
After this change resolve_dynamic_array_or_string now calls
create_array_type_with_stride or create_string_type, so if the
incoming dynamic type is a TYPE_CODE_STRING then we'll get back a
TYPE_CODE_STRING type. Now gdb shows following:
(gdb) p arr1
$1 = ('abddefghij', 'abddefghij', 'abddefghij', 'abddefghij', 'abddefghij')
(gdb) p arr2
$2 = ('abcde', 'abcde', 'abcde')
(gdb) ptype arr1
type = character*10 (5)
(gdb) ptype arr2
type = character*5 (3)
In case of GFortran, compiler emits DW_TAG_structure_type for string type
arguments of the subroutine and it has only DW_AT_declaration tag. This
results in <incomplete type> in gdb. So, following issue is raised in gcc
bugzilla "https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101826".
Fixing above issue introduce regression in gdb.fortran/mixed-lang-stack.exp,
i.e. the test forces the language to C/C++ and print a Fortran string value.
The string value is a dynamic type with code TYPE_CODE_STRING.
Before this commit the dynamic type resolution would always convert this to
a TYPE_CODE_ARRAY of characters, which the C value printing could handle.
But now after this commit we get a TYPE_CODE_STRING, which
neither the C value printing, or the generic value printing code can
support. And so, I've added support for TYPE_CODE_STRING to the generic
value printing, all characters of strings are printed together till the
first null character.
Lastly, in gdb.opt/fortran-string.exp and gdb.fortran/string-types.exp
tests it expects type of character array in 'character (3)' format but now
after this change we get 'character*3', so tests are updated accordingly.
Approved-By: Tom Tromey <tom@tromey.com>
|
|
Fix the following common misspellings:
...
accidently -> accidentally
additonal -> additional
addresing -> addressing
adress -> address
agaisnt -> against
albiet -> albeit
arbitary -> arbitrary
artifical -> artificial
auxillary -> auxiliary
auxilliary -> auxiliary
bcak -> back
begining -> beginning
cannonical -> canonical
compatiblity -> compatibility
completetion -> completion
diferent -> different
emited -> emitted
emiting -> emitting
emmitted -> emitted
everytime -> every time
excercise -> exercise
existance -> existence
fucntion -> function
funtion -> function
guarentee -> guarantee
htis -> this
immediatly -> immediately
layed -> laid
noone -> no one
occurances -> occurrences
occured -> occurred
originaly -> originally
preceeded -> preceded
preceeds -> precedes
propogate -> propagate
publically -> publicly
refering -> referring
substract -> subtract
substracting -> subtracting
substraction -> subtraction
taht -> that
targetting -> targeting
teh -> the
thier -> their
thru -> through
transfered -> transferred
transfering -> transferring
upto -> up to
vincinity -> vicinity
whcih -> which
whereever -> wherever
wierd -> weird
withing -> within
writen -> written
wtih -> with
doesnt -> doesn't
...
Tested on x86_64-linux.
|
|
Fix all trailing-text-in-parentheses duplicates exposed by previous patch.
Tested on x86_64-linux and aarch64-linux.
|
|
With test-case gdb.opt/inline-cmds.exp on ppc64le-linux, I ran into:
...
PASS: gdb.opt/inline-cmds.exp: finish from marker
...
PASS: gdb.opt/inline-cmds.exp: finish from marker
DUPLICATE: gdb.opt/inline-cmds.exp: finish from marker
...
Fix this by issuing less passes.
Tested on ppc64le-linux.
|
|
The output of "info breakpoints" includes breakpoint, watchpoint,
tracepoint, and catchpoint if they are created, so it should show
all the four types are deleted in the output of "info breakpoints"
to report empty list after "delete breakpoints".
It should also change the output of "delete breakpoints" to make it
clear that watchpoints, tracepoints, and catchpoints are also being
deleted. This is suggested by Guinevere Larsen, thank you.
$ make check-gdb TESTS="gdb.base/access-mem-running.exp"
$ gdb/gdb gdb/testsuite/outputs/gdb.base/access-mem-running/access-mem-running
[...]
(gdb) break main
Breakpoint 1 at 0x12000073c: file /home/loongson/gdb.git/gdb/testsuite/gdb.base/access-mem-running.c, line 32.
(gdb) watch global_counter
Hardware watchpoint 2: global_counter
(gdb) trace maybe_stop_here
Tracepoint 3 at 0x12000071c: file /home/loongson/gdb.git/gdb/testsuite/gdb.base/access-mem-running.c, line 27.
(gdb) catch fork
Catchpoint 4 (fork)
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000012000073c in main at /home/loongson/gdb.git/gdb/testsuite/gdb.base/access-mem-running.c:32
2 hw watchpoint keep y global_counter
3 tracepoint keep y 0x000000012000071c in maybe_stop_here at /home/loongson/gdb.git/gdb/testsuite/gdb.base/access-mem-running.c:27
not installed on target
4 catchpoint keep y fork
Without this patch:
(gdb) delete breakpoints
Delete all breakpoints? (y or n) y
(gdb) info breakpoints
No breakpoints or watchpoints.
(gdb) info breakpoints 3
No breakpoint or watchpoint matching '3'.
With this patch:
(gdb) delete breakpoints
Delete all breakpoints, watchpoints, tracepoints, and catchpoints? (y or n) y
(gdb) info breakpoints
No breakpoints, watchpoints, tracepoints, or catchpoints.
(gdb) info breakpoints 3
No breakpoint, watchpoint, tracepoint, or catchpoint matching '3'.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Approved-by: Kevin Buettner <kevinb@redhat.com>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
|
|
If you have set up a backtrace limit, and the backtrace stops
because of this in an inline frame with arguments, you get an
assertion failure:
```
(gdb) bt
(gdb) set backtrace limit 2
(gdb) bt
C:/src/repos/binutils-gdb.git/gdb/frame.c:3346: internal-error: reinflate: Assertion `m_cached_level >= -1' failed.
```
And if this one is fixed, there is another one as well:
```
(gdb) bt
C:/src/repos/binutils-gdb.git/gdb/dwarf2/loc.c:1160: internal-error: dwarf_expr_reg_to_entry_parameter: Assertion `frame != NULL' failed.
```
The reason for both of them is this kind of loop:
```
while (get_frame_type (frame) == INLINE_FRAME)
frame = get_prev_frame (frame);
```
Since get_prev_frame respects the backtrace limit, it will return
NULL, and from there on you can't continue.
This changes these loops to use get_prev_frame_always instead, so
you always get a non-inline frame in the end.
With this backtrace works:
```
(gdb) bt
(gdb)
```
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29865
Approved-By: Andrew Burgess <aburgess@redhat.com>
|
|
This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
|
|
Consider the test-case:
...
$ cat main.c
int main (void) { return 0; }
$ cat static-optimized-out.c
static int aaa;
...
compiled like this:
...
$ gcc-12 static-optimized-out.c main.c -g -O2 -flto
...
There's a difference in behaviour depending on symtab expansion state:
...
$ gdb -q -batch a.out -ex "print aaa"
No symbol "aaa" in current context.
$ gdb -q -batch a.out -ex "maint expand-symtab" -ex "print aaa"
$1 = <optimized out>
...
The reason for the difference is that the optimized out variable aaa:
...
<1><104>: Abbrev Number: 2 (DW_TAG_variable)
<105> DW_AT_name : aaa
<109> DW_AT_decl_file : 1
<10a> DW_AT_decl_line : 18
<10b> DW_AT_decl_column : 12
<10c> DW_AT_type : <0x110>
...
is not added to the cooked index because of this clause in abbrev_table::read:
...
else if (!has_location && !has_specification_or_origin && !has_external
&& cur_abbrev->tag == DW_TAG_variable)
cur_abbrev->interesting = false;
...
Fix this inconsistency by making sure that the optimized out variable is added
to the cooked index.
Regression tested on x86_64-linux.
Add two test-cases, a C test-case gdb.opt/static-optimized-out.exp and a dwarf
assembly test-case gdb.dwarf2/static-optimized-out.exp.
Tested gdb.opt/static-optimized-out.exp with gcc-8 to gcc-12, for which we now
consistently get:
...
(gdb) print aaa^M
$1 = <optimized out>^M
...
and with gcc 7.5.0 and clang 13.0.1, for which we still consistently get:
...
(gdb) print aaa^M
No symbol "aaa" in current context.^M
...
due to missing debug info for the variable.
PR symtab/30656
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30656
Approved-By: Tom Tromey <tom@tromey.com>
|
|
This commit makes two changes to how we match newline characters in
the gdb_test proc.
First, for the newline pattern between the command output and the
prompt, I propose changing from '[\r\n]+' to an explicit '\r\n'.
The old pattern would spot multiple newlines, and so there are a few
places where, as part of this commit, I've needed to add an extra
trailing '\r\n' to the pattern in the main test file, where GDB's
output actually includes a blank line.
But I think this is a good thing. If a command produces a blank line
then we should be checking for it, the current gdb_test doesn't do
that. But also, with the current gdb_test, if a blank line suddenly
appears in the output, this is going to be silently ignored, and I
think this is wrong, the test should fail in that case.
Additionally, the existing pattern will happily match a partial
newline. There are a strangely large number of tests that end with a
random '.' character. Not matching a literal period, but matching any
single character, this is then matching half of the trailing newline
sequence, while the \[\r\n\]+ in gdb_test is matching the other half
of the sequence. I can think of no reason why this would be
intentional, I suspect that the expected output at one time included a
period, which has since been remove, but I haven't bothered to check
on this. In this commit I've removed all these unneeded trailing '.'
characters.
The basic rule of gdb_test after this is that the expected pattern
needs to match everything up to, but not including the newline
sequence immediately before the GDB prompt. This is generally how the
proc is used anyway, so in almost all cases, this commit represents no
significant change.
Second, while I was cleaning up newline matching in gdb_test, I've
also removed the '[\r\n]*' that was added to the start of the pattern
passed to gdb_test_multiple.
The addition of this pattern adds no value. If the user pattern
matches at the start of a line then this would match against the
newline sequence. But, due to the '*', if the user pattern doesn't
match at the start of a line then this group doesn't care, it'll
happily match nothing.
As such, there's no value to it, it just adds more complexity for no
gain, so I'm removing it. No tests will need updating as a
consequence of this part of the patch.
Reviewed-By: Tom Tromey <tom@tromey.com>
|
|
This changes skip_shlib_tests to invert the sense, and renames it to
allow_shlib_tests.
|
|
This changes some tests to use "require !skip_shlib_tests".
|
|
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
|
|
The following commit broke the readnow detection in the testsuite:
commit dfaa040b440084dd73ebd359326752d5f44fc02c
Date: Mon Mar 29 18:31:31 2021 -0600
Remove some "OBJF_READNOW" code from dwarf2_debug_names_index
The testsuite checks if GDB was started with the -readnow flag by
using the 'maintenance print objfiles' command, and looking for the
string 'faked for "readnow"' in the output. This is implemented in
two helper procs `readnow` (gdb.exp) and `mi_readnow` (mi-support.exp).
The following tests all currently depend on this detection:
gdb.base/maint.exp
gdb.cp/nsalias.exp
gdb.dwarf2/debug-aranges-duplicate-offset-warning.exp
gdb.dwarf2/dw2-stack-boundary.exp
gdb.dwarf2/dw2-zero-range.exp
gdb.dwarf2/gdb-index-nodebug.exp
gdb.mi/mi-info-sources.exp
gdb.python/py-symbol.exp
gdb.rust/traits.exp
The following test also includes detection of 'readnow', but does the
detection itself by checking $::GDBFLAGS for the readnow flag:
gdb.opt/break-on-_exit.exp
The above commit removed from GDB the code that produced the 'faked
for "readnow"' string, as a consequence the testsuite can no longer
correctly spot when readnow is in use, and many of the above tests
will fail (at least partially).
When looking at the above tests, I noticed that gdb.rust/traits.exp
does call `readnow`, but doesn't actually use the result, so I've
removed the readnow call, this simplifies the next part of this patch
as gdb.rust/traits.exp was the only place an extra regexp was passed
to the readnow call.
Next I have rewritten `readnow` to check the $GDBFLAGS for the
-readnow flag, and removed the `maintenance print objfiles` check. At
least for all the tests above, when using the readnow board, this is
good enough to get everything passing again.
For the `mi_readnow` proc, I changed this to just call `readnow` from
gdb.exp, I left the mi_readnow name in place - in the future it might
be the case that we want to do some different checks here.
Finally, I updated gdb.opt/break-on-_exit.exp to call the `readnow`
proc.
With these changes, all of the tests listed above now pass correctly
when using the readnow board.
|
|
I noticed that when running these two tests in sequence:
Running /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.ada/arrayptr.exp ...
ERROR: GDB process no longer exists
ERROR: Couldn't run foo-all
Running /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.ada/assign_1.exp ...
The results in gdb.sum are:
Running /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.ada/arrayptr.exp ...
PASS: gdb.ada/arrayptr.exp: scenario=all: compilation foo.adb
ERROR: GDB process no longer exists
UNRESOLVED: gdb.ada/arrayptr.exp: scenario=all: gdb_breakpoint: set breakpoint at foo.adb:40 (eof)
ERROR: Couldn't run foo-all
Running /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.ada/assign_1.exp ...
UNRESOLVED: gdb.ada/assign_1.exp: changing the language to ada
PASS: gdb.ada/assign_1.exp: set convenience variable $xxx to 1
The UNRESOLVED for arrayptr.exp is fine, as GDB crashes in that test,
while trying to run to main. However, the UNRESOLVED in assign_1.exp
doesn't make sense, GDB behaves as expected in that test:
(gdb) set lang ada^M
(gdb) UNRESOLVED: gdb.ada/assign_1.exp: changing the language to ada
print $xxx := 1^M
$1 = 1^M
(gdb) PASS: gdb.ada/assign_1.exp: set convenience variable $xxx to 1
The problem is that arrayptr.exp calls perror when failing to run to
main, then returns. perror makes it so that the next test (as in
pass/fail) will be recorded as UNRESOLVED. However, here, the next test
(as in pass/fail) is in the next test (as in .exp). Hence the spurious
UNRESOLVED in assign_1.exp.
These perror when failing to run to X are not really useful, especially
since runto records a FAIL on error, by default. Remove all the
perrors on runto failure I could find.
When there wasn't one already, add a return statement when failing to
run, to avoid running the test of the test unnecessarily.
I thought of adding a check ran between test (in gdb_finish
probably) where we would emit a warning if errcnt > 0, meaning a test
quit and left a perror "active". However, reading that variable would
poke into the DejaGNU internals, not sure it's a good idea.
Change-Id: I2203df6d06e199540b36f56470d1c5f1dc988f7b
|
|
The canonical form of 'if' in modern TCL is 'if {} {}'. But there's
still a bunch of places in the testsuite where we make use of the
'then' keyword, and sometimes these get copies into new tests, which
just spreads poor practice.
This commit removes all use of the 'then' keyword from the remaining
gdb.*/*.exp scripts. Previous commits have done the bulk of this
removal, this commit just handles the remaining directories that each
contain a low number of instances.
There should be no changes in what is tested after this commit.
|
|
On powerpc64le-linux, I run into:
...
(gdb) PASS: gdb.opt/solib-intra-step.exp: first-hit
step^M
28 { /* first-retry */^M
(gdb) FAIL: gdb.opt/solib-intra-step.exp: second-hit
...
It's a bit easier to understand what happens if we do a full stepping session:
...
Temporary breakpoint 1, main ()
at solib-intra-step-main.c:23
23 shlib_first ();
(gdb) step
shlib_first () at solib-intra-step-lib.c:29
29 shlib_second (0); /* first-hit */
(gdb) step
28 { /* first-retry */
(gdb) step
29 shlib_second (0); /* first-hit */
(gdb) step
shlib_second (dummy=0)
at solib-intra-step-lib.c:23
23 abort (); /* second-hit */
...
and compare that to the line info:
...
CU: solib-intra-step-lib.c:
File name Line number Starting address View Stmt
solib-intra-step-lib.c 22 0x710 x
solib-intra-step-lib.c 23 0x724 x
solib-intra-step-lib.c 28 0x740 x
solib-intra-step-lib.c 29 0x74c x
solib-intra-step-lib.c 28 0x750 x
solib-intra-step-lib.c 29 0x758 x
solib-intra-step-lib.c 30 0x760 x
solib-intra-step-lib.c - 0x77c
...
So we step from line 29 to line 28, and back to line 29, which is behaviour
that matches the line table. The peculiar order is due to using optimization.
The problem is that the test-case doesn't expect this order.
Fix this by allowing this order in the test-case.
Tested on powerpc64le-linux.
PR testsuite/29792
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29792
|
|
I noticed an address in a test name:
...
PASS: gdb.base/eh_return.exp: gdb_breakpoint: \
set breakpoint at *0x000000000040071b
...
Stabilize the test name by using "set breakpoint on address" instead.
Likewise in two other test-cases.
Tested on x86_64-linux.
|
|
When running test-case gdb.opt/inline-small-func.exp with clang 12.0.1, I run
into:
...
gdb compile failed, /usr/bin/ld: inline-small-func0.o: in function `main':
inline-small-func.c:21: undefined reference to `callee'
clang-12.0: error: linker command failed with exit code 1 \
(use -v to see invocation)
UNTESTED: gdb.opt/inline-small-func.exp: failed to prepare
...
Fix this by using __attribute__((always_inline)).
Tested on x86_64-linux.
|
|
It is not necessary to call get_compiler_info before calling
test_compiler_info, and, after recent commits that removed setting up
the gcc_compiled, true, and false globals from get_compiler_info,
there is now no longer any need for any test script to call
get_compiler_info directly.
As a result every call to get_compiler_info outside of lib/gdb.exp is
redundant, and this commit removes them all.
There should be no change in what is tested after this commit.
|
|
When running test-case gdb.opt/clobbered-registers-O2.exp with clang 12.0.1, I
get:
...
(gdb) run ^M
Starting program: clobbered-registers-O2 ^M
^M
Program received signal SIGSEGV, Segmentation fault.^M
gen_movsd (operand0=<optimized out>, operand1=<optimized out>) at \
clobbered-registers-O2.c:31^M
31 return *start_sequence(operand0, operand1);^M
(gdb) FAIL: gdb.opt/clobbered-registers-O2.exp: runto: run to start_sequence
...
The problem is that the breakpoint in start_sequence doesn't trigger, because:
- the call to start_sequence in gen_movsd is optimized away, despite the
__attribute__((noinline)), so the actual function start_sequence doesn't get
called, and
- the debug info doesn't contain inlined function info, so there's only one
breakpoint location.
Adding noclone and noipa alongside the noinline attribute doesn't fix this.
Adding the clang-specific attribute optnone in start_sequence does, but since
it inhibits all optimization, that's not a preferred solution in a gdb.opt
test-case, and it would work only for clang and not other compilers that
possibly have the same issue.
Fix this by moving functions start_sequence and gen_movsd into their own
files, as a way of trying harder to enforce noinline/noipa/noclone.
Tested on x86_64-linux.
|
|
When running test-case gdb.opt/clobbered-registers-O2.exp with gcc-12, I run
into:
...
(gdb) PASS: gdb.opt/clobbered-registers-O2.exp: backtracing
print operand0^M
$1 = (unsigned int *) 0x7fffffffd070^M
(gdb) print *operand0^M
$2 = 4195541^M
(gdb) FAIL: gdb.opt/clobbered-registers-O2.exp: print operand0
...
The problem is that starting gcc-12, the assignments to x and y in main are
optimized away:
...
int main(void)
{
unsigned x, y;
x = 13;
y = 14;
return (int)gen_movsd (&x, &y);
...
Fix this by making x and y volatile.
Note that the test-case intends to check the handling of debug info for
optimized code in function gen_movsd, so inhibiting optimization in main
doesn't interfere with that.
Tested on x86_64-linux.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29161
|
|
Many test cases had a few lines in the beginning that look like:
if { condition } {
continue
}
Where conditions varied, but were mostly in the form of ![runto_main] or
[skip_*_tests], making it quite clear that this code block was supposed
to finish the test if it entered the code block. This generates TCL
errors, as most of these tests are not inside loops. All cases on which
this was an obvious mistake are changed in this patch.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
Add a test-case to excercise the problem scenario reported in PR28527 and
fixed in commit a50bdb99afe "[gdb/tdep, rs6000] Don't skip system call in
skip_prologue":
- set a breakpoint on _exit, and
- verify that it triggers.
Note that this is not a regression test for that commit. Since the actual
code in _exit may vary across os instances, we cannot guarantee that the
problem will always trigger with this test-case.
Rather, this test-case is a version of the original test-case
(gdb.threads/process-dies-while-detaching.exp) that is minimal while still
reproducing the problem reported in PR28527, in that same setting.
The benefit of this test-case is that it exercise real-life code and may
expose similar problems in other settings. Also, it provides a much easier
test-case to investigate in case a similar problem occurs.
Tested on x86_64-linux and ppc64le-linux.
|
|
Consider a fortran routine where a string variable s is modified:
...
subroutine f(s)
character*(*) s
print *, s
s(1:3) = 'oof'
print *, s
end subroutine f
...
When compiling with optimization level -O1 and printing the type of
variable s we get:
...
$ gdb -q -batch outputs/gdb.opt/fortran-string/fortran-string \
-ex "b f" \
-ex run \
-ex "ptype s"
Breakpoint 1 at 0x4006f7: file fortran-string.f90, line 21.
Breakpoint 1, f (s=..., _s=_s@entry=3) at fortran-string.f90:21
21 subroutine f(s)
type = character*1
...
while with -O0 we have instead:
...
type = character (3)
...
The problem is that the type of s is:
...
<1><2d6>: Abbrev Number: 21 (DW_TAG_string_type)
<2d7> DW_AT_string_length: 0xbf (location list)
<2db> DW_AT_byte_size : 4
...
where the DW_AT_string_length is a location list, a case that is not handled
by attr_to_dynamic_prop.
Fix this by handling attr->form_is_section_offset () in attr_to_dynamic_prop.
Tested on x86_64-linux.
The test-case is based on gdb.opt/fortran-string.exp from
https://src.fedoraproject.org/rpms/gdb/raw/f32/f/gdb-archer-vla-tests.patch .
I've updated the copyrights to stretch to 2021.
[ I've tried to create a dwarf assembly test-case for this, but didn't
manage. ]
Co-Authored-By: Jan Kratochvil <jan.kratochvil@redhat.com>
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=26910
|
|
As follow-up to this discussion:
https://sourceware.org/pipermail/gdb-patches/2020-August/171385.html
... make runto_main not pass no-message to runto. This means that if we
fail to run to main, for some reason, we'll emit a FAIL. This is the
behavior we want the majority of (if not all) the time.
Without this, we rely on tests logging a failure if runto_main fails,
otherwise. They do so in a very inconsisteny mannet, sometimes using
"fail", "unsupported" or "untested". The messages also vary widly.
This patch removes all these messages as well.
Also, remove a few "fail" where we call runto (and not runto_main). by
default (without an explicit no-message argument), runto prints a
failure already. In two places, gdb.multi/multi-re-run.exp and
gdb.python/py-pp-registration.exp, remove "message" passed to runto.
This removes a few PASSes that we don't care about (but FAILs will still
be printed if we fail to run to where we want to). This aligns their
behavior with the rest of the testsuite.
Change-Id: Ib763c98c5f4fb6898886b635210d7c34bd4b9023
|
|
PR gdb/27742 points out that my recent change to
print_variable_and_value caused a regression in inline-locals.exp. I
can't reproduce this, but I came up with this patch based on the
output shown in the bug.
gdb/testsuite/ChangeLog
2021-04-19 Tom Tromey <tromey@adacore.com>
PR gdb/27742:
* gdb.opt/inline-locals.exp: Update kfail patterns.
|
|
GDB reports duplicate local vars with "<optimized out>" values for
inlined functions that are compiled with Clang.
Suppose we have
__attribute__((always_inline))
static void aFunction() {
int a = 42;
if(a > 2) {
int value = a;
value += 10; /* break here */
}
}
The "info locals" command at the "break here" line gives the following
output:
...
Breakpoint 1, aFunction () at test.c:6
6 value += 10; /* break here */
(gdb) info locals
value = 42
a = 42
value = <optimized out>
(gdb)
The reason is, inlined functions that are compiled by Clang do not
contain DW_AT_abstract_origin attributes in the DW_TAG_lexical_block
entries. See
https://bugs.llvm.org/show_bug.cgi?id=49953
E.g. the DIE of the inlined function above is
0x00000087: DW_TAG_inlined_subroutine
DW_AT_abstract_origin (0x0000002a "aFunction")
DW_AT_low_pc (0x00000000004004b2)
DW_AT_high_pc (0x00000000004004d2)
DW_AT_call_file ("/tmp/test.c")
DW_AT_call_line (11)
DW_AT_call_column (0x03)
0x0000009b: DW_TAG_variable
DW_AT_location (DW_OP_fbreg -4)
DW_AT_abstract_origin (0x00000032 "a")
0x000000a3: DW_TAG_lexical_block
DW_AT_low_pc (0x00000000004004c3)
DW_AT_high_pc (0x00000000004004d2)
0x000000b0: DW_TAG_variable
DW_AT_location (DW_OP_fbreg -8)
DW_AT_abstract_origin (0x0000003e "value")
This causes GDB to fail matching the concrete lexical scope with the
corresponding abstract entry. Hence, the local vars of the abstract
function that are contained in the lexical scope are read separately
(and thus, in addition to) the local vars of the concrete scope.
Because the abstract definitions of the vars do not contain location
information, we see the extra 'value = <optimized out>' above.
This bug is highly related to PR gdb/25695, but the root cause is not
exactly the same. In PR gdb/25695, GCC emits an extra
DW_TAG_lexical_block without an DW_AT_abstract_origin that wraps the
body of the inlined function. That is, the trees of the abstract DIE
for the function and its concrete instance are structurally not the
same. In the case of using Clang, the trees have the same structure.
To tackle the Clang case, when traversing the children of the concrete
instance root, keep a reference to the child of the abstract DIE that
corresponds to the concrete child, so that we can match the two DIEs
heuristically in case of missing DW_AT_abstract_origin attributes.
The updated gdb.opt/inline-locals.exp test has been checked with GCC
5-10 and Clang 5-11.
gdb/ChangeLog:
2021-04-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* dwarf2/read.c (inherit_abstract_dies): Keep a reference to the
corresponding child of the abstract DIE when iterating the
children of the concrete DIE.
gdb/testsuite/ChangeLog:
2021-04-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.opt/inline-locals.c (scoped): New function.
(main): Call 'scoped'.
* gdb.opt/inline-locals.exp: Update with "info locals" tests
for scoped variables.
* gdb.dwarf2/dw2-inline-with-lexical-scope.c: New file.
* gdb.dwarf2/dw2-inline-with-lexical-scope.exp: New file.
|
|
When running test-case gdb.opt/inline-cmds.exp, we run into this KFAIL with
gcc:
...
Breakpoint 7, main () at gdb.opt/inline-cmds.c:71^M
71 result = 0; /* set breakpoint 3 here */^M
(gdb) PASS: gdb.opt/inline-cmds.exp: continue to breakpoint: consecutive func1
next^M
73 func1 (); /* first call */^M
(gdb) PASS: gdb.opt/inline-cmds.exp: next to first func1
next^M
75 marker ();^M
(gdb) KFAIL: gdb.opt/inline-cmds.exp: next to second func1 (PRMS: gdb/25884)
...
while with clang we have instead:
...
next^M
74 func1 (); /* second call */^M
(gdb) PASS: gdb.opt/inline-cmds.exp: next to second func1
...
The relevant bit of the test source is here in inline-cmds.c:
...
71 result = 0; /* set breakpoint 3 here */
72
73 func1 (); /* first call */
74 func1 (); /* second call */
75 marker ();
...
with func1 defined as:
...
33 inline __attribute__((always_inline)) int func1(void)
34 {
35 bar ();
36 return x * y;
37 }
...
The corresponding insns are:
...
40050b: movl $0x0,0x200b1f(%rip) # 601034 <result>
400515: callq 40057b <bar>
40051a: callq 40057b <bar>
40051f: callq 400596 <marker>
...
and the line number info is:
...
Line number Starting address View Stmt
71 0x40050b x
35 0x400515 x
75 0x40051f x
...
The line number info is missing an entry for the insn at 40051a, and that is
causing the FAIL. This is a gcc issue, filed as PR gcc/98780 -" Missing line
table entry for inlined stmt at -g -O0".
[ For contrast, with clang we have an extra entry:
...
Line number Starting address View Stmt
71 0x40050b x
35 0x400515 x
35 0x40051a
75 0x40051f x
...
though it appears to be missing the start-of-statement marker. ]
However, there is debug info that indicates that the insn at 40051a is not
part of the line table entry for the insn at 400515:
...
<2><1c4>: Abbrev Number: 8 (DW_TAG_inlined_subroutine)
<1c5> DW_AT_abstract_origin: <0x2a2>
<1c9> DW_AT_low_pc : 0x400515
<1d1> DW_AT_high_pc : 0x5
<1d9> DW_AT_call_file : 1
<1da> DW_AT_call_line : 73
<2><1db>: Abbrev Number: 8 (DW_TAG_inlined_subroutine)
<1dc> DW_AT_abstract_origin: <0x2a2>
<1e0> DW_AT_low_pc : 0x40051a
<1e8> DW_AT_high_pc : 0x5
<1f0> DW_AT_call_file : 1
<1f1> DW_AT_call_line : 74
...
and indeed lldb manages to "next" from line 73 to line 74.
Work around the missing line table entry, by using the inline frame info to
narrow the stepping range in prepare_one_step.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-04-06 Tom de Vries <tdevries@suse.de>
PR breakpoints/25884
* infcmd.c (prepare_one_step): Using inline frame info to narrow
stepping range.
gdb/testsuite/ChangeLog:
2021-04-06 Tom de Vries <tdevries@suse.de>
PR breakpoints/25884
* gdb.opt/inline-cmds.exp: Remove kfail.
|
|
When running test-case gdb.opt/solib-intra-step.exp with target board
unix/-m32 and gcc-10, I run into:
...
(gdb) step^M
__x86.get_pc_thunk.bx () at ../sysdeps/i386/crti.S:68^M
68 ../sysdeps/i386/crti.S: No such file or directory.^M
(gdb) step^M
shlib_second (dummy=0) at solib-intra-step-lib.c:23^M
23 abort (); /* second-hit */^M
(gdb) FAIL: gdb.opt/solib-intra-step.exp: second-hit
...
The problem is that the test-case expects to step past the retry line,
which is optional.
Fix this by removing the state tracking logic from the gdb_test_multiples. It
makes the test more difficult to understand, and doesn't specifically test for
faulty gdb behaviour.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-01-29 Tom de Vries <tdevries@suse.de>
* gdb.opt/solib-intra-step.exp: Remove state tracking logic.
|
|
When running test-case gdb.opt/solib-intra-step.exp with target board
unix/-m32, we run into:
...
(gdb) step^M
__x86.get_pc_thunk.bx () at ../sysdeps/i386/crti.S:66^M
66 ../sysdeps/i386/crti.S: No such file or directory.^M
(gdb) FAIL: gdb.opt/solib-intra-step.exp: first-hit (optimized)
...
The thunk is a helper function for PIC, and given that we have line info for
it, we step into.
Fix this by allowing the step into the thunk, and stepping out of it.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-01-26 Tom de Vries <tdevries@suse.de>
* gdb.opt/solib-intra-step.exp: Handle stepping into thunk.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
We currently have two flushing commands 'flushregs' and 'maint
flush-symbol-cache'. I'm planning to add at least one more so I
thought it might be nice if we bundled these together into one place.
And so I created the 'maint flush ' command prefix. Currently there
are two commands:
(gdb) maint flush symbol-cache
(gdb) maint flush register-cache
Unfortunately, even though both of the existing flush commands are
maintenance commands, I don't know how keen we about deleting existing
commands for fear of breaking things in the wild. So, both of the
existing flush commands 'maint flush-symbol-cache' and 'flushregs' are
still around as deprecated aliases to the new commands.
I've updated the testsuite to use the new command syntax, and updated
the documentation too.
gdb/ChangeLog:
* NEWS: Mention new commands, and that the old commands are now
deprecated.
* cli/cli-cmds.c (maintenanceflushlist): Define.
* cli/cli-cmds.h (maintenanceflushlist): Declare.
* maint.c (_initialize_maint_cmds): Initialise
maintenanceflushlist.
* regcache.c: Add 'cli/cli-cmds.h' include.
(reg_flush_command): Add header comment.
(_initialize_regcache): Create new 'maint flush register-cache'
command, make 'flushregs' an alias.
* symtab.c: Add 'cli/cli-cmds.h' include.
(_initialize_symtab): Create new 'maint flush symbol-cache'
command, make old command an alias.
gdb/doc/ChangeLog:
* gdb.texinfo (Symbols): Document 'maint flush symbol-cache'.
(Maintenance Commands): Document 'maint flush register-cache'.
gdb/testsuite/ChangeLog:
* gdb.base/c-linkage-name.exp: Update to use new 'maint flush ...'
commands.
* gdb.base/killed-outside.exp: Likewise.
* gdb.opt/inline-bt.exp: Likewise.
* gdb.perf/gmonster-null-lookup.py: Likewise.
* gdb.perf/gmonster-print-cerr.py: Likewise.
* gdb.perf/gmonster-ptype-string.py: Likewise.
* gdb.python/py-unwind.exp: Likewise.
|
|
This adds an mi_runto_main routine, very much like the runto_main CLI
counterpart.
Note there's already a mi_run_to_main (extra underscore in "run_to"),
but unlike its intro comment says, that does more than the CLI's
runto_main -- it also starts GDB. I would like to eliminate that
other one by introducing a mi_clean_restart function instead. That is
done later in the series.
gdb/testsuite/ChangeLog:
* lib/mi-support.exp (mi_runto_main): New proc.
(mi_run_to_main): Use it.
* gdb.mi/mi-catch-cpp-exceptions.exp: Likewise.
* gdb.mi/mi-var-cmd.exp: Likewise.
* gdb.mi/mi-var-invalidate.exp: Likewise.
* mi-var-list-children-invalid-grandchild.exp: Likewise.
* gdb.mi/mi2-amd64-entry-value.exp: Likewise.
* gdb.mi/new-ui-mi-sync.exp: Likewise.
* gdb.mi/user-selected-context-sync.exp: Likewise.
* gdb.opt/inline-cmds.exp: Likewise.
* gdb.python/py-framefilter-mi.exp: Likewise.
* gdb.python/py-mi.exp: Likewise.
Change-Id: I2e49ca7b0b61cea57c1202e5dfa32417e6a4403d
|
|
This commit does 's/runto main/runto_main/g' throughout.
gdb/testsuite/ChangeLog:
* gdb.ada/fun_in_declare.exp: Use "runto_main" instead of
"runto main".
* gdb.ada/small_reg_param.exp: Likewise.
* gdb.arch/powerpc-d128-regs.exp: Likewise.
* gdb.base/annota1.exp: Likewise.
* gdb.base/anon.exp: Likewise.
* gdb.base/breakpoint-in-ro-region.exp: Likewise.
* gdb.base/dprintf-non-stop.exp: Likewise.
* gdb.base/dprintf.exp: Likewise.
* gdb.base/gdb11530.exp: Likewise.
* gdb.base/gdb11531.exp: Likewise.
* gdb.base/gnu_vector.exp: Likewise.
* gdb.base/interrupt-noterm.exp: Likewise.
* gdb.base/memattr.exp: Likewise.
* gdb.base/step-over-syscall.exp: Likewise.
* gdb.base/watch-cond-infcall.exp: Likewise.
* gdb.base/watch-read.exp: Likewise.
* gdb.base/watch-vfork.exp: Likewise.
* gdb.base/watch_thread_num.exp: Likewise.
* gdb.base/watchpoint-stops-at-right-insn.exp: Likewise.
* gdb.guile/scm-frame-inline.exp: Likewise.
* gdb.linespec/explicit.exp: Likewise.
* gdb.opt/inline-break.exp: Likewise.
* gdb.python/py-frame-inline.exp: Likewise.
* gdb.reverse/break-precsave.exp: Likewise.
* gdb.reverse/break-reverse.exp: Likewise.
* gdb.reverse/consecutive-precsave.exp: Likewise.
* gdb.reverse/consecutive-reverse.exp: Likewise.
* gdb.reverse/finish-precsave.exp: Likewise.
* gdb.reverse/finish-reverse.exp: Likewise.
* gdb.reverse/fstatat-reverse.exp: Likewise.
* gdb.reverse/getresuid-reverse.exp: Likewise.
* gdb.reverse/i386-precsave.exp: Likewise.
* gdb.reverse/i386-reverse.exp: Likewise.
* gdb.reverse/i386-sse-reverse.exp: Likewise.
* gdb.reverse/i387-env-reverse.exp: Likewise.
* gdb.reverse/i387-stack-reverse.exp: Likewise.
* gdb.reverse/insn-reverse.exp: Likewise.
* gdb.reverse/machinestate-precsave.exp: Likewise.
* gdb.reverse/machinestate.exp: Likewise.
* gdb.reverse/pipe-reverse.exp: Likewise.
* gdb.reverse/readv-reverse.exp: Likewise.
* gdb.reverse/recvmsg-reverse.exp: Likewise.
* gdb.reverse/rerun-prec.exp: Likewise.
* gdb.reverse/s390-mvcle.exp: Likewise.
* gdb.reverse/solib-precsave.exp: Likewise.
* gdb.reverse/solib-reverse.exp: Likewise.
* gdb.reverse/step-precsave.exp: Likewise.
* gdb.reverse/step-reverse.exp: Likewise.
* gdb.reverse/time-reverse.exp: Likewise.
* gdb.reverse/until-precsave.exp: Likewise.
* gdb.reverse/until-reverse.exp: Likewise.
* gdb.reverse/waitpid-reverse.exp: Likewise.
* gdb.reverse/watch-precsave.exp: Likewise.
* gdb.reverse/watch-reverse.exp: Likewise.
* gdb.threads/kill.exp: Likewise.
* gdb.threads/tid-reuse.exp: Likewise.
Change-Id: I70f457253836019880b4d7fb981936afa56724c2
|
|
I've been playing with a board file that forces every testcase to
include a header file that does something like:
#define main __gdb_testcase_main
and then links an actual main() function that does some
initialization and then jumps to __gdb_testcase_main.
That runs into a number of testcases relying on main not having an
explicit return statement, like e.g.,:
gdb/build/gdb/testsuite/../../../src/gdb/testsuite/gdb.base/catch-follow-exec.c:27:1: warning: non-void function does not return a value [-Wreturn-type]
gdb/build/gdb/testsuite/../../../src/gdb/testsuite/gdb.base/catch-signal.c:47:1: warning: non-void function does not return a value [-Wreturn-type]
We don't get those warnings without my board because it is valid to
not explicitly return from main. There's an implicit "return 0;".
Since it doesn't hurt to be explicit, I've went ahead and added the
explicit return statements.
Also, a couple testcases either don't explicitly specify main's return
type, or return void. Those are tweaked to explicitly return int.
gdb/testsuite/ChangeLog:
* gdb.base/catch-follow-exec.c (main): Add explicit return
statement.
* gdb.base/catch-signal.c (main): Likewise.
* gdb.base/condbreak-call-false.c (main): Likewise.
* gdb.base/consecutive.c (main): Add explicit return
statement and return type.
* gdb.base/cursal.c (main): Add explicit return statement.
* gdb.base/cvexpr.c (main): Likewise.
* gdb.base/display.c (main): Add explicit return statement and
return type.
* gdb.base/dprintf-detach.c (main): Add explicit return statement.
* gdb.base/endianity.c (main): Likewise.
* gdb.base/execd-prog.c (main): Likewise.
* gdb.base/gdb1090.c (main): Likewise.
* gdb.base/info_qt.c (main): Likewise.
* gdb.base/lineinc.c (main): Likewise.
* gdb.base/load-command.c (main): Likewise.
* gdb.base/macscp1.c (main): Likewise.
* gdb.base/pr10179-a.c (main): Likewise.
* gdb.base/quit-live.c (main): Likewise.
* gdb.base/scope0.c (main): Likewise.
* gdb.base/settings.c (main): Likewise.
* gdb.base/stack-checking.c (main): Return int.
* gdb.base/varargs.c (main): Add explicit return statement.
* gdb.cp/ambiguous.cc (main): Likewise.
* gdb.cp/anon-struct.cc (main): Likewise.
* gdb.cp/anon-union.cc (main): Likewise.
* gdb.cp/bool.cc (main): Likewise.
* gdb.cp/bs15503.cc (main): Likewise.
* gdb.cp/cplusfuncs.cc (main): Likewise.
* gdb.cp/cttiadd.cc (main): Likewise.
* gdb.cp/extern-c.cc (main): Likewise.
* gdb.cp/filename.cc (main): Likewise.
* gdb.cp/formatted-ref.cc (main): Likewise.
* gdb.cp/mb-ctor.cc (main): Likewise.
* gdb.cp/member-ptr.cc (main): Likewise.
* gdb.cp/minsym-fallback-main.cc (main): Likewise.
* gdb.cp/overload-const.cc (main): Likewise.
* gdb.cp/paren-type.cc (main): Likewise.
* gdb.cp/parse-lang.cc (main): Likewise.
* gdb.cp/pr-1023.cc (main): Likewise.
* gdb.cp/psmang1.cc (main): Likewise.
* gdb.cp/readnow-language.cc (main): Likewise.
* gdb.cp/ref-params.cc (main): Likewise.
* gdb.cp/rvalue-ref-params.cc (main): Likewise.
* gdb.cp/virtbase2.cc (main): Likewise.
* gdb.dwarf2/dw2-abs-hi-pc.c (main): Likewise.
* gdb.dwarf2/dw2-namespaceless-anonymous.c (main): Likewise.
* gdb.dwarf2/dw4-toplevel-types.cc (main): Likewise.
* gdb.mi/mi-console.c (main): Likewise.
* gdb.mi/mi-read-memory.c (main): Likewise.
* gdb.modula2/multidim.c (main): Likewise.
* gdb.opt/inline-small-func.c (main): Likewise.
* gdb.python/py-rbreak.c (main): Likewise.
* gdb.stabs/exclfwd1.c (main): Likewise.
* gdb.trace/qtro.c (main): Likewise.
|
|
When running testcase gdb.opt/inline-locals.exp on openSUSE Tumbleweed, I get:
...
(gdb) info locals^M
array = {0 <repeats 48 times>, 15775231, 0, 194, 0, -11497, 32767, 4199061, \
0, 0, 0, 0, 0, 4198992, 0, 4198432, 0}^M
(gdb) FAIL: gdb.opt/inline-locals.exp: info locals above bar 2
...
Fix this by:
- completely initializing array before printing any value
- updating the pattern to match "array = {0 <repeats 64 times>}"
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2020-07-21 Tom de Vries <tdevries@suse.de>
* gdb.opt/inline-locals.c (init_array): New func.
(func1): Use init_array.
* gdb.opt/inline-locals.exp: Update pattern.
|
|
There are 3 test directories with one duplicate test-name: gdb.gdb, gdb.opt
and gdb.xml. The duplicates are:
...
DUPLICATE: gdb.gdb/complaints.exp: call complaint_internal ($cstr)
DUPLICATE: gdb.opt/inline-locals.exp: info locals above bar 2 \
(PRMS: gdb/25695)
DUPLICATE: gdb.xml/tdesc-regs.exp: ptype $extrareg
...
Fix as appropriate.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2020-05-12 Tom de Vries <tdevries@suse.de>
* gdb.gdb/complaints.exp: Use with_test_prefix.
* gdb.xml/tdesc-regs.exp: Same.
* gdb.opt/inline-locals.exp: Fix test name.
|
|
With test-case gdb.opt/inline-cmds.exp, we have:
...
KFAIL: gdb.opt/inline-cmds.exp: next to second func1 (PRMS: gdb/NNNN)
...
I've filed PR25884 for this failure.
Set the KFAIL PR accordingly.
gdb/testsuite/ChangeLog:
2020-04-28 Tom de Vries <tdevries@suse.de>
* gdb.opt/inline-cmds.exp: Set KFAIL PR.
|
|
In this commit:
commit 8c95582da858ac981f689a6f599acacb8c5c490f
Date: Mon Dec 30 21:04:51 2019 +0000
gdb: Add support for tracking the DWARF line table is-stmt field
A change was made in buildsym_compunit::record_line to remove
duplicate line table entries in some cases. This was an invalid
change, as these duplicate line table entries are used in _some_ cases
as part of prologue detection (see skip_prologue_using_sal).
It might be possible to identify those line table entries that are
required by skip_prologue_using_sal and only keep those duplicates
around, however, I have not done this here. The original duplicate
removal was done because (a) it was easy to implement, and (b) it
seemed obviously harmless.
As (b) is now known to be false, and implementation would be more
complex, and so (a) is also false. As such, it seems better to keep
all duplicates until an actual reason presents itself for why we
should remove any.
The original regression was spotted on RISC-V, which makes use of
skip_prologue_using_sal as part of riscv_skip_prologue. Originally I
created the test gdb.dwarf2/dw2-inline-small-func.exp, however, this
test will not compile on RISC-V as this target doesn't support
.uleb128 or .sleb128 assembler directives containing complex
expressions. As a result I added the gdb.opt/inline-small-func.exp
test, which exposes the bug on RISC-V, but obviously depends on the
compiler to produce specific DWARF information in order to expose the
bug. Still this test does ensure we always get the desired result,
even if the DWARF changes.
Originally the gdb.dwarf2/dw2-inline-small-func.exp test passed on
x86-64 even with the duplicate line table entries incorrectly
removed. The reason for this is that when a compilation unit doesn't
have a 'producer' string then skip_prologue_using_sal is not used,
instead the prologue is always skipped using analysis of the assembler
code.
However, for Clang on x86-64 skip_prologue_using_sal is used, so I
modified the gdb.dwarf2/dw2-inline-small-func.exp test to include a
'producer' string that names the Clang compiler. With this done the
test would fail on x86-64.
One thing to note is that the gdb.opt/inline-small-func.exp test might
fail on some targets. For example, if we compare sparc to risc-v by
looking at sparc32_skip_prologue we see that this function doesn't use
skip_prologue_using_sal, but instead uses find_pc_partial_function
directly. I don't know the full history behind why the code is like
it is, but it feels like sparc32_skip_prologue is an attempt to
duplicate some of the functionality of skip_prologue_using_sal, but
without all of the special cases. If this is true then the new test
could easily fail on this target, this would suggest that sparc should
consider switching to use skip_prologue_using_sal like risc-v does.
gdb/ChangeLog:
* buildsym.c (buildsym_compunit::record_line): Remove
deduplication code.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-inline-small-func-lbls.c: New file.
* gdb.dwarf2/dw2-inline-small-func.c: New file.
* gdb.dwarf2/dw2-inline-small-func.exp: New file.
* gdb.dwarf2/dw2-inline-small-func.h: New file.
* gdb.opt/inline-small-func.c: New file.
* gdb.opt/inline-small-func.exp: New file.
* gdb.opt/inline-small-func.h: New file.
|
|
When running test-case gdb.opt/inline-locals.exp, I get:
...
Running src/gdb/testsuite/gdb.opt/inline-locals.exp ...
KPASS: gdb.opt/inline-locals.exp: info locals above bar 2 (PRMS gdb/xyz)
KPASS: gdb.opt/inline-locals.exp: info locals above bar 3 (PRMS gdb/xyz)
...
I've opened PR25695 - 'abstract and concrete variable listed both with "info
locals"' to refer to in the PRMS field, and this patch adds that reference.
Furthermore, I noticed that while I see KPASSes, given the problem description
the tests should actually be KFAILs. This patch also fixes that.
Tested on x86_64-linux. With gcc 7.5.0, I get 2 KFAILs. With clang 5.0.2,
the tests pass.
gdb/testsuite/ChangeLog:
2020-03-19 Tom de Vries <tdevries@suse.de>
* gdb.opt/inline-locals.exp: Add kfail PR number. Make kfail matching
more precise.
|
|
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
Currently the method 'cli_ui_out::do_field_fmt' has this comment:
/* This is the only field function that does not align. */
The reality is even slightly worse, the 'fmt' field type doesn't
respect either the field alignment or the field width. In at least
one place in GDB we attempt to work around this lack of respect for
field width by adding additional padding manually. But, as is often
the case, this is leading to knock on problems.
Conside the output for 'info breakpoints' when a breakpoint has
multiple locations. This example is taken from the testsuite, from
test gdb.opt/inline-break.exp:
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y <MULTIPLE>
1.1 y 0x00000000004004ae in func4b at /src/gdb/testsuite/gdb.opt/inline-break.c:64
1.2 y 0x0000000000400682 in func4b at /src/gdb/testsuite/gdb.opt/inline-break.c:64
The miss-alignment of the fields shown here is exactly as GDB
currently produces.
With this patch 'fmt' style fields are now first written into a
temporary buffer, and then written out as a 'string' field. The
result is that the field width, and alignment should now be respected.
With this patch in place the output from GDB now looks like this:
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y <MULTIPLE>
1.1 y 0x00000000004004ae in func4b at /src/gdb/testsuite/gdb.opt/inline-break.c:64
1.2 y 0x0000000000400682 in func4b at /src/gdb/testsuite/gdb.opt/inline-break.c:64
This patch has been tested on x86-64/Linux with no regressions,
however, the testsuite doesn't always spot broken output formatting or
alignment. I have also audited all uses of 'fmt' fields that I could
find, and I don't think there are any other places that specifically
try to work around the lack of width/alignment, however, I could have
missed something.
gdb/ChangeLog:
* breakpoint.c (print_one_breakpoint_location): Reduce whitespace,
and remove insertion of extra spaces in GDB's output.
* cli-out.c (cli_ui_out::do_field_fmt): Update header comment.
Layout field into a temporary buffer, and then output it as a
string field.
gdb/testsuite/ChangeLog:
* gdb.opt/inline-break.exp: Add test that info breakpoint output
is correctly aligned.
|
|
While experimenting with the previous patch, I noticed this inconsistency
in GDB's output:
(gdb) b 32
Breakpoint 1 at 0x40062f: file inline-break.c, line 32. (1)
(gdb) r
....
Breakpoint 1, func1 (x=1) at inline-break.c:32 (2)
32 return x * 23; /* break here */
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x40062f in main at inline-break.c:32 (3)
breakpoint already hit 1 time
(gdb)
Notice that when the breakpoint as set, GDB showed "inline-break.c,
line 32" (1), the same line number that was specified in the command.
When we run to the breakpoint, we present the stop at the same line
number, and correctly show "func1" as the function name (2).
But in "info break" output (3), notice that we say "in main", not "in
func1".
The same thing happens if you set a breakpoint by address. I.e.:
(gdb) b *0x40062f
Breakpoint 2 at 0x40062f: file inline-break.c, line 32.
(gdb) info breakpoints
Num Type Disp Enb Address What
2 breakpoint keep y 0x000000000040062f in main at inline-break.c:32
(gdb) r
....
Breakpoint 2, func1 (x=1) at inline-break.c:32
32 return x * 23; /* break here */
The problem is that the breakpoints were set at an inline function,
but when we set such a breakpoint by line number or address, we don't
record the functions symbol in the sal, and as consequence the
breakpoint location does not have an associated symbol either.
Then, in print_breakpoint_location, if the location does not have a
symbol, we call find_pc_sect_function to find one, and this is what
finds "main", because find_pc_sect_function uses
block_linkage_function:
/* Return the symbol for the function which contains a specified
lexical block, described by a struct block BL. The return value
will not be an inlined function; the containing function will be
returned instead. */
struct symbol *
block_linkage_function (const struct block *bl)
To fix this, this commit adds an alternative to find_pc_sect_function
that uses block_containing_function instead:
/* Return the symbol for the function which contains a specified
block, described by a struct block BL. The return value will be
the closest enclosing function, which might be an inline
function. */
struct symbol *
block_containing_function (const struct block *bl)
(It seems odd to me that block_linkage_function says "the CONTAINING
function will be returned", and then block_containing_function says it
returns "the closest enclosing function". Something seems reversed
here. Still, I've kept the same nomenclature and copied the comments,
so that at least there's consistency. Maybe we should fix that up
somehow.)
Then I wondered, why make print_breakpoint_location look up the symbol
every time it is called, instead of just always storing the symbol
when the location is created, since the location already stores the
symbol in some cases. So to find which cases might be missing setting
the symbol in the sal which is used to create the breakpoint location,
I added an assertion to print_breakpoint_location, and ran the
testsuite. That caught a few places, unsurprisingly:
- setting a breakpoint by line number
- setting a breapoint by address
- ifunc resolving
Those are all fixed by this commit. I decided not to add the
assertion to block_linkage_function and leave the existing "if (sym)"
check in place, because it's plausible that we have symtabs with line
info but no symbols. I.e., that would not be a GDB bug, but
a peculiarity of debug info input.
gdb/ChangeLog:
2018-06-29 Pedro Alves <palves@redhat.com>
* blockframe.c (find_pc_sect_containing_function): New function.
* breakpoint.c (print_breakpoint_location): Don't call
find_pc_sect_function.
* linespec.c (create_sals_line_offset): Record the location's
symbol in the sal.
* linespec.c (convert_address_location_to_sals): Fill in sal's
symbol with find_pc_sect_containing_function.
* symtab.c (find_function_start_sal): Rename to ...
(find_function_start_sal_1): ... this.
(find_function_start_sal): Reimplement as wrapper around
find_function_start_sal_1, and use
find_pc_sect_containing_function to fill in the sal's symbol.
(find_function_start_sal(symbol*, bool)): Adjust.
* symtab.h (find_pc_function, find_pc_sect_function): Adjust
comments.
(find_pc_sect_containing_function): Declare.
gdb/testsuite/ChangeLog:
2018-06-29 Pedro Alves <palves@redhat.com>
* gdb.opt/inline-break.exp (line number, address): Add "info
break" tests.
|
|
Commit 61b04dd04ac2 ("Change inline frame breakpoint skipping logic
(fix gdb.gdb/selftest.exp)") caused a GDB crash when you set a
breakpoint by line number in an inline function, and then run to the
breakpoint:
$ gdb -q test Reading symbols from test...done.
(gdb) b inline-break.c:32
Breakpoint 1 at 0x40062f: file inline-break.c, line 32.
(gdb) run
Starting program: /[...]/test
[1] 75618 segmentation fault /[...]/gdb -q test
The problem occurs because we assume that a bp_location's symbol is
not NULL, which is not true when we set the breakpoint with a linespec
location:
Program received signal SIGSEGV, Segmentation fault.
0x00000000006f42bb in stopped_by_user_bp_inline_frame (
stop_chain=<optimized out>, frame_block=<optimized out>)
at gdb/inline-frame.c:305
305 && frame_block == SYMBOL_BLOCK_VALUE (loc->symbol))
(gdb) p loc->symbol
$1 = (const symbol *) 0x0
The same thing happens if you run to a breakpoint set in an inline
function by address:
(gdb) b *0x40062f
Breakpoint 3 at 0x40062f: file inline-break.c, line 32.
To fix this, add a null pointer check, to avoid the crash, and make it
so that if there's no symbol for the location, then we present the
stop at the inline function. This preserves the previous behavior
when e.g., setting a breakpoint by address, with "b *ADDRESS".
gdb/ChangeLog:
2018-06-29 Pedro Alves <palves@redhat.com>
* inline-frame.c (stopped_by_user_bp_inline_frame): Return
true if the the location has no symbol.
gdb/testsuite/ChangeLog:
2018-06-29 Pedro Alves <palves@redhat.com>
* gdb.opt/inline-break.c (func1): Add "break here" marker.
* gdb.opt/inline-break.exp: Test setting breakpoints by line
number and address and running to them.
|
|
Currently, gdb.gdb/selftest.exp fails if you build GDB with
optimization (-O2, etc.).
The reason is that after setting a breakpoint in captured_main, we
stop at:
...
Breakpoint 1, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
...
while selftest_setup expects a stop at captured_main.
Here, captured_main_1 has been inlined into captured_main, and
captured_main has been inlined into gdb_main:
...
$ nm ./build/gdb/gdb | egrep ' [tT] .*captured_main|gdb_main' | c++filt
000000000061b950 T gdb_main(captured_main_args*)
...
Indeed, the two inlined functions show up in the backtrace:
...
(gdb) bt
#0 captured_main_1 (context=<optimized out>) at main.c:492
#1 captured_main (data=<optimized out>) at main.c:1147
#2 gdb_main (args=args@entry=0x7fffffffdb80) at main.c:1173
#3 0x000000000040fea5 in main (argc=<optimized out>, argv=<optimized out>)
at gdb.c:32
...
We're now stopping at captured_main_1 because commit ddfe970e6bec
("Don't elide all inlined frames") makes GDB present a stop at the
innermost inlined frame if the program stopped by a user breakpoint.
Now, the selftest.exp testcase explicitly asks to stop at
"captured_main", not "captured_main_1", so I'm thinking that it's
GDB'S behavior that should be improved. That is what this commit
does, by only showing a stop at an inline frame if the user breakpoint
was set in that frame's block.
Before this commit:
(top-gdb) b captured_main
Breakpoint 1 at 0x792f99: file src/gdb/main.c, line 492.
(top-gdb) r
Starting program: build/gdb/gdb
Breakpoint 1, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
492 lim_at_start = (char *) sbrk (0);
(top-gdb)
After this commit, we now instead get:
(top-gdb) b captured_main
Breakpoint 1 at 0x791339: file src/gdb/main.c, line 492.
(top-gdb) r
Starting program: build/gdb/gdb
Breakpoint 1, captured_main (data=<optimized out>) at src/gdb/main.c:1147
1147 captured_main_1 (context);
(top-gdb)
and:
(top-gdb) b captured_main_1
Breakpoint 2 at 0x791339: file src/gdb/main.c, line 492.
(top-gdb) r
Starting program: build/gdb/gdb
Breakpoint 2, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
492 lim_at_start = (char *) sbrk (0);
(top-gdb)
Note that both captured_main and captured_main_1 resolved to the same
address, 0x791339. That is necessary to trigger the issue in
question. The gdb.base/inline-break.exp testcase currently does not
exercise that, but the new test added by this commit does. That new
test fails without the GDB fix and passes with the fix. No
regressions on x86-64 GNU/Linux.
While at it, the THIS_PC comparison in stopped_by_user_bp_inline_frame
is basically a nop, so just remove it -- if a software or hardware
breakpoint explains the stop, then it must be that it was installed at
the current PC.
gdb/ChangeLog:
2018-06-19 Pedro Alves <palves@redhat.com>
* inline-frame.c (stopped_by_user_bp_inline_frame): Replace PC
parameter with a block parameter. Compare location's block symbol
with the frame's block instead of addresses.
(skip_inline_frames): Pass the current block instead of the
frame's address. Break out as soon as we determine the frame
should not be skipped.
gdb/testsuite/ChangeLog:
2018-06-19 Pedro Alves <palves@redhat.com>
* gdb.opt/inline-break.c (func_inline_callee, func_inline_caller)
(func_extern_caller): New.
(main): Call func_extern_caller.
* gdb.opt/inline-break.exp: Add tests for inline frame skipping
logic change.
|