aboutsummaryrefslogtreecommitdiff
path: root/gdb/testsuite/gdb.fortran/array-slices-sub-slices.exp
AgeCommit message (Collapse)AuthorFilesLines
2024-06-10[gdb/testsuite] Don't use set auto-solib-add offTom de Vries1-3/+0
In test-case gdb.mi/mi-var-child-f.exp, we have: ... mi_gdb_test "-gdb-set auto-solib-add off" "\\^done" mi_runto prog_array mi_gdb_test "nosharedlibrary" ".*\\^done" ... This was added to avoid a name clash between the array variable as defined in gdb.mi/array.f90 and debug info in shared libraries, and used in other places in the testsuite. The same workaround is also used to ignore symbols from shared libraries when excercising for instance a command that prints all symbols. However, this approach can cause problems for targets like arm that require symbol info for some libraries like ld.so and libc to fully function. While absense of debug info for shared libraries should be handled gracefully (which does need fixing, see PR31817), failure to do so should not result in failures in unrelated test-cases. Fix this by removing "set auto-solib-add off". This ensures that we don't run into PR31817, while the presence of nosharedlibrary still ensures that in the rest of the test-case we're not bothered by shared library symbols. Likewise in other test-cases. Approved-by: Kevin Buettner <kevinb@redhat.com> Tested on arm-linux.
2024-01-12Update copyright year range in header of all files managed by GDBAndrew Burgess1-1/+1
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
2023-01-13Rename to allow_fortran_testsTom Tromey1-1/+1
This changes skip_fortran_tests to invert the sense, and renames it to allow_fortran_tests.
2023-01-13Use require !skip_fortran_testsTom Tromey1-1/+1
This changes some tests to use "require !skip_fortran_tests".
2023-01-01Update copyright year range in header of all files managed by GDBJoel Brobecker1-1/+1
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
2022-01-01Automatic Copyright Year update after running gdb/copyright.pyJoel Brobecker1-1/+1
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script.
2021-10-11[gdb/testsuite] Fix FAIL in gdb.mi/mi-var-child-f.expTom de Vries1-0/+6
When running test-case gdb.mi/mi-var-child-f.exp on openSUSE Tumbleweed (with glibc 2.34) I run into: ... (gdb) ^M PASS: gdb.mi/mi-var-child-f.exp: mi runto prog_array Expecting: ^(-var-create array \* array[^M ]+)?(\^done,name="array",numchild="[0-9]+",value=".*",type=.*,has_more="0"[^M ]+[(]gdb[)] ^M [ ]*) -var-create array * array^M &"Attempt to use a type name as an expression.\n"^M ^error,msg="-var-create: unable to create variable object"^M (gdb) ^M FAIL: gdb.mi/mi-var-child-f.exp: create local variable array (unexpected output) ... The problem is that the name array is used both: - as the name for a local variable - as the name of a type in glibc, in file malloc/dynarray-skeleton.c, as included by nss/nss_files/files-hosts.c. Fix this by ignoring the shared lib symbols. Likewise in a couple of other fortran tests. Tested on x86_64-linux.
2021-09-30gdb/testsuite: make runto_main not pass no-message to runtoSimon Marchi1-1/+0
As follow-up to this discussion: https://sourceware.org/pipermail/gdb-patches/2020-August/171385.html ... make runto_main not pass no-message to runto. This means that if we fail to run to main, for some reason, we'll emit a FAIL. This is the behavior we want the majority of (if not all) the time. Without this, we rely on tests logging a failure if runto_main fails, otherwise. They do so in a very inconsisteny mannet, sometimes using "fail", "unsupported" or "untested". The messages also vary widly. This patch removes all these messages as well. Also, remove a few "fail" where we call runto (and not runto_main). by default (without an explicit no-message argument), runto prints a failure already. In two places, gdb.multi/multi-re-run.exp and gdb.python/py-pp-registration.exp, remove "message" passed to runto. This removes a few PASSes that we don't care about (but FAILs will still be printed if we fail to run to where we want to). This aligns their behavior with the rest of the testsuite. Change-Id: Ib763c98c5f4fb6898886b635210d7c34bd4b9023
2021-01-01Update copyright year range in all GDB filesJoel Brobecker1-1/+1
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
2020-11-19gdb/fortran: Add support for Fortran array slices at the GDB promptAndrew Burgess1-0/+111
This commit brings array slice support to GDB. WARNING: This patch contains a rather big hack which is limited to Fortran arrays, this can be seen in gdbtypes.c and f-lang.c. More details on this below. This patch rewrites two areas of GDB's Fortran support, the code to extract an array slice, and the code to print an array. After this commit a user can, from the GDB prompt, ask for a slice of a Fortran array and should get the correct result back. Slices can (optionally) have the lower bound, upper bound, and a stride specified. Slices can also have a negative stride. Fortran has the concept of repacking array slices. Within a compiled Fortran program if a user passes a non-contiguous array slice to a function then the compiler may have to repack the slice, this involves copying the elements of the slice to a new area of memory before the call, and copying the elements back to the original array after the call. Whether repacking occurs will depend on which version of Fortran is being used, and what type of function is being called. This commit adds support for both packed, and unpacked array slicing, with the default being unpacked. With an unpacked array slice, when the user asks for a slice of an array GDB creates a new type that accurately describes where the elements of the slice can be found within the original array, a value of this type is then returned to the user. The address of an element within the slice will be equal to the address of an element within the original array. A user can choose to select packed array slices instead using: (gdb) set fortran repack-array-slices on|off (gdb) show fortran repack-array-slices With packed array slices GDB creates a new type that reflects how the elements of the slice would look if they were laid out in contiguous memory, allocates a value of this type, and then fetches the elements from the original array and places then into the contents buffer of the new value. One benefit of using packed slices over unpacked slices is the memory usage, taking a small slice of N elements from a large array will require (in GDB) N * ELEMENT_SIZE bytes of memory, while an unpacked array will also include all of the "padding" between the non-contiguous elements. There are new tests added that highlight this difference. There is also a new debugging flag added with this commit that introduces these commands: (gdb) set debug fortran-array-slicing on|off (gdb) show debug fortran-array-slicing This prints information about how the array slices are being built. As both the repacking, and the array printing requires GDB to walk through a multi-dimensional Fortran array visiting each element, this commit adds the file f-array-walk.h, which introduces some infrastructure to support this process. This means the array printing code in f-valprint.c is significantly reduced. The only slight issue with this commit is the "rather big hack" that I mentioned above. This hack allows us to handle one specific case, array slices with negative strides. This is something that I don't believe the current GDB value contents model will allow us to correctly handle, and rather than rewrite the value contents code right now, I'm hoping to slip this hack in as a work around. The problem is that, as I see it, the current value contents model assumes that an object base address will be the lowest address within that object, and that the contents of the object start at this base address and occupy the TYPE_LENGTH bytes after that. ( We do have the embedded_offset, which is used for C++ sub-classes, such that an object can start at some offset from the content buffer, however, the assumption that the object then occupies the next TYPE_LENGTH bytes is still true within GDB. ) The problem is that Fortran arrays with a negative stride don't follow this pattern. In this case the base address of the object points to the element with the highest address, the contents of the array then start at some offset _before_ the base address, and proceed for one element _past_ the base address. As the stride for such an array would be negative then, in theory the TYPE_LENGTH for this type would also be negative. However, in many places a value in GDB will degrade to a pointer + length, and the length almost always comes from the TYPE_LENGTH. It is my belief that in order to correctly model this case the value content handling of GDB will need to be reworked to split apart the value's content buffer (which is a block of memory with a length), and the object's in memory base address and length, which could be negative. Things are further complicated because arrays with negative strides like this are always dynamic types. When a value has a dynamic type and its base address needs resolving we actually store the address of the object within the resolved dynamic type, not within the value object itself. In short I don't currently see an easy path to cleanly support this situation within GDB. And so I believe that leaves two options, either add a work around, or catch cases where the user tries to make use of a negative stride, or access an array with a negative stride, and throw an error. This patch currently goes with adding a work around, which is that when we resolve a dynamic Fortran array type, if the stride is negative, then we adjust the base address to point to the lowest address required by the array. The printing and slicing code is aware of this adjustment and will correctly slice and print Fortran arrays. Where this hack will show through to the user is if they ask for the address of an array in their program with a negative array stride, the address they get from GDB will not match the address that would be computed within the Fortran program. gdb/ChangeLog: * Makefile.in (HFILES_NO_SRCDIR): Add f-array-walker.h. * NEWS: Mention new options. * f-array-walker.h: New file. * f-lang.c: Include 'gdbcmd.h' and 'f-array-walker.h'. (repack_array_slices): New static global. (show_repack_array_slices): New function. (fortran_array_slicing_debug): New static global. (show_fortran_array_slicing_debug): New function. (value_f90_subarray): Delete. (skip_undetermined_arglist): Delete. (class fortran_array_repacker_base_impl): New class. (class fortran_lazy_array_repacker_impl): New class. (class fortran_array_repacker_impl): New class. (fortran_value_subarray): Complete rewrite. (set_fortran_list): New static global. (show_fortran_list): Likewise. (_initialize_f_language): Register new commands. (fortran_adjust_dynamic_array_base_address_hack): New function. * f-lang.h (fortran_adjust_dynamic_array_base_address_hack): Declare. * f-valprint.c: Include 'f-array-walker.h'. (class fortran_array_printer_impl): New class. (f77_print_array_1): Delete. (f77_print_array): Delete. (fortran_print_array): New. (f_value_print_inner): Update to call fortran_print_array. * gdbtypes.c: Include 'f-lang.h'. (resolve_dynamic_type_internal): Call fortran_adjust_dynamic_array_base_address_hack. gdb/testsuite/ChangeLog: * gdb.fortran/array-slices-bad.exp: New file. * gdb.fortran/array-slices-bad.f90: New file. * gdb.fortran/array-slices-sub-slices.exp: New file. * gdb.fortran/array-slices-sub-slices.f90: New file. * gdb.fortran/array-slices.exp: Rewrite tests. * gdb.fortran/array-slices.f90: Rewrite tests. * gdb.fortran/vla-sizeof.exp: Correct expected results. gdb/doc/ChangeLog: * gdb.texinfo (Debugging Output): Document 'set/show debug fortran-array-slicing'. (Special Fortran Commands): Document 'set/show fortran repack-array-slices'.