aboutsummaryrefslogtreecommitdiff
path: root/sim/erc32/erc32.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/erc32/erc32.c')
-rw-r--r--sim/erc32/erc32.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/sim/erc32/erc32.c b/sim/erc32/erc32.c
index 25037ce..cf9e084 100644
--- a/sim/erc32/erc32.c
+++ b/sim/erc32/erc32.c
@@ -1,6 +1,6 @@
/* This file is part of SIS (SPARC instruction simulator)
- Copyright (C) 1995-2024 Free Software Foundation, Inc.
+ Copyright (C) 1995-2025 Free Software Foundation, Inc.
Contributed by Jiri Gaisler, European Space Agency
This program is free software; you can redistribute it and/or modify
24' href='#n924'>924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
/* Loop invariant motion.
   Copyright (C) 2003-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-affine.h"
#include "tree-ssa-propagate.h"
#include "trans-mem.h"
#include "gimple-fold.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-loop-niter.h"
#include "alias.h"
#include "builtins.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "dbgcnt.h"
#include "insn-codes.h"
#include "optabs-tree.h"

/* TODO:  Support for predicated code motion.  I.e.

   while (1)
     {
       if (cond)
	 {
	   a = inv;
	   something;
	 }
     }

   Where COND and INV are invariants, but evaluating INV may trap or be
   invalid from some other reason if !COND.  This may be transformed to

   if (cond)
     a = inv;
   while (1)
     {
       if (cond)
	 something;
     }  */

/* The auxiliary data kept for each statement.  */

struct lim_aux_data
{
  class loop *max_loop;	/* The outermost loop in that the statement
				   is invariant.  */

  class loop *tgt_loop;	/* The loop out of that we want to move the
				   invariant.  */

  class loop *always_executed_in;
				/* The outermost loop for that we are sure
				   the statement is executed if the loop
				   is entered.  */

  unsigned cost;		/* Cost of the computation performed by the
				   statement.  */

  unsigned ref;			/* The simple_mem_ref in this stmt or 0.  */

  vec<gimple *> depends;	/* Vector of statements that must be also
				   hoisted out of the loop when this statement
				   is hoisted; i.e. those that define the
				   operands of the statement and are inside of
				   the MAX_LOOP loop.  */
};

/* Maps statements to their lim_aux_data.  */

static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;

/* Description of a memory reference location.  */

struct mem_ref_loc
{
  tree *ref;			/* The reference itself.  */
  gimple *stmt;			/* The statement in that it occurs.  */
};


/* Description of a memory reference.  */

class im_mem_ref
{
public:
  unsigned id : 30;		/* ID assigned to the memory reference
				   (its index in memory_accesses.refs_list)  */
  unsigned ref_canonical : 1;   /* Whether mem.ref was canonicalized.  */
  unsigned ref_decomposed : 1;  /* Whether the ref was hashed from mem.  */
  hashval_t hash;		/* Its hash value.  */

  /* The memory access itself and associated caching of alias-oracle
     query meta-data.  We are using mem.ref == error_mark_node for the
     case the reference is represented by its single access stmt
     in accesses_in_loop[0].  */
  ao_ref mem;

  bitmap stored;		/* The set of loops in that this memory location
				   is stored to.  */
  bitmap loaded;		/* The set of loops in that this memory location
				   is loaded from.  */
  vec<mem_ref_loc>		accesses_in_loop;
				/* The locations of the accesses.  */

  /* The following set is computed on demand.  */
  bitmap_head dep_loop;		/* The set of loops in that the memory
				   reference is {in,}dependent in
				   different modes.  */
};

/* We use six bits per loop in the ref->dep_loop bitmap to record
   the dep_kind x dep_state combinations.  */

enum dep_kind { lim_raw, sm_war, sm_waw };
enum dep_state { dep_unknown, dep_independent, dep_dependent };

/* coldest outermost loop for given loop.  */
vec<class loop *> coldest_outermost_loop;
/* hotter outer loop nearest to given loop.  */
vec<class loop *> hotter_than_inner_loop;

/* Populate the loop dependence cache of REF for LOOP, KIND with STATE.  */

static void
record_loop_dependence (class loop *loop, im_mem_ref *ref,
			dep_kind kind, dep_state state)
{
  gcc_assert (state != dep_unknown);
  unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
  bitmap_set_bit (&ref->dep_loop, bit);
}

/* Query the loop dependence cache of REF for LOOP, KIND.  */

static dep_state
query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
{
  unsigned first_bit = 6 * loop->num + kind * 2;
  if (bitmap_bit_p (&ref->dep_loop, first_bit))
    return dep_independent;
  else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
    return dep_dependent;
  return dep_unknown;
}

/* Mem_ref hashtable helpers.  */

struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
{
  typedef ao_ref *compare_type;
  static inline hashval_t hash (const im_mem_ref *);
  static inline bool equal (const im_mem_ref *, const ao_ref *);
};

/* A hash function for class im_mem_ref object OBJ.  */

inline hashval_t
mem_ref_hasher::hash (const im_mem_ref *mem)
{
  return mem->hash;
}

/* An equality function for class im_mem_ref object MEM1 with
   memory reference OBJ2.  */

inline bool
mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
{
  if (obj2->max_size_known_p ())
    return (mem1->ref_decomposed
	    && ((TREE_CODE (mem1->mem.base) == MEM_REF
		 && TREE_CODE (obj2->base) == MEM_REF
		 && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0),
				     TREE_OPERAND (obj2->base, 0), 0)
		 && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset,
			      mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset))
		|| (operand_equal_p (mem1->mem.base, obj2->base, 0)
		    && known_eq (mem1->mem.offset, obj2->offset)))
	    && known_eq (mem1->mem.size, obj2->size)
	    && known_eq (mem1->mem.max_size, obj2->max_size)
	    && mem1->mem.volatile_p == obj2->volatile_p
	    && (mem1->mem.ref_alias_set == obj2->ref_alias_set
		/* We are not canonicalizing alias-sets but for the
		   special-case we didn't canonicalize yet and the
		   incoming ref is a alias-set zero MEM we pick
		   the correct one already.  */
		|| (!mem1->ref_canonical
		    && (TREE_CODE (obj2->ref) == MEM_REF
			|| TREE_CODE (obj2->ref) == TARGET_MEM_REF)
		    && obj2->ref_alias_set == 0)
		/* Likewise if there's a canonical ref with alias-set zero.  */
		|| (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
	    && types_compatible_p (TREE_TYPE (mem1->mem.ref),
				   TREE_TYPE (obj2->ref)));
  else
    return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
}


/* Description of memory accesses in loops.  */

static struct
{
  /* The hash table of memory references accessed in loops.  */
  hash_table<mem_ref_hasher> *refs;

  /* The list of memory references.  */
  vec<im_mem_ref *> refs_list;

  /* The set of memory references accessed in each loop.  */
  vec<bitmap_head> refs_loaded_in_loop;

  /* The set of memory references stored in each loop.  */
  vec<bitmap_head> refs_stored_in_loop;

  /* The set of memory references stored in each loop, including subloops .  */
  vec<bitmap_head> all_refs_stored_in_loop;

  /* Cache for expanding memory addresses.  */
  hash_map<tree, name_expansion *> *ttae_cache;
} memory_accesses;

/* Obstack for the bitmaps in the above data structures.  */
static bitmap_obstack lim_bitmap_obstack;
static obstack mem_ref_obstack;

static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);

/* Minimum cost of an expensive expression.  */
#define LIM_EXPENSIVE ((unsigned) param_lim_expensive)

/* The outermost loop for which execution of the header guarantees that the
   block will be executed.  */
#define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))

/* ID of the shared unanalyzable mem.  */
#define UNANALYZABLE_MEM_ID 0

/* Whether the reference was analyzable.  */
#define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)

static struct lim_aux_data *
init_lim_data (gimple *stmt)
{
  lim_aux_data *p = XCNEW (struct lim_aux_data);
  lim_aux_data_map->put (stmt, p);

  return p;
}

static struct lim_aux_data *
get_lim_data (gimple *stmt)
{
  lim_aux_data **p = lim_aux_data_map->get (stmt);
  if (!p)
    return NULL;

  return *p;
}

/* Releases the memory occupied by DATA.  */

static void
free_lim_aux_data (struct lim_aux_data *data)
{
  data->depends.release ();
  free (data);
}

static void
clear_lim_data (gimple *stmt)
{
  lim_aux_data **p = lim_aux_data_map->get (stmt);
  if (!p)
    return;

  free_lim_aux_data (*p);
  *p = NULL;
}


/* The possibilities of statement movement.  */
enum move_pos
  {
    MOVE_IMPOSSIBLE,		/* No movement -- side effect expression.  */
    MOVE_PRESERVE_EXECUTION,	/* Must not cause the non-executed statement
				   become executed -- memory accesses, ... */
    MOVE_POSSIBLE		/* Unlimited movement.  */
  };


/* If it is possible to hoist the statement STMT unconditionally,
   returns MOVE_POSSIBLE.
   If it is possible to hoist the statement STMT, but we must avoid making
   it executed if it would not be executed in the original program (e.g.
   because it may trap), return MOVE_PRESERVE_EXECUTION.
   Otherwise return MOVE_IMPOSSIBLE.  */

static enum move_pos
movement_possibility_1 (gimple *stmt)
{
  tree lhs;
  enum move_pos ret = MOVE_POSSIBLE;

  if (flag_unswitch_loops
      && gimple_code (stmt) == GIMPLE_COND)
    {
      /* If we perform unswitching, force the operands of the invariant
	 condition to be moved out of the loop.  */
      return MOVE_POSSIBLE;
    }

  if (gimple_code (stmt) == GIMPLE_PHI
      && gimple_phi_num_args (stmt) <= 2
      && !virtual_operand_p (gimple_phi_result (stmt))
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
    return MOVE_POSSIBLE;

  if (gimple_get_lhs (stmt) == NULL_TREE)
    return MOVE_IMPOSSIBLE;

  if (gimple_vdef (stmt))
    return MOVE_IMPOSSIBLE;

  if (stmt_ends_bb_p (stmt)
      || gimple_has_volatile_ops (stmt)
      || gimple_has_side_effects (stmt)
      || stmt_could_throw_p (cfun, stmt))
    return MOVE_IMPOSSIBLE;

  if (is_gimple_call (stmt))
    {
      /* While pure or const call is guaranteed to have no side effects, we
	 cannot move it arbitrarily.  Consider code like

	 char *s = something ();

	 while (1)
	   {
	     if (s)
	       t = strlen (s);
	     else
	       t = 0;
	   }

	 Here the strlen call cannot be moved out of the loop, even though
	 s is invariant.  In addition to possibly creating a call with
	 invalid arguments, moving out a function call that is not executed
	 may cause performance regressions in case the call is costly and
	 not executed at all.  */
      ret = MOVE_PRESERVE_EXECUTION;
      lhs = gimple_call_lhs (stmt);
    }
  else if (is_gimple_assign (stmt))
    lhs = gimple_assign_lhs (stmt);
  else
    return MOVE_IMPOSSIBLE;

  if (TREE_CODE (lhs) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
    return MOVE_IMPOSSIBLE;

  if (TREE_CODE (lhs) != SSA_NAME
      || gimple_could_trap_p (stmt))
    return MOVE_PRESERVE_EXECUTION;

  if (is_gimple_assign (stmt))
    {
      auto code = gimple_assign_rhs_code (stmt);
      tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
      /* For shifts and rotates and possibly out-of-bound shift operands
	 we currently cannot rewrite them into something unconditionally
	 well-defined.  */
      if ((code == LSHIFT_EXPR
	   || code == RSHIFT_EXPR
	   || code == LROTATE_EXPR
	   || code == RROTATE_EXPR)
	  && (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST
	      /* We cannot use ranges at 'stmt' here.  */
	      || wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (stmt)),
			    element_precision (type))))
	ret = MOVE_PRESERVE_EXECUTION;
    }

  /* Non local loads in a transaction cannot be hoisted out.  Well,
     unless the load happens on every path out of the loop, but we
     don't take this into account yet.  */
  if (flag_tm
      && gimple_in_transaction (stmt)
      && gimple_assign_single_p (stmt))
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      if (DECL_P (rhs) && is_global_var (rhs))
	{
	  if (dump_file)
	    {
	      fprintf (dump_file, "Cannot hoist conditional load of ");
	      print_generic_expr (dump_file, rhs, TDF_SLIM);
	      fprintf (dump_file, " because it is in a transaction.\n");
	    }
	  return MOVE_IMPOSSIBLE;
	}
    }

  return ret;
}

static enum move_pos
movement_possibility (gimple *stmt)
{
  enum move_pos pos = movement_possibility_1 (stmt);
  if (pos == MOVE_POSSIBLE)
    {
      use_operand_p use_p;
      ssa_op_iter ssa_iter;
      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, ssa_iter, SSA_OP_USE)
	if (TREE_CODE (USE_FROM_PTR (use_p)) == SSA_NAME
	    && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p)))
	  return MOVE_PRESERVE_EXECUTION;
    }
  return pos;
}


/* Compare the profile count inequality of bb and loop's preheader, it is
   three-state as stated in profile-count.h, FALSE is returned if inequality
   cannot be decided.  */
bool
bb_colder_than_loop_preheader (basic_block bb, class loop *loop)
{
  gcc_assert (bb && loop);
  return bb->count < loop_preheader_edge (loop)->src->count;
}

/* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
   count.
  It does three steps check:
  1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
  return NULL which means it should not be moved out at all;
  2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
  OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
  3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
  hotter loop between OUTERMOST_LOOP and loop in pre-computed
  HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
  OUTERMOST_LOOP.
  At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
  the hoist target.  */

static class loop *
get_coldest_out_loop (class loop *outermost_loop, class loop *loop,
		      basic_block curr_bb)
{
  gcc_assert (outermost_loop == loop
	      || flow_loop_nested_p (outermost_loop, loop));

  /* If bb_colder_than_loop_preheader returns false due to three-state
    comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
    Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP.  */
  if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop))
    return NULL;

  class loop *coldest_loop = coldest_outermost_loop[loop->num];
  if (loop_depth (coldest_loop) < loop_depth (outermost_loop))
    {
      class loop *hotter_loop = hotter_than_inner_loop[loop->num];
      if (!hotter_loop
	  || loop_depth (hotter_loop) < loop_depth (outermost_loop))
	return outermost_loop;

      /*  hotter_loop is between OUTERMOST_LOOP and LOOP like:
	[loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
	hotter_loop, second_coldest_loop, ..., loop]
	return second_coldest_loop to be the hoist target.  */
      class loop *aloop;
      for (aloop = hotter_loop->inner; aloop; aloop = aloop->next)
	if (aloop == loop || flow_loop_nested_p (aloop, loop))
	  return aloop;
    }
  return coldest_loop;
}

/* Suppose that operand DEF is used inside the LOOP.  Returns the outermost
   loop to that we could move the expression using DEF if it did not have
   other operands, i.e. the outermost loop enclosing LOOP in that the value
   of DEF is invariant.  */

static class loop *
outermost_invariant_loop (tree def, class loop *loop)
{
  gimple *def_stmt;
  basic_block def_bb;
  class loop *max_loop;
  struct lim_aux_data *lim_data;

  if (!def)
    return superloop_at_depth (loop, 1);

  if (TREE_CODE (def) != SSA_NAME)
    {
      gcc_assert (is_gimple_min_invariant (def));
      return superloop_at_depth (loop, 1);
    }

  def_stmt = SSA_NAME_DEF_STMT (def);
  def_bb = gimple_bb (def_stmt);
  if (!def_bb)
    return superloop_at_depth (loop, 1);

  max_loop = find_common_loop (loop, def_bb->loop_father);

  lim_data = get_lim_data (def_stmt);
  if (lim_data != NULL && lim_data->max_loop != NULL)
    max_loop = find_common_loop (max_loop,
				 loop_outer (lim_data->max_loop));
  if (max_loop == loop)
    return NULL;
  max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);

  return max_loop;
}

/* DATA is a structure containing information associated with a statement
   inside LOOP.  DEF is one of the operands of this statement.

   Find the outermost loop enclosing LOOP in that value of DEF is invariant
   and record this in DATA->max_loop field.  If DEF itself is defined inside
   this loop as well (i.e. we need to hoist it out of the loop if we want
   to hoist the statement represented by DATA), record the statement in that
   DEF is defined to the DATA->depends list.  Additionally if ADD_COST is true,
   add the cost of the computation of DEF to the DATA->cost.

   If DEF is not invariant in LOOP, return false.  Otherwise return TRUE.  */

static bool
add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
		bool add_cost)
{
  gimple *def_stmt = SSA_NAME_DEF_STMT (def);
  basic_block def_bb = gimple_bb (def_stmt);
  class loop *max_loop;
  struct lim_aux_data *def_data;

  if (!def_bb)
    return true;

  max_loop = outermost_invariant_loop (def, loop);
  if (!max_loop)
    return false;

  if (flow_loop_nested_p (data->max_loop, max_loop))
    data->max_loop = max_loop;

  def_data = get_lim_data (def_stmt);
  if (!def_data)
    return true;

  if (add_cost
      /* Only add the cost if the statement defining DEF is inside LOOP,
	 i.e. if it is likely that by moving the invariants dependent
	 on it, we will be able to avoid creating a new register for
	 it (since it will be only used in these dependent invariants).  */
      && def_bb->loop_father == loop)
    data->cost += def_data->cost;

  data->depends.safe_push (def_stmt);

  return true;
}

/* Returns an estimate for a cost of statement STMT.  The values here
   are just ad-hoc constants, similar to costs for inlining.  */

static unsigned
stmt_cost (gimple *stmt)
{
  /* Always try to create possibilities for unswitching.  */
  if (gimple_code (stmt) == GIMPLE_COND
      || gimple_code (stmt) == GIMPLE_PHI)
    return LIM_EXPENSIVE;

  /* We should be hoisting calls if possible.  */
  if (is_gimple_call (stmt))
    {
      tree fndecl;

      /* Unless the call is a builtin_constant_p; this always folds to a
	 constant, so moving it is useless.  */
      fndecl = gimple_call_fndecl (stmt);
      if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
	return 0;

      return LIM_EXPENSIVE;
    }

  /* Hoisting memory references out should almost surely be a win.  */
  if (gimple_references_memory_p (stmt))
    return LIM_EXPENSIVE;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return 1;

  enum tree_code code = gimple_assign_rhs_code (stmt);
  switch (code)
    {
    case MULT_EXPR:
    case WIDEN_MULT_EXPR:
    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
    case DOT_PROD_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case RDIV_EXPR:
      /* Division and multiplication are usually expensive.  */
      return LIM_EXPENSIVE;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case WIDEN_LSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      /* Shifts and rotates are usually expensive.  */
      return LIM_EXPENSIVE;

    case COND_EXPR:
    case VEC_COND_EXPR:
      /* Conditionals are expensive.  */
      return LIM_EXPENSIVE;

    case CONSTRUCTOR:
      /* Make vector construction cost proportional to the number
         of elements.  */
      return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));

    case SSA_NAME:
    case PAREN_EXPR:
      /* Whether or not something is wrapped inside a PAREN_EXPR
         should not change move cost.  Nor should an intermediate
	 unpropagated SSA name copy.  */
      return 0;

    default:
      /* Comparisons are usually expensive.  */
      if (TREE_CODE_CLASS (code) == tcc_comparison)
	return LIM_EXPENSIVE;
      return 1;
    }
}

/* Finds the outermost loop between OUTER and LOOP in that the memory reference
   REF is independent.  If REF is not independent in LOOP, NULL is returned
   instead.  */

static class loop *
outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
{
  class loop *aloop;

  if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
    return NULL;

  for (aloop = outer;
       aloop != loop;
       aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
    if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
	&& ref_indep_loop_p (aloop, ref, lim_raw))
      return aloop;

  if (ref_indep_loop_p (loop, ref, lim_raw))
    return loop;
  else
    return NULL;
}

/* If there is a simple load or store to a memory reference in STMT, returns
   the location of the memory reference, and sets IS_STORE according to whether
   it is a store or load.  Otherwise, returns NULL.  */

static tree *
simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
{
  tree *lhs, *rhs;

  /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns.  */
  if (!gimple_assign_single_p (stmt))
    return NULL;

  lhs = gimple_assign_lhs_ptr (stmt);
  rhs = gimple_assign_rhs1_ptr (stmt);

  if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
    {
      *is_store = false;
      return rhs;
    }
  else if (gimple_vdef (stmt)
	   && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
    {
      *is_store = true;
      return lhs;
    }
  else
    return NULL;
}

/* From a controlling predicate in DOM determine the arguments from
   the PHI node PHI that are chosen if the predicate evaluates to
   true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
   they are non-NULL.  Returns true if the arguments can be determined,
   else return false.  */

static bool
extract_true_false_args_from_phi (basic_block dom, gphi *phi,
				  tree *true_arg_p, tree *false_arg_p)
{
  edge te, fe;
  if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
					     &te, &fe))
    return false;

  if (true_arg_p)
    *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
  if (false_arg_p)
    *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);

  return true;
}

/* Determine the outermost loop to that it is possible to hoist a statement
   STMT and store it to LIM_DATA (STMT)->max_loop.  To do this we determine
   the outermost loop in that the value computed by STMT is invariant.
   If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
   we preserve the fact whether STMT is executed.  It also fills other related
   information to LIM_DATA (STMT).

   The function returns false if STMT cannot be hoisted outside of the loop it
   is defined in, and true otherwise.  */

static bool
determine_max_movement (gimple *stmt, bool must_preserve_exec)
{
  basic_block bb = gimple_bb (stmt);
  class loop *loop = bb->loop_father;
  class loop *level;
  struct lim_aux_data *lim_data = get_lim_data (stmt);
  tree val;
  ssa_op_iter iter;

  if (must_preserve_exec)
    level = ALWAYS_EXECUTED_IN (bb);
  else
    level = superloop_at_depth (loop, 1);
  lim_data->max_loop = get_coldest_out_loop (level, loop, bb);
  if (!lim_data->max_loop)
    return false;

  if (gphi *phi = dyn_cast <gphi *> (stmt))
    {
      use_operand_p use_p;
      unsigned min_cost = UINT_MAX;
      unsigned total_cost = 0;
      struct lim_aux_data *def_data;

      /* We will end up promoting dependencies to be unconditionally
	 evaluated.  For this reason the PHI cost (and thus the
	 cost we remove from the loop by doing the invariant motion)
	 is that of the cheapest PHI argument dependency chain.  */
      FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
	{
	  val = USE_FROM_PTR (use_p);

	  if (TREE_CODE (val) != SSA_NAME)
	    {
	      /* Assign const 1 to constants.  */
	      min_cost = MIN (min_cost, 1);
	      total_cost += 1;
	      continue;
	    }
	  if (!add_dependency (val, lim_data, loop, false))
	    return false;

	  gimple *def_stmt = SSA_NAME_DEF_STMT (val);
	  if (gimple_bb (def_stmt)
	      && gimple_bb (def_stmt)->loop_father == loop)
	    {
	      def_data = get_lim_data (def_stmt);
	      if (def_data)
		{
		  min_cost = MIN (min_cost, def_data->cost);
		  total_cost += def_data->cost;
		}
	    }
	}

      min_cost = MIN (min_cost, total_cost);
      lim_data->cost += min_cost;

      if (gimple_phi_num_args (phi) > 1)
	{
	  basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
	  gimple *cond;
	  if (gsi_end_p (gsi_last_bb (dom)))
	    return false;
	  cond = gsi_stmt (gsi_last_bb (dom));
	  if (gimple_code (cond) != GIMPLE_COND)
	    return false;
	  /* Verify that this is an extended form of a diamond and
	     the PHI arguments are completely controlled by the
	     predicate in DOM.  */
	  if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
	    return false;

	/* Check if one of the depedent statement is a vector compare whether
	   the target supports it,  otherwise it's invalid to hoist it out of
	   the gcond it belonged to.  */
	if (VECTOR_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond))))
	  {
	    tree type = TREE_TYPE (gimple_cond_lhs (cond));
	    auto code = gimple_cond_code (cond);
	    if (!target_supports_op_p (type, code, optab_vector))
	      return false;
	  }

	  /* Fold in dependencies and cost of the condition.  */
	  FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
	    {
	      if (!add_dependency (val, lim_data, loop, false))
		return false;
	      def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
	      if (def_data)
		lim_data->cost += def_data->cost;
	    }

	  /* We want to avoid unconditionally executing very expensive
	     operations.  As costs for our dependencies cannot be
	     negative just claim we are not invariand for this case.
	     We also are not sure whether the control-flow inside the
	     loop will vanish.  */
	  if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
	      && !(min_cost != 0
		   && total_cost / min_cost <= 2))
	    return false;

	  /* Assume that the control-flow in the loop will vanish.
	     ???  We should verify this and not artificially increase
	     the cost if that is not the case.  */
	  lim_data->cost += stmt_cost (stmt);
	}

      return true;
    }

  /* A stmt that receives abnormal edges cannot be hoisted.  */
  if (is_a <gcall *> (stmt)
      && (gimple_call_flags (stmt) & ECF_RETURNS_TWICE))
    return false;

  FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
    if (!add_dependency (val, lim_data, loop, true))
      return false;

  if (gimple_vuse (stmt))
    {
      im_mem_ref *ref
	= lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
      if (ref
	  && MEM_ANALYZABLE (ref))
	{
	  lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
						     loop, ref);
	  if (!lim_data->max_loop)
	    return false;
	}
      else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
	return false;
    }

  lim_data->cost += stmt_cost (stmt);

  return true;
}

/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
   and that one of the operands of this statement is computed by STMT.
   Ensure that STMT (together with all the statements that define its
   operands) is hoisted at least out of the loop LEVEL.  */

static void
set_level (gimple *stmt, class loop *orig_loop, class loop *level)
{
  class loop *stmt_loop = gimple_bb (stmt)->loop_father;
  struct lim_aux_data *lim_data;
  gimple *dep_stmt;
  unsigned i;

  stmt_loop = find_common_loop (orig_loop, stmt_loop);
  lim_data = get_lim_data (stmt);
  if (lim_data != NULL && lim_data->tgt_loop != NULL)
    stmt_loop = find_common_loop (stmt_loop,
				  loop_outer (lim_data->tgt_loop));
  if (flow_loop_nested_p (stmt_loop, level))
    return;

  gcc_assert (level == lim_data->max_loop
	      || flow_loop_nested_p (lim_data->max_loop, level));

  lim_data->tgt_loop = level;
  FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
    set_level (dep_stmt, orig_loop, level);
}

/* Determines an outermost loop from that we want to hoist the statement STMT.
   For now we chose the outermost possible loop.  TODO -- use profiling
   information to set it more sanely.  */

static void
set_profitable_level (gimple *stmt)
{
  set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
}

/* Returns true if STMT is a call that has side effects.  */

static bool
nonpure_call_p (gimple *stmt)
{
  if (gimple_code (stmt) != GIMPLE_CALL)
    return false;

  return gimple_has_side_effects (stmt);
}

/* Rewrite a/b to a*(1/b).  Return the invariant stmt to process.  */

static gimple *
rewrite_reciprocal (gimple_stmt_iterator *bsi)
{
  gassign *stmt, *stmt1, *stmt2;
  tree name, lhs, type;
  tree real_one;
  gimple_stmt_iterator gsi;

  stmt = as_a <gassign *> (gsi_stmt (*bsi));
  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);

  real_one = build_one_cst (type);

  name = make_temp_ssa_name (type, NULL, "reciptmp");
  stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
			       gimple_assign_rhs2 (stmt));
  stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
			       gimple_assign_rhs1 (stmt));

  /* Replace division stmt with reciprocal and multiply stmts.
     The multiply stmt is not invariant, so update iterator
     and avoid rescanning.  */
  gsi = *bsi;
  gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
  gsi_replace (&gsi, stmt2, true);

  /* Continue processing with invariant reciprocal statement.  */
  return stmt1;
}

/* Check if the pattern at *BSI is a bittest of the form
   (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0.  */

static gimple *
rewrite_bittest (gimple_stmt_iterator *bsi)
{
  gassign *stmt;
  gimple *stmt1;
  gassign *stmt2;
  gimple *use_stmt;
  gcond *cond_stmt;
  tree lhs, name, t, a, b;
  use_operand_p use;

  stmt = as_a <gassign *> (gsi_stmt (*bsi));
  lhs = gimple_assign_lhs (stmt);

  /* Verify that the single use of lhs is a comparison against zero.  */
  if (TREE_CODE (lhs) != SSA_NAME
      || !single_imm_use (lhs, &use, &use_stmt))
    return stmt;
  cond_stmt = dyn_cast <gcond *> (use_stmt);
  if (!cond_stmt)
    return stmt;
  if (gimple_cond_lhs (cond_stmt) != lhs
      || (gimple_cond_code (cond_stmt) != NE_EXPR
	  && gimple_cond_code (cond_stmt) != EQ_EXPR)
      || !integer_zerop (gimple_cond_rhs (cond_stmt)))
    return stmt;

  /* Get at the operands of the shift.  The rhs is TMP1 & 1.  */
  stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
  if (gimple_code (stmt1) != GIMPLE_ASSIGN)
    return stmt;

  /* There is a conversion in between possibly inserted by fold.  */
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
    {
      t = gimple_assign_rhs1 (stmt1);
      if (TREE_CODE (t) != SSA_NAME
	  || !has_single_use (t))
	return stmt;
      stmt1 = SSA_NAME_DEF_STMT (t);
      if (gimple_code (stmt1) != GIMPLE_ASSIGN)
	return stmt;
    }

  /* Verify that B is loop invariant but A is not.  Verify that with
     all the stmt walking we are still in the same loop.  */
  if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
      || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
    return stmt;

  a = gimple_assign_rhs1 (stmt1);
  b = gimple_assign_rhs2 (stmt1);

  if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
      && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
    {
      gimple_stmt_iterator rsi;

      /* 1 << B */
      t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
		       build_int_cst (TREE_TYPE (a), 1), b);
      name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
      stmt1 = gimple_build_assign (name, t);

      /* A & (1 << B) */
      t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
      name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
      stmt2 = gimple_build_assign (name, t);

      /* Replace the SSA_NAME we compare against zero.  Adjust
	 the type of zero accordingly.  */
      SET_USE (use, name);
      gimple_cond_set_rhs (cond_stmt,
			   build_int_cst_type (TREE_TYPE (name),
					       0));

      /* Don't use gsi_replace here, none of the new assignments sets
	 the variable originally set in stmt.  Move bsi to stmt1, and
	 then remove the original stmt, so that we get a chance to
	 retain debug info for it.  */
      rsi = *bsi;
      gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
      gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
      gimple *to_release = gsi_stmt (rsi);
      gsi_remove (&rsi, true);
      release_defs (to_release);

      return stmt1;
    }

  return stmt;
}

/* Determine the outermost loops in that statements in basic block BB are
   invariant, and record them to the LIM_DATA associated with the
   statements.  */

static void
compute_invariantness (basic_block bb)
{
  enum move_pos pos;
  gimple_stmt_iterator bsi;
  gimple *stmt;
  bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
  class loop *outermost = ALWAYS_EXECUTED_IN (bb);
  struct lim_aux_data *lim_data;

  if (!loop_outer (bb->loop_father))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
	     bb->index, bb->loop_father->num, loop_depth (bb->loop_father));

  /* Look at PHI nodes, but only if there is at most two.
     ???  We could relax this further by post-processing the inserted
     code and transforming adjacent cond-exprs with the same predicate
     to control flow again.  */
  bsi = gsi_start_phis (bb);
  if (!gsi_end_p (bsi)
      && ((gsi_next (&bsi), gsi_end_p (bsi))
	  || (gsi_next (&bsi), gsi_end_p (bsi))))
    for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
      {
	stmt = gsi_stmt (bsi);

	pos = movement_possibility (stmt);
	if (pos == MOVE_IMPOSSIBLE)
	  continue;

	lim_data = get_lim_data (stmt);
	if (! lim_data)
	  lim_data = init_lim_data (stmt);
	lim_data->always_executed_in = outermost;

	if (!determine_max_movement (stmt, false))
	  {
	    lim_data->max_loop = NULL;
	    continue;
	  }

	if (dump_file && (dump_flags & TDF_DETAILS))
	  {
	    print_gimple_stmt (dump_file, stmt, 2);
	    fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
		     loop_depth (lim_data->max_loop),
		     lim_data->cost);
	  }

	if (lim_data->cost >= LIM_EXPENSIVE)
	  set_profitable_level (stmt);
      }

  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
    {
      stmt = gsi_stmt (bsi);

      pos = movement_possibility (stmt);
      if (pos == MOVE_IMPOSSIBLE)
	{
	  if (nonpure_call_p (stmt))
	    {
	      maybe_never = true;
	      outermost = NULL;
	    }
	  /* Make sure to note always_executed_in for stores to make
	     store-motion work.  */
	  else if (stmt_makes_single_store (stmt))
	    {
	      struct lim_aux_data *lim_data = get_lim_data (stmt);
	      if (! lim_data)
		lim_data = init_lim_data (stmt);
	      lim_data->always_executed_in = outermost;
	    }
	  continue;
	}

      if (is_gimple_assign (stmt)
	  && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
	      == GIMPLE_BINARY_RHS))
	{
	  tree op0 = gimple_assign_rhs1 (stmt);
	  tree op1 = gimple_assign_rhs2 (stmt);
	  class loop *ol1 = outermost_invariant_loop (op1,
					loop_containing_stmt (stmt));

	  /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
	     to be hoisted out of loop, saving expensive divide.  */
	  if (pos == MOVE_POSSIBLE
	      && gimple_assign_rhs_code (stmt) == RDIV_EXPR
	      && flag_unsafe_math_optimizations
	      && !flag_trapping_math
	      && ol1 != NULL
	      && outermost_invariant_loop (op0, ol1) == NULL)
	    stmt = rewrite_reciprocal (&bsi);

	  /* If the shift count is invariant, convert (A >> B) & 1 to
	     A & (1 << B) allowing the bit mask to be hoisted out of the loop
	     saving an expensive shift.  */
	  if (pos == MOVE_POSSIBLE
	      && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
	      && integer_onep (op1)
	      && TREE_CODE (op0) == SSA_NAME
	      && has_single_use (op0))
	    stmt = rewrite_bittest (&bsi);
	}

      lim_data = get_lim_data (stmt);
      if (! lim_data)
	lim_data = init_lim_data (stmt);
      lim_data->always_executed_in = outermost;

      if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
	continue;

      if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
	{
	  lim_data->max_loop = NULL;
	  continue;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  print_gimple_stmt (dump_file, stmt, 2);
	  fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
		   loop_depth (lim_data->max_loop),
		   lim_data->cost);
	}

      if (lim_data->cost >= LIM_EXPENSIVE)
	set_profitable_level (stmt);
    }
}

/* Hoist the statements in basic block BB out of the loops prescribed by
   data stored in LIM_DATA structures associated with each statement.  Callback
   for walk_dominator_tree.  */

unsigned int
move_computations_worker (basic_block bb)
{
  class loop *level;
  unsigned cost = 0;
  struct lim_aux_data *lim_data;
  unsigned int todo = 0;

  if (!loop_outer (bb->loop_father))
    return todo;

  for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
    {
      gassign *new_stmt;
      gphi *stmt = bsi.phi ();

      lim_data = get_lim_data (stmt);
      if (lim_data == NULL)
	{
	  gsi_next (&bsi);
	  continue;
	}

      cost = lim_data->cost;
      level = lim_data->tgt_loop;
      clear_lim_data (stmt);

      if (!level)
	{
	  gsi_next (&bsi);
	  continue;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Moving PHI node\n");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
		   cost, level->num);
	}

      if (gimple_phi_num_args (stmt) == 1)
	{
	  tree arg = PHI_ARG_DEF (stmt, 0);
	  new_stmt = gimple_build_assign (gimple_phi_result (stmt),
					  TREE_CODE (arg), arg);
	}
      else
	{
	  basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
	  gimple *cond = gsi_stmt (gsi_last_bb (dom));
	  tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
	  /* Get the PHI arguments corresponding to the true and false
	     edges of COND.  */
	  extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
	  gcc_assert (arg0 && arg1);
	  t = make_ssa_name (boolean_type_node);
	  new_stmt = gimple_build_assign (t, gimple_cond_code (cond),
					  gimple_cond_lhs (cond),
					  gimple_cond_rhs (cond));
	  gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
	  new_stmt = gimple_build_assign (gimple_phi_result (stmt),
					  COND_EXPR, t, arg0, arg1);
	  todo |= TODO_cleanup_cfg;
	}
      if (!ALWAYS_EXECUTED_IN (bb)
	  || (ALWAYS_EXECUTED_IN (bb) != level
	      && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
	reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
      gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
      remove_phi_node (&bsi, false);
    }

  for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
    {
      edge e;

      gimple *stmt = gsi_stmt (bsi);

      lim_data = get_lim_data (stmt);
      if (lim_data == NULL)
	{
	  gsi_next (&bsi);
	  continue;
	}

      cost = lim_data->cost;
      level = lim_data->tgt_loop;
      clear_lim_data (stmt);

      if (!level)
	{
	  gsi_next (&bsi);
	  continue;
	}

      /* We do not really want to move conditionals out of the loop; we just
	 placed it here to force its operands to be moved if necessary.  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  gsi_next (&bsi);
	  continue;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Moving statement\n");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
		   cost, level->num);
	}

      e = loop_preheader_edge (level);
      gcc_assert (!gimple_vdef (stmt));
      if (gimple_vuse (stmt))
	{
	  /* The new VUSE is the one from the virtual PHI in the loop
	     header or the one already present.  */
	  gphi_iterator gsi2;
	  for (gsi2 = gsi_start_phis (e->dest);
	       !gsi_end_p (gsi2); gsi_next (&gsi2))
	    {
	      gphi *phi = gsi2.phi ();
	      if (virtual_operand_p (gimple_phi_result (phi)))
		{
		  SET_USE (gimple_vuse_op (stmt),
			   PHI_ARG_DEF_FROM_EDGE (phi, e));
		  break;
		}
	    }
	}
      gsi_remove (&bsi, false);
      if (gimple_has_lhs (stmt)
	  && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
	  && (!ALWAYS_EXECUTED_IN (bb)
	      || !(ALWAYS_EXECUTED_IN (bb) == level
		   || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
	reset_flow_sensitive_info (gimple_get_lhs (stmt));
      /* In case this is a stmt that is not unconditionally executed
         when the target loop header is executed and the stmt may
	 invoke undefined integer or pointer overflow rewrite it to
	 unsigned arithmetic.  */
      if (is_gimple_assign (stmt)
	  && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
	  && arith_code_with_undefined_signed_overflow
	       (gimple_assign_rhs_code (stmt))
	  && (!ALWAYS_EXECUTED_IN (bb)
	      || !(ALWAYS_EXECUTED_IN (bb) == level
		   || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
	gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
      else
	gsi_insert_on_edge (e, stmt);
    }

  return todo;
}

/* Checks whether the statement defining variable *INDEX can be hoisted
   out of the loop passed in DATA.  Callback for for_each_index.  */

static bool
may_move_till (tree ref, tree *index, void *data)
{
  class loop *loop = (class loop *) data, *max_loop;

  /* If REF is an array reference, check also that the step and the lower
     bound is invariant in LOOP.  */
  if (TREE_CODE (ref) == ARRAY_REF)
    {
      tree step = TREE_OPERAND (ref, 3);
      tree lbound = TREE_OPERAND (ref, 2);

      max_loop = outermost_invariant_loop (step, loop);
      if (!max_loop)
	return false;

      max_loop = outermost_invariant_loop (lbound, loop);
      if (!max_loop)
	return false;
    }

  max_loop = outermost_invariant_loop (*index, loop);
  if (!max_loop)
    return false;

  return true;
}

/* If OP is SSA NAME, force the statement that defines it to be
   moved out of the LOOP.  ORIG_LOOP is the loop in that EXPR is used.  */

static void
force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
{
  gimple *stmt;

  if (!op
      || is_gimple_min_invariant (op))
    return;

  gcc_assert (TREE_CODE (op) == SSA_NAME);

  stmt = SSA_NAME_DEF_STMT (op);
  if (gimple_nop_p (stmt))
    return;

  set_level (stmt, orig_loop, loop);
}

/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
   the LOOP.  The reference REF is used in the loop ORIG_LOOP.  Callback for
   for_each_index.  */

struct fmt_data
{
  class loop *loop;
  class loop *orig_loop;
};

static bool
force_move_till (tree ref, tree *index, void *data)
{
  struct fmt_data *fmt_data = (struct fmt_data *) data;

  if (TREE_CODE (ref) == ARRAY_REF)
    {
      tree step = TREE_OPERAND (ref, 3);
      tree lbound = TREE_OPERAND (ref, 2);

      force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
      force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
    }

  force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);

  return true;
}

/* A function to free the mem_ref object OBJ.  */

static void
memref_free (class im_mem_ref *mem)
{
  mem->accesses_in_loop.release ();
}

/* Allocates and returns a memory reference description for MEM whose hash
   value is HASH and id is ID.  */

static im_mem_ref *
mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
{
  im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
  if (mem)
    ref->mem = *mem;
  else
    ao_ref_init (&ref->mem, error_mark_node);
  ref->id = id;
  ref->ref_canonical = false;
  ref->ref_decomposed = false;
  ref->hash = hash;
  ref->stored = NULL;
  ref->loaded = NULL;
  bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
  ref->accesses_in_loop.create (1);

  return ref;
}

/* Records memory reference location *LOC in LOOP to the memory reference
   description REF.  The reference occurs in statement STMT.  */

static void
record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
{
  mem_ref_loc aref;
  aref.stmt = stmt;
  aref.ref = loc;
  ref->accesses_in_loop.safe_push (aref);
}

/* Set the LOOP bit in REF stored bitmap and allocate that if
   necessary.  Return whether a bit was changed.  */

static bool
set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
{
  if (!ref->stored)
    ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
  return bitmap_set_bit (ref->stored, loop->num);
}

/* Marks reference REF as stored in LOOP.  */

static void
mark_ref_stored (im_mem_ref *ref, class loop *loop)
{
  while (loop != current_loops->tree_root
	 && set_ref_stored_in_loop (ref, loop))
    loop = loop_outer (loop);
}

/* Set the LOOP bit in REF loaded bitmap and allocate that if
   necessary.  Return whether a bit was changed.  */

static bool
set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
{
  if (!ref->loaded)
    ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
  return bitmap_set_bit (ref->loaded, loop->num);
}

/* Marks reference REF as loaded in LOOP.  */

static void
mark_ref_loaded (im_mem_ref *ref, class loop *loop)
{
  while (loop != current_loops->tree_root
	 && set_ref_loaded_in_loop (ref, loop))
    loop = loop_outer (loop);
}

/* Gathers memory references in statement STMT in LOOP, storing the
   information about them in the memory_accesses structure.  Marks
   the vops accessed through unrecognized statements there as
   well.  */

static void
gather_mem_refs_stmt (class loop *loop, gimple *stmt)
{
  tree *mem = NULL;
  hashval_t hash;
  im_mem_ref **slot;
  im_mem_ref *ref;
  bool is_stored;
  unsigned id;

  if (!gimple_vuse (stmt))
    return;

  mem = simple_mem_ref_in_stmt (stmt, &is_stored);
  if (!mem && is_gimple_assign (stmt))
    {
      /* For aggregate copies record distinct references but use them
	 only for disambiguation purposes.  */
      id = memory_accesses.refs_list.length ();
      ref = mem_ref_alloc (NULL, 0, id);
      memory_accesses.refs_list.safe_push (ref);
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Unhandled memory reference %u: ", id);
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      record_mem_ref_loc (ref, stmt, mem);
      is_stored = gimple_vdef (stmt);
    }
  else if (!mem)
    {
      /* We use the shared mem_ref for all unanalyzable refs.  */
      id = UNANALYZABLE_MEM_ID;
      ref = memory_accesses.refs_list[id];
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      is_stored = gimple_vdef (stmt);
    }
  else
    {
      /* We are looking for equal refs that might differ in structure
         such as a.b vs. MEM[&a + 4].  So we key off the ao_ref but
	 make sure we can canonicalize the ref in the hashtable if
	 non-operand_equal_p refs are found.  For the lookup we mark
	 the case we want strict equality with aor.max_size == -1.  */
      ao_ref aor;
      ao_ref_init (&aor, *mem);
      ao_ref_base (&aor);
      ao_ref_alias_set (&aor);
      HOST_WIDE_INT offset, size, max_size;
      poly_int64 saved_maxsize = aor.max_size, mem_off;
      tree mem_base;
      bool ref_decomposed;
      if (aor.max_size_known_p ()
	  && aor.offset.is_constant (&offset)
	  && aor.size.is_constant (&size)
	  && aor.max_size.is_constant (&max_size)
	  && size == max_size
	  && (size % BITS_PER_UNIT) == 0
	  /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
	     size.  Make sure this is consistent with the extraction.  */
	  && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
	  && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
		       aor.size)
	  && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
	{
	  ref_decomposed = true;
	  tree base = ao_ref_base (&aor);
	  poly_int64 moffset;
	  HOST_WIDE_INT mcoffset;
	  if (TREE_CODE (base) == MEM_REF
	      && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset)
	      && moffset.is_constant (&mcoffset))
	    {
	      hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0);
	      hash = iterative_hash_host_wide_int (mcoffset, hash);
	    }
	  else
	    {
	      hash = iterative_hash_expr (base, 0);
	      hash = iterative_hash_host_wide_int (offset, hash);
	    }
	  hash = iterative_hash_host_wide_int (size, hash);
	}
      else
	{
	  ref_decomposed = false;
	  hash = iterative_hash_expr (aor.ref, 0);
	  aor.max_size = -1;
	}
      slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
      aor.max_size = saved_maxsize;
      if (*slot)
	{
	  if (!(*slot)->ref_canonical 
	      && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
	    {
	      /* If we didn't yet canonicalize the hashtable ref (which
	         we'll end up using for code insertion) and hit a second
		 equal ref that is not structurally equivalent create
		 a canonical ref which is a bare MEM_REF.  */
	      if (TREE_CODE (*mem) == MEM_REF
		  || TREE_CODE (*mem) == TARGET_MEM_REF)
		{
		  (*slot)->mem.ref = *mem;
		  (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
		}
	      else
		{
		  tree ref_alias_type = reference_alias_ptr_type (*mem);
		  unsigned int ref_align = get_object_alignment (*mem);
		  tree ref_type = TREE_TYPE (*mem);
		  tree tmp = build1 (ADDR_EXPR, ptr_type_node,
				     unshare_expr (mem_base));
		  if (TYPE_ALIGN (ref_type) != ref_align)
		    ref_type = build_aligned_type (ref_type, ref_align);
		  tree new_ref
		    = fold_build2 (MEM_REF, ref_type, tmp,
				   build_int_cst (ref_alias_type, mem_off));
		  if ((*slot)->mem.volatile_p)
		    TREE_THIS_VOLATILE (new_ref) = 1;
		  (*slot)->mem.ref = new_ref;
		  /* Make sure the recorded base and offset are consistent
		     with the newly built ref.  */
		  if (TREE_CODE (TREE_OPERAND (new_ref, 0)) == ADDR_EXPR)
		    ;
		  else
		    {
		      (*slot)->mem.base = new_ref;
		      (*slot)->mem.offset = 0;
		    }
		  gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
				       && is_gimple_mem_ref_addr
				            (TREE_OPERAND ((*slot)->mem.ref,
							   0)));
		  (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
		}
	      (*slot)->ref_canonical = true;
	    }
	  ref = *slot;
	  id = ref->id;
	}
      else
	{
	  id = memory_accesses.refs_list.length ();
	  ref = mem_ref_alloc (&aor, hash, id);
	  ref->ref_decomposed = ref_decomposed;
	  memory_accesses.refs_list.safe_push (ref);
	  *slot = ref;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Memory reference %u: ", id);
	      print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }
	}

      record_mem_ref_loc (ref, stmt, mem);
    }
  if (is_stored)
    {
      bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
      mark_ref_stored (ref, loop);
    }
  /* A not simple memory op is also a read when it is a write.  */
  if (!is_stored || id == UNANALYZABLE_MEM_ID
      || ref->mem.ref == error_mark_node)
    {
      bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
      mark_ref_loaded (ref, loop);
    }
  init_lim_data (stmt)->ref = ref->id;
  return;
}

static unsigned *bb_loop_postorder;

/* qsort sort function to sort blocks after their loop fathers postorder.  */

static int
sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
				void *bb_loop_postorder_)
{
  unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
  basic_block bb1 = *(const basic_block *)bb1_;
  basic_block bb2 = *(const basic_block *)bb2_;
  class loop *loop1 = bb1->loop_father;
  class loop *loop2 = bb2->loop_father;
  if (loop1->num == loop2->num)
    return bb1->index - bb2->index;
  return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
}

/* qsort sort function to sort ref locs after their loop fathers postorder.  */

static int
sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
				 void *bb_loop_postorder_)
{
  unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
  const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
  const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
  class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
  class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
  if (loop1->num == loop2->num)
    return 0;
  return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
}

/* Gathers memory references in loops.  */

static void
analyze_memory_references (bool store_motion)
{
  gimple_stmt_iterator bsi;
  basic_block bb, *bbs;
  class loop *outer;
  unsigned i, n;

  /* Collect all basic-blocks in loops and sort them after their
     loops postorder.  */
  i = 0;
  bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
  FOR_EACH_BB_FN (bb, cfun)
    if (bb->loop_father != current_loops->tree_root)
      bbs[i++] = bb;
  n = i;
  gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
	      bb_loop_postorder);

  /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
     That results in better locality for all the bitmaps.  It also
     automatically sorts the location list of gathered memory references
     after their loop postorder number allowing to binary-search it.  */
  for (i = 0; i < n; ++i)
    {
      basic_block bb = bbs[i];
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
        gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
    }

  /* Verify the list of gathered memory references is sorted after their
     loop postorder number.  */
  if (flag_checking)
    {
      im_mem_ref *ref;
      FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
	for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
	  gcc_assert (sort_locs_in_loop_postorder_cmp
			(&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
			 bb_loop_postorder) <= 0);
    }

  free (bbs);

  if (!store_motion)
    return;

  /* Propagate the information about accessed memory references up
     the loop hierarchy.  */
  for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
    {
      /* Finalize the overall touched references (including subloops).  */
      bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
		       &memory_accesses.refs_stored_in_loop[loop->num]);

      /* Propagate the information about accessed memory references up
	 the loop hierarchy.  */
      outer = loop_outer (loop);
      if (outer == current_loops->tree_root)
	continue;

      bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
		       &memory_accesses.all_refs_stored_in_loop[loop->num]);
    }
}

/* Returns true if MEM1 and MEM2 may alias.  TTAE_CACHE is used as a cache in
   tree_to_aff_combination_expand.  */

static bool
mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
		      hash_map<tree, name_expansion *> **ttae_cache,
		      bool tbaa_p)
{
  gcc_checking_assert (mem1->mem.ref != error_mark_node
		       && mem2->mem.ref != error_mark_node);

  /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
     object and their offset differ in such a way that the locations cannot
     overlap, then they cannot alias.  */
  poly_widest_int size1, size2;
  aff_tree off1, off2;

  /* Perform basic offset and type-based disambiguation.  */
  if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
    return false;

  /* The expansion of addresses may be a bit expensive, thus we only do
     the check at -O2 and higher optimization levels.  */
  if (optimize < 2)
    return true;

  get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
  get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
  aff_combination_expand (&off1, ttae_cache);
  aff_combination_expand (&off2, ttae_cache);
  aff_combination_scale (&off1, -1);
  aff_combination_add (&off2, &off1);

  if (aff_comb_cannot_overlap_p (&off2, size1, size2))
    return false;

  return true;
}

/* Compare function for bsearch searching for reference locations
   in a loop.  */

static int
find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
			  void *bb_loop_postorder_)
{
  unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
  class loop *loop = (class loop *)const_cast<void *>(loop_);
  mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
  class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
  if (loop->num  == loc_loop->num
      || flow_loop_nested_p (loop, loc_loop))
    return 0;
  return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
	  ? -1 : 1);
}

/* Iterates over all locations of REF in LOOP and its subloops calling
   fn.operator() with the location as argument.  When that operator
   returns true the iteration is stopped and true is returned.
   Otherwise false is returned.  */

template <typename FN>
static bool
for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
{
  unsigned i;
  mem_ref_loc *loc;

  /* Search for the cluster of locs in the accesses_in_loop vector
     which is sorted after postorder index of the loop father.  */
  loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
				       bb_loop_postorder);
  if (!loc)
    return false;

  /* We have found one location inside loop or its sub-loops.  Iterate
     both forward and backward to cover the whole cluster.  */
  i = loc - ref->accesses_in_loop.address ();
  while (i > 0)
    {
      --i;
      mem_ref_loc *l = &ref->accesses_in_loop[i];
      if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
	break;
      if (fn (l))
	return true;
    }
  for (i = loc - ref->accesses_in_loop.address ();
       i < ref->accesses_in_loop.length (); ++i)
    {
      mem_ref_loc *l = &ref->accesses_in_loop[i];
      if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
	break;
      if (fn (l))
	return true;
    }

  return false;
}

/* Rewrites location LOC by TMP_VAR.  */

class rewrite_mem_ref_loc
{
public:
  rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
  bool operator () (mem_ref_loc *loc);
  tree tmp_var;
};

bool
rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
{
  *loc->ref = tmp_var;
  update_stmt (loc->stmt);
  return false;
}

/* Rewrites all references to REF in LOOP by variable TMP_VAR.  */

static void
rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
{
  for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
}

/* Stores the first reference location in LOCP.  */

class first_mem_ref_loc_1
{
public:
  first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
  bool operator () (mem_ref_loc *loc);
  mem_ref_loc **locp;
};

bool
first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
{
  *locp = loc;
  return true;
}

/* Returns the first reference location to REF in LOOP.  */

static mem_ref_loc *
first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
{
  mem_ref_loc *locp = NULL;
  for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
  return locp;
}

/* Helper function for execute_sm.  Emit code to store TMP_VAR into
   MEM along edge EX.

   The store is only done if MEM has changed.  We do this so no
   changes to MEM occur on code paths that did not originally store
   into it.

   The common case for execute_sm will transform:

     for (...) {
       if (foo)
         stuff;
       else
         MEM = TMP_VAR;
     }

   into:

     lsm = MEM;
     for (...) {
       if (foo)
         stuff;
       else
         lsm = TMP_VAR;
     }
     MEM = lsm;

  This function will generate:

     lsm = MEM;

     lsm_flag = false;
     ...
     for (...) {
       if (foo)
         stuff;
       else {
         lsm = TMP_VAR;
         lsm_flag = true;
       }
     }
     if (lsm_flag)	<--
       MEM = lsm;	<-- (X)

  In case MEM and TMP_VAR are NULL the function will return the then
  block so the caller can insert (X) and other related stmts. 
*/

static basic_block
execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
		       edge preheader, hash_set <basic_block> *flag_bbs,
		       edge &append_cond_position, edge &last_cond_fallthru)
{
  basic_block new_bb, then_bb, old_dest;
  bool loop_has_only_one_exit;
  edge then_old_edge;
  gimple_stmt_iterator gsi;
  gimple *stmt;
  bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;

  profile_count count_sum = profile_count::zero ();
  int nbbs = 0, ncount = 0;
  profile_probability flag_probability = profile_probability::uninitialized ();

  /* Flag is set in FLAG_BBS. Determine probability that flag will be true
     at loop exit.

     This code may look fancy, but it cannot update profile very realistically
     because we do not know the probability that flag will be true at given
     loop exit.

     We look for two interesting extremes
       - when exit is dominated by block setting the flag, we know it will
         always be true.  This is a common case.
       - when all blocks setting the flag have very low frequency we know
         it will likely be false.
     In all other cases we default to 2/3 for flag being true.  */

  for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
       it != flag_bbs->end (); ++it)
    {
       if ((*it)->count.initialized_p ())
         count_sum += (*it)->count, ncount ++;
       if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
	 flag_probability = profile_probability::always ();
       nbbs++;
    }

  profile_probability cap
	  = profile_probability::guessed_always ().apply_scale (2, 3);

  if (flag_probability.initialized_p ())
    ;
  else if (ncount == nbbs
	   && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
    {
      flag_probability = count_sum.probability_in (preheader->count ());
      if (flag_probability > cap)
	flag_probability = cap;
    }

  if (!flag_probability.initialized_p ())
    flag_probability = cap;

  /* ?? Insert store after previous store if applicable.  See note
     below.  */
  if (append_cond_position)
    ex = append_cond_position;

  loop_has_only_one_exit = single_pred_p (ex->dest);

  if (loop_has_only_one_exit)
    ex = split_block_after_labels (ex->dest);
  else
    {
      for (gphi_iterator gpi = gsi_start_phis (ex->dest);
	   !gsi_end_p (gpi); gsi_next (&gpi))
	{
	  gphi *phi = gpi.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;

	  /* When the destination has a non-virtual PHI node with multiple
	     predecessors make sure we preserve the PHI structure by
	     forcing a forwarder block so that hoisting of that PHI will
	     still work.  */
	  split_edge (ex);
	  break;
	}
    }

  old_dest = ex->dest;
  new_bb = split_edge (ex);
  if (append_cond_position)
    new_bb->count += last_cond_fallthru->count ();
  then_bb = create_empty_bb (new_bb);
  then_bb->count = new_bb->count.apply_probability (flag_probability);
  if (irr)
    then_bb->flags = BB_IRREDUCIBLE_LOOP;
  add_bb_to_loop (then_bb, new_bb->loop_father);

  gsi = gsi_start_bb (new_bb);
  stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
			    NULL_TREE, NULL_TREE);
  gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);

  /* Insert actual store.  */
  if (mem)
    {
      gsi = gsi_start_bb (then_bb);
      stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
      gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
    }

  edge e1 = single_succ_edge (new_bb);
  edge e2 = make_edge (new_bb, then_bb,
	               EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
  e2->probability = flag_probability;

  e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
  e1->flags &= ~EDGE_FALLTHRU;

  e1->probability = flag_probability.invert ();

  then_old_edge = make_single_succ_edge (then_bb, old_dest,
			     EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));

  set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);

  if (append_cond_position)
    {
      basic_block prevbb = last_cond_fallthru->src;
      redirect_edge_succ (last_cond_fallthru, new_bb);
      set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
      set_immediate_dominator (CDI_DOMINATORS, old_dest,
			       recompute_dominator (CDI_DOMINATORS, old_dest));
    }

  /* ?? Because stores may alias, they must happen in the exact
     sequence they originally happened.  Save the position right after
     the (_lsm) store we just created so we can continue appending after
     it and maintain the original order.  */
  append_cond_position = then_old_edge;
  last_cond_fallthru = find_edge (new_bb, old_dest);

  if (!loop_has_only_one_exit)
    for (gphi_iterator gpi = gsi_start_phis (old_dest);
	 !gsi_end_p (gpi); gsi_next (&gpi))
      {
	gphi *phi = gpi.phi ();
	unsigned i;

	for (i = 0; i < gimple_phi_num_args (phi); i++)
	  if (gimple_phi_arg_edge (phi, i)->src == new_bb)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
	      update_stmt (phi);
	    }
      }

  return then_bb;
}

/* When REF is set on the location, set flag indicating the store.  */

class sm_set_flag_if_changed
{
public:
  sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
	 : flag (flag_), bbs (bbs_) {}
  bool operator () (mem_ref_loc *loc);
  tree flag;
  hash_set <basic_block> *bbs;
};

bool
sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
{
  /* Only set the flag for writes.  */
  if (is_gimple_assign (loc->stmt)
      && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
    {
      gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
      gimple *stmt = gimple_build_assign (flag, boolean_true_node);
      gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
      bbs->add (gimple_bb (stmt));
    }
  return false;
}

/* Helper function for execute_sm.  On every location where REF is
   set, set an appropriate flag indicating the store.  */

static tree
execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
				hash_set <basic_block> *bbs)
{
  tree flag;
  char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
  flag = create_tmp_reg (boolean_type_node, str);
  for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
  return flag;
}

struct sm_aux
{
  tree tmp_var;
  tree store_flag;
  hash_set <basic_block> flag_bbs;
};

/* Executes store motion of memory reference REF from LOOP.
   Exits from the LOOP are stored in EXITS.  The initialization of the
   temporary variable is put to the preheader of the loop, and assignments
   to the reference from the temporary variable are emitted to exits.  */

static void
execute_sm (class loop *loop, im_mem_ref *ref,
	    hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt,
	    bool use_other_flag_var)
{
  gassign *load;
  struct fmt_data fmt_data;
  struct lim_aux_data *lim_data;
  bool multi_threaded_model_p = false;
  gimple_stmt_iterator gsi;
  sm_aux *aux = new sm_aux;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Executing store motion of ");
      print_generic_expr (dump_file, ref->mem.ref);
      fprintf (dump_file, " from loop %d\n", loop->num);
    }

  aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
				 get_lsm_tmp_name (ref->mem.ref, ~0));

  fmt_data.loop = loop;
  fmt_data.orig_loop = loop;
  for_each_index (&ref->mem.ref, force_move_till, &fmt_data);

  bool always_stored = ref_always_accessed_p (loop, ref, true);
  if (maybe_mt
      && (bb_in_transaction (loop_preheader_edge (loop)->src)
	  || (! flag_store_data_races && ! always_stored)))
    multi_threaded_model_p = true;

  if (multi_threaded_model_p && !use_other_flag_var)
    aux->store_flag
      = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
  else
    aux->store_flag = NULL_TREE;

  /* Remember variable setup.  */
  aux_map.put (ref, aux);

  rewrite_mem_refs (loop, ref, aux->tmp_var);

  /* Emit the load code on a random exit edge or into the latch if
     the loop does not exit, so that we are sure it will be processed
     by move_computations after all dependencies.  */
  gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);

  /* Avoid doing a load if there was no load of the ref in the loop.
     Esp. when the ref is not always stored we cannot optimize it
     away later.  But when it is not always stored we must use a conditional
     store then.  */
  if ((!always_stored && !multi_threaded_model_p)
      || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
    load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
  else
    {
      /* If not emitting a load mark the uninitialized state on the
	 loop entry as not to be warned for.  */
      tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
      suppress_warning (uninit, OPT_Wuninitialized);
      load = gimple_build_assign (aux->tmp_var, uninit);
    }
  lim_data = init_lim_data (load);
  lim_data->max_loop = loop;
  lim_data->tgt_loop = loop;
  gsi_insert_before (&gsi, load, GSI_SAME_STMT);

  if (aux->store_flag)
    {
      load = gimple_build_assign (aux->store_flag, boolean_false_node);
      lim_data = init_lim_data (load);
      lim_data->max_loop = loop;
      lim_data->tgt_loop = loop;
      gsi_insert_before (&gsi, load, GSI_SAME_STMT);
    }
}

/* sm_ord is used for ordinary stores we can retain order with respect
       to other stores
   sm_unord is used for conditional executed stores which need to be
       able to execute in arbitrary order with respect to other stores
   sm_other is used for stores we do not try to apply store motion to.  */
enum sm_kind { sm_ord, sm_unord, sm_other };
struct seq_entry
{
  seq_entry () = default;
  seq_entry (unsigned f, sm_kind k, tree fr = NULL)
    : first (f), second (k), from (fr) {}
  unsigned first;
  sm_kind second;
  tree from;
};

static void
execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
		 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
		 edge &append_cond_position, edge &last_cond_fallthru)
{
  /* Sink the stores to exit from the loop.  */
  for (unsigned i = seq.length (); i > 0; --i)
    {
      im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
      if (seq[i-1].second == sm_other)
	{
	  gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Re-issueing dependent store of ");
	      print_generic_expr (dump_file, ref->mem.ref);
	      fprintf (dump_file, " from loop %d on exit %d -> %d\n",
		       loop->num, ex->src->index, ex->dest->index);
	    }
	  gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
						seq[i-1].from);
	  gsi_insert_on_edge (ex, store);
	}
      else
	{
	  sm_aux *aux = *aux_map.get (ref);
	  if (!aux->store_flag || kind == sm_ord)
	    {
	      gassign *store;
	      store = gimple_build_assign (unshare_expr (ref->mem.ref),
					   aux->tmp_var);
	      gsi_insert_on_edge (ex, store);
	    }
	  else
	    execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
				   aux->store_flag,
				   loop_preheader_edge (loop), &aux->flag_bbs,
				   append_cond_position, last_cond_fallthru);
	}
    }
}

/* Push the SM candidate at index PTR in the sequence SEQ down until
   we hit the next SM candidate.  Return true if that went OK and
   false if we could not disambiguate agains another unrelated ref.
   Update *AT to the index where the candidate now resides.  */

static bool
sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
{
  *at = ptr;
  for (; ptr > 0; --ptr)
    {
      seq_entry &new_cand = seq[ptr];
      seq_entry &against = seq[ptr-1];
      if (against.second == sm_ord
	  || (against.second == sm_other && against.from != NULL_TREE))
	/* Found the tail of the sequence.  */
	break;
      /* We may not ignore self-dependences here.  */
      if (new_cand.first == against.first
	  || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
				  memory_accesses.refs_list[against.first],
				  false))
	/* ???  Prune new_cand from the list of refs to apply SM to.  */
	return false;
      std::swap (new_cand, against);
      *at = ptr - 1;
    }
  return true;
}

/* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
   walking backwards from VDEF (or the end of BB if VDEF is NULL).  */

static int
sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
		 vec<seq_entry> &seq, bitmap refs_not_in_seq,
		 bitmap refs_not_supported, bool forked,
		 bitmap fully_visited)
{
  if (!vdef)
    for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
	 gsi_prev (&gsi))
      {
	vdef = gimple_vdef (gsi_stmt (gsi));
	if (vdef)
	  break;
      }
  if (!vdef)
    {
      gphi *vphi = get_virtual_phi (bb);
      if (vphi)
	vdef = gimple_phi_result (vphi);
    }
  if (!vdef)
    {
      if (single_pred_p (bb))
	/* This handles the perfect nest case.  */
	return sm_seq_valid_bb (loop, single_pred (bb), vdef,
				seq, refs_not_in_seq, refs_not_supported,
				forked, fully_visited);
      return 0;
    }
  do
    {
      gimple *def = SSA_NAME_DEF_STMT (vdef);
      if (gimple_bb (def) != bb)
	{
	  /* If we forked by processing a PHI do not allow our walk to
	     merge again until we handle that robustly.  */
	  if (forked)
	    {
	      /* Mark refs_not_in_seq as unsupported.  */
	      bitmap_ior_into (refs_not_supported, refs_not_in_seq);
	      return 1;
	    }
	  /* Otherwise it doesn't really matter if we end up in different
	     BBs.  */
	  bb = gimple_bb (def);
	}
      if (gphi *phi = dyn_cast <gphi *> (def))
	{
	  /* Handle CFG merges.  Until we handle forks (gimple_bb (def) != bb)
	     this is still linear.
	     Eventually we want to cache intermediate results per BB
	     (but we can't easily cache for different exits?).  */
	  /* Stop at PHIs with possible backedges.  */
	  if (bb == bb->loop_father->header
	      || bb->flags & BB_IRREDUCIBLE_LOOP)
	    {
	      /* Mark refs_not_in_seq as unsupported.  */
	      bitmap_ior_into (refs_not_supported, refs_not_in_seq);
	      return 1;
	    }
	  if (gimple_phi_num_args (phi) == 1)
	    return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
				    gimple_phi_arg_def (phi, 0), seq,
				    refs_not_in_seq, refs_not_supported,
				    false, fully_visited);
	  if (bitmap_bit_p (fully_visited,
			    SSA_NAME_VERSION (gimple_phi_result (phi))))
	    return 1;
	  auto_vec<seq_entry> first_edge_seq;
	  auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
	  int eret;
	  bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
	  eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
				  gimple_phi_arg_def (phi, 0),
				  first_edge_seq,
				  tem_refs_not_in_seq, refs_not_supported,
				  true, fully_visited);
	  if (eret != 1)
	    return -1;
	  /* Simplify our lives by pruning the sequence of !sm_ord.  */
	  while (!first_edge_seq.is_empty ()
		 && first_edge_seq.last ().second != sm_ord)
	    first_edge_seq.pop ();
	  for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
	    {
	      tree vuse = gimple_phi_arg_def (phi, i);
	      edge e = gimple_phi_arg_edge (phi, i);
	      auto_vec<seq_entry> edge_seq;
	      bitmap_and_compl (tem_refs_not_in_seq,
				refs_not_in_seq, refs_not_supported);
	      /* If we've marked all refs we search for as unsupported
		 we can stop processing and use the sequence as before
		 the PHI.  */
	      if (bitmap_empty_p (tem_refs_not_in_seq))
		return 1;
	      eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
				      tem_refs_not_in_seq, refs_not_supported,
				      true, fully_visited);
	      if (eret != 1)
		return -1;
	      /* Simplify our lives by pruning the sequence of !sm_ord.  */
	      while (!edge_seq.is_empty ()
		     && edge_seq.last ().second != sm_ord)
		edge_seq.pop ();
	      unsigned min_len = MIN(first_edge_seq.length (),
				     edge_seq.length ());
	      /* Incrementally merge seqs into first_edge_seq.  */
	      int first_uneq = -1;
	      auto_vec<seq_entry, 2> extra_refs;
	      for (unsigned int i = 0; i < min_len; ++i)
		{
		  /* ???  We can more intelligently merge when we face different
		     order by additional sinking operations in one sequence.
		     For now we simply mark them as to be processed by the
		     not order-preserving SM code.  */
		  if (first_edge_seq[i].first != edge_seq[i].first)
		    {
		      if (first_edge_seq[i].second == sm_ord)
			bitmap_set_bit (refs_not_supported,
					first_edge_seq[i].first);
		      if (edge_seq[i].second == sm_ord)
			bitmap_set_bit (refs_not_supported, edge_seq[i].first);
		      first_edge_seq[i].second = sm_other;
		      first_edge_seq[i].from = NULL_TREE;
		      /* Record the dropped refs for later processing.  */
		      if (first_uneq == -1)
			first_uneq = i;
		      extra_refs.safe_push (seq_entry (edge_seq[i].first,
						       sm_other, NULL_TREE));
		    }
		  /* sm_other prevails.  */
		  else if (first_edge_seq[i].second != edge_seq[i].second)
		    {
		      /* Make sure the ref is marked as not supported.  */
		      bitmap_set_bit (refs_not_supported,
				      first_edge_seq[i].first);
		      first_edge_seq[i].second = sm_other;
		      first_edge_seq[i].from = NULL_TREE;
		    }
		  else if (first_edge_seq[i].second == sm_other
			   && first_edge_seq[i].from != NULL_TREE
			   && (edge_seq[i].from == NULL_TREE
			       || !operand_equal_p (first_edge_seq[i].from,
						    edge_seq[i].from, 0)))
		    first_edge_seq[i].from = NULL_TREE;
		}
	      /* Any excess elements become sm_other since they are now
		 coonditionally executed.  */
	      if (first_edge_seq.length () > edge_seq.length ())
		{
		  for (unsigned i = edge_seq.length ();
		       i < first_edge_seq.length (); ++i)
		    {
		      if (first_edge_seq[i].second == sm_ord)
			bitmap_set_bit (refs_not_supported,
					first_edge_seq[i].first);
		      first_edge_seq[i].second = sm_other;
		    }
		}
	      else if (edge_seq.length () > first_edge_seq.length ())
		{
		  if (first_uneq == -1)
		    first_uneq = first_edge_seq.length ();
		  for (unsigned i = first_edge_seq.length ();
		       i < edge_seq.length (); ++i)
		    {
		      if (edge_seq[i].second == sm_ord)
			bitmap_set_bit (refs_not_supported, edge_seq[i].first);
		      extra_refs.safe_push (seq_entry (edge_seq[i].first,
						       sm_other, NULL_TREE));
		    }
		}
	      /* Put unmerged refs at first_uneq to force dependence checking
		 on them.  */
	      if (first_uneq != -1)
		{
		  /* Missing ordered_splice_at.  */
		  if ((unsigned)first_uneq == first_edge_seq.length ())
		    first_edge_seq.safe_splice (extra_refs);
		  else
		    {
		      unsigned fes_length = first_edge_seq.length ();
		      first_edge_seq.safe_grow (fes_length
						+ extra_refs.length ());
		      memmove (&first_edge_seq[first_uneq + extra_refs.length ()],
			       &first_edge_seq[first_uneq],
			       (fes_length - first_uneq) * sizeof (seq_entry));
		      memcpy (&first_edge_seq[first_uneq],
			      extra_refs.address (),
			      extra_refs.length () * sizeof (seq_entry));
		    }
		}
	    }
	  /* Use the sequence from the first edge and push SMs down.  */
	  for (unsigned i = 0; i < first_edge_seq.length (); ++i)
	    {
	      unsigned id = first_edge_seq[i].first;
	      seq.safe_push (first_edge_seq[i]);
	      unsigned new_idx;
	      if ((first_edge_seq[i].second == sm_ord
		   || (first_edge_seq[i].second == sm_other
		       && first_edge_seq[i].from != NULL_TREE))
		  && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
		{
		  if (first_edge_seq[i].second == sm_ord)
		    bitmap_set_bit (refs_not_supported, id);
		  /* Mark it sm_other.  */
		  seq[new_idx].second = sm_other;
		  seq[new_idx].from = NULL_TREE;
		}
	    }
	  bitmap_set_bit (fully_visited,
			  SSA_NAME_VERSION (gimple_phi_result (phi)));
	  return 1;
	}
      lim_aux_data *data = get_lim_data (def);
      gcc_assert (data);
      if (data->ref == UNANALYZABLE_MEM_ID)
	return -1;
      /* Stop at memory references which we can't move.  */
      else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node
	       || TREE_THIS_VOLATILE
		    (memory_accesses.refs_list[data->ref]->mem.ref))
	{
	  /* Mark refs_not_in_seq as unsupported.  */
	  bitmap_ior_into (refs_not_supported, refs_not_in_seq);
	  return 1;
	}
      /* One of the stores we want to apply SM to and we've not yet seen.  */
      else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
	{
	  seq.safe_push (seq_entry (data->ref, sm_ord));

	  /* 1) push it down the queue until a SMed
	     and not ignored ref is reached, skipping all not SMed refs
	     and ignored refs via non-TBAA disambiguation.  */
	  unsigned new_idx;
	  if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
	      /* If that fails but we did not fork yet continue, we'll see
		 to re-materialize all of the stores in the sequence then.
		 Further stores will only be pushed up to this one.  */
	      && forked)
	    {
	      bitmap_set_bit (refs_not_supported, data->ref);
	      /* Mark it sm_other.  */
	      seq[new_idx].second = sm_other;
	    }

	  /* 2) check whether we've seen all refs we want to SM and if so
	     declare success for the active exit  */
	  if (bitmap_empty_p (refs_not_in_seq))
	    return 1;
	}
      else
	/* Another store not part of the final sequence.  Simply push it.  */
	seq.safe_push (seq_entry (data->ref, sm_other,
				  gimple_assign_rhs1 (def)));

      vdef = gimple_vuse (def);
    }
  while (1);
}

/* Hoists memory references MEM_REFS out of LOOP.  EXITS is the list of exit
   edges of the LOOP.  */

static void
hoist_memory_references (class loop *loop, bitmap mem_refs,
			 const vec<edge> &exits)
{
  im_mem_ref *ref;
  unsigned  i;
  bitmap_iterator bi;

  /* There's a special case we can use ordered re-materialization for
     conditionally excuted stores which is when all stores in the loop
     happen in the same basic-block.  In that case we know we'll reach
     all stores and thus can simply process that BB and emit a single
     conditional block of ordered materializations.  See PR102436.  */
  basic_block single_store_bb = NULL;
  EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num],
			    0, i, bi)
    {
      bool fail = false;
      ref = memory_accesses.refs_list[i];
      for (auto loc : ref->accesses_in_loop)
	if (!gimple_vdef (loc.stmt))
	  ;
	else if (!single_store_bb)
	  {
	    single_store_bb = gimple_bb (loc.stmt);
	    bool conditional = false;
	    for (edge e : exits)
	      if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb))
		{
		  /* Conditional as seen from e.  */
		  conditional = true;
		  break;
		}
	    if (!conditional)
	      {
		fail = true;
		break;
	      }
	  }
	else if (single_store_bb != gimple_bb (loc.stmt))
	  {
	    fail = true;
	    break;
	  }
      if (fail)
	{
	  single_store_bb = NULL;
	  break;
	}
    }
  if (single_store_bb)
    {
      /* Analyze the single block with stores.  */
      auto_bitmap fully_visited;
      auto_bitmap refs_not_supported;
      auto_bitmap refs_not_in_seq;
      auto_vec<seq_entry> seq;
      bitmap_copy (refs_not_in_seq, mem_refs);
      int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE,
				 seq, refs_not_in_seq, refs_not_supported,
				 false, fully_visited);
      if (res != 1)
	{
	  /* Unhandled refs can still fail this.  */
	  bitmap_clear (mem_refs);
	  return;
	}

      /* We cannot handle sm_other since we neither remember the
	 stored location nor the value at the point we execute them.  */
      for (unsigned i = 0; i < seq.length (); ++i)
	{
	  unsigned new_i;
	  if (seq[i].second == sm_other
	      && seq[i].from != NULL_TREE)
	    seq[i].from = NULL_TREE;
	  else if ((seq[i].second == sm_ord
		    || (seq[i].second == sm_other
			&& seq[i].from != NULL_TREE))
		   && !sm_seq_push_down (seq, i, &new_i))
	    {
	      bitmap_set_bit (refs_not_supported, seq[new_i].first);
	      seq[new_i].second = sm_other;
	      seq[new_i].from = NULL_TREE;
	    }
	}
      bitmap_and_compl_into (mem_refs, refs_not_supported);
      if (bitmap_empty_p (mem_refs))
	return;

      /* Prune seq.  */
      while (seq.last ().second == sm_other
	     && seq.last ().from == NULL_TREE)
	seq.pop ();

      hash_map<im_mem_ref *, sm_aux *> aux_map;

      /* Execute SM but delay the store materialization for ordered
	 sequences on exit.  */
      bool first_p = true;
      EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
	{
	  ref = memory_accesses.refs_list[i];
	  execute_sm (loop, ref, aux_map, true, !first_p);
	  first_p = false;
	}

      /* Get at the single flag variable we eventually produced.  */
      im_mem_ref *ref
	= memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)];
      sm_aux *aux = *aux_map.get (ref);

      /* Materialize ordered store sequences on exits.  */
      edge e;
      FOR_EACH_VEC_ELT (exits, i, e)
	{
	  edge append_cond_position = NULL;
	  edge last_cond_fallthru = NULL;
	  edge insert_e = e;
	  /* Construct the single flag variable control flow and insert
	     the ordered seq of stores in the then block.  With
	     -fstore-data-races we can do the stores unconditionally.  */
	  if (aux->store_flag)
	    insert_e
	      = single_pred_edge
		  (execute_sm_if_changed (e, NULL_TREE, NULL_TREE,
					  aux->store_flag,
					  loop_preheader_edge (loop),
					  &aux->flag_bbs, append_cond_position,
					  last_cond_fallthru));
	  execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord,
			   append_cond_position, last_cond_fallthru);
	  gsi_commit_one_edge_insert (insert_e, NULL);
	}

      for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
	   iter != aux_map.end (); ++iter)
	delete (*iter).second;

      return;
    }

  /* To address PR57359 before actually applying store-motion check
     the candidates found for validity with regards to reordering
     relative to other stores which we until here disambiguated using
     TBAA which isn't valid.
     What matters is the order of the last stores to the mem_refs
     with respect to the other stores of the loop at the point of the
     loop exits.  */

  /* For each exit compute the store order, pruning from mem_refs
     on the fly.  */
  /* The complexity of this is at least
     O(number of exits * number of SM refs) but more approaching
     O(number of exits * number of SM refs * number of stores).  */
  /* ???  Somehow do this in a single sweep over the loop body.  */
  auto_vec<std::pair<edge, vec<seq_entry> > > sms;
  auto_bitmap refs_not_supported (&lim_bitmap_obstack);
  edge e;
  FOR_EACH_VEC_ELT (exits, i, e)
    {
      vec<seq_entry> seq;
      seq.create (4);
      auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
      bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported);
      if (bitmap_empty_p (refs_not_in_seq))
	{
	  seq.release ();
	  break;
	}
      auto_bitmap fully_visited;
      int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
				 seq, refs_not_in_seq,
				 refs_not_supported, false,
				 fully_visited);
      if (res != 1)
	{
	  bitmap_copy (refs_not_supported, mem_refs);
	  seq.release ();
	  break;
	}
      sms.safe_push (std::make_pair (e, seq));
    }

  /* Prune pruned mem_refs from earlier processed exits.  */
  bool changed = !bitmap_empty_p (refs_not_supported);
  while (changed)
    {
      changed = false;
      std::pair<edge, vec<seq_entry> > *seq;
      FOR_EACH_VEC_ELT (sms, i, seq)
	{
	  bool need_to_push = false;
	  for (unsigned i = 0; i < seq->second.length (); ++i)
	    {
	      sm_kind kind = seq->second[i].second;
	      if (kind == sm_other && seq->second[i].from == NULL_TREE)
		break;
	      unsigned id = seq->second[i].first;
	      unsigned new_idx;
	      if (kind == sm_ord
		  && bitmap_bit_p (refs_not_supported, id))
		{
		  seq->second[i].second = sm_other;
		  gcc_assert (seq->second[i].from == NULL_TREE);
		  need_to_push = true;
		}
	      else if (need_to_push
		       && !sm_seq_push_down (seq->second, i, &new_idx))
		{
		  /* We need to push down both sm_ord and sm_other
		     but for the latter we need to disqualify all
		     following refs.  */
		  if (kind == sm_ord)
		    {
		      if (bitmap_set_bit (refs_not_supported, id))
			changed = true;
		      seq->second[new_idx].second = sm_other;
		    }
		  else
		    {
		      for (unsigned j = seq->second.length () - 1;
			   j > new_idx; --j)
			if (seq->second[j].second == sm_ord
			    && bitmap_set_bit (refs_not_supported,
					       seq->second[j].first))
			  changed = true;
		      seq->second.truncate (new_idx);
		      break;
		    }
		}
	    }
	}
    }
  std::pair<edge, vec<seq_entry> > *seq;
  FOR_EACH_VEC_ELT (sms, i, seq)
    {
      /* Prune sm_other from the end.  */
      while (!seq->second.is_empty ()
	     && seq->second.last ().second == sm_other)
	seq->second.pop ();
      /* Prune duplicates from the start.  */
      auto_bitmap seen (&lim_bitmap_obstack);
      unsigned j, k;
      for (j = k = 0; j < seq->second.length (); ++j)
	if (bitmap_set_bit (seen, seq->second[j].first))
	  {
	    if (k != j)
	      seq->second[k] = seq->second[j];
	    ++k;
	  }
      seq->second.truncate (k);
      /* And verify.  */
      seq_entry *e;
      FOR_EACH_VEC_ELT (seq->second, j, e)
	gcc_assert (e->second == sm_ord
		    || (e->second == sm_other && e->from != NULL_TREE));
    }

  /* Verify dependence for refs we cannot handle with the order preserving
     code (refs_not_supported) or prune them from mem_refs.  */
  auto_vec<seq_entry> unord_refs;
  EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
    {
      ref = memory_accesses.refs_list[i];
      if (!ref_indep_loop_p (loop, ref, sm_waw))
	bitmap_clear_bit (mem_refs, i);
      /* We've now verified store order for ref with respect to all other
	 stores in the loop does not matter.  */
      else
	unord_refs.safe_push (seq_entry (i, sm_unord));
    }

  hash_map<im_mem_ref *, sm_aux *> aux_map;

  /* Execute SM but delay the store materialization for ordered
     sequences on exit.  */
  EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
    {
      ref = memory_accesses.refs_list[i];
      execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i),
		  false);
    }

  /* Materialize ordered store sequences on exits.  */
  FOR_EACH_VEC_ELT (exits, i, e)
    {
      edge append_cond_position = NULL;
      edge last_cond_fallthru = NULL;
      if (i < sms.length ())
	{
	  gcc_assert (sms[i].first == e);
	  execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
			   append_cond_position, last_cond_fallthru);
	  sms[i].second.release ();
	}
      if (!unord_refs.is_empty ())
	execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
			 append_cond_position, last_cond_fallthru);
      /* Commit edge inserts here to preserve the order of stores
	 when an exit exits multiple loops.  */
      gsi_commit_one_edge_insert (e, NULL);
    }

  for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
       iter != aux_map.end (); ++iter)
    delete (*iter).second;
}

class ref_always_accessed
{
public:
  ref_always_accessed (class loop *loop_, bool stored_p_)
      : loop (loop_), stored_p (stored_p_) {}
  bool operator () (mem_ref_loc *loc);
  class loop *loop;
  bool stored_p;
};

bool
ref_always_accessed::operator () (mem_ref_loc *loc)
{
  class loop *must_exec;

  struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
  if (!lim_data)
    return false;

  /* If we require an always executed store make sure the statement
     is a store.  */
  if (stored_p)
    {
      tree lhs = gimple_get_lhs (loc->stmt);
      if (!lhs
	  || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
	return false;
    }

  must_exec = lim_data->always_executed_in;
  if (!must_exec)
    return false;

  if (must_exec == loop
      || flow_loop_nested_p (must_exec, loop))
    return true;

  return false;
}

/* Returns true if REF is always accessed in LOOP.  If STORED_P is true
   make sure REF is always stored to in LOOP.  */

static bool
ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
{
  return for_all_locs_in_loop (loop, ref,
			       ref_always_accessed (loop, stored_p));
}

/* Returns true if REF1 and REF2 are independent.  */

static bool
refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
{
  if (ref1 == ref2)
    return true;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Querying dependency of refs %u and %u: ",
	     ref1->id, ref2->id);

  if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "dependent.\n");
      return false;
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "independent.\n");
      return true;
    }
}

/* Returns true if REF is independent on all other accessess in LOOP.
   KIND specifies the kind of dependence to consider.
     lim_raw assumes REF is not stored in LOOP and disambiguates RAW
	     dependences so if true REF can be hoisted out of LOOP
     sm_war disambiguates a store REF against all other loads to see
	    whether the store can be sunk across loads out of LOOP
     sm_waw disambiguates a store REF against all other stores to see
	    whether the store can be sunk across stores out of LOOP.  */

static bool
ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
{
  bool indep_p = true;
  bitmap refs_to_check;

  if (kind == sm_war)
    refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
  else
    refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];

  if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)
      || ref->mem.ref == error_mark_node)
    indep_p = false;
  else
    {
      /* tri-state, { unknown, independent, dependent }  */
      dep_state state = query_loop_dependence (loop, ref, kind);
      if (state != dep_unknown)
	return state == dep_independent ? true : false;

      class loop *inner = loop->inner;
      while (inner)
	{
	  if (!ref_indep_loop_p (inner, ref, kind))
	    {
	      indep_p = false;
	      break;
	    }
	  inner = inner->next;
	}

      if (indep_p)
	{
	  unsigned i;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
	    {
	      im_mem_ref *aref = memory_accesses.refs_list[i];
	      if (aref->mem.ref == error_mark_node)
		{
		  gimple *stmt = aref->accesses_in_loop[0].stmt;
		  if ((kind == sm_war
		       && ref_maybe_used_by_stmt_p (stmt, &ref->mem,
						    kind != sm_waw))
		      || stmt_may_clobber_ref_p_1 (stmt, &ref->mem,
						   kind != sm_waw))
		    {
		      indep_p = false;
		      break;
		    }
		}
	      else if (!refs_independent_p (ref, aref, kind != sm_waw))
		{
		  indep_p = false;
		  break;
		}
	    }
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
	     kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
	     ref->id, loop->num, indep_p ? "independent" : "dependent");

  /* Record the computed result in the cache.  */
  record_loop_dependence (loop, ref, kind,
			  indep_p ? dep_independent : dep_dependent);

  return indep_p;
}

class ref_in_loop_hot_body
{
public:
  ref_in_loop_hot_body (class loop *loop_) : l (loop_) {}
  bool operator () (mem_ref_loc *loc);
  class loop *l;
};

/* Check the coldest loop between loop L and innermost loop.  If there is one
   cold loop between L and INNER_LOOP, store motion can be performed, otherwise
   no cold loop means no store motion.  get_coldest_out_loop also handles cases
   when l is inner_loop.  */
bool
ref_in_loop_hot_body::operator () (mem_ref_loc *loc)
{
  basic_block curr_bb = gimple_bb (loc->stmt);
  class loop *inner_loop = curr_bb->loop_father;
  return get_coldest_out_loop (l, inner_loop, curr_bb);
}


/* Returns true if we can perform store motion of REF from LOOP.  */

static bool
can_sm_ref_p (class loop *loop, im_mem_ref *ref)
{
  tree base;

  /* Can't hoist unanalyzable refs.  */
  if (!MEM_ANALYZABLE (ref))
    return false;

  /* Can't hoist/sink aggregate copies.  */
  if (ref->mem.ref == error_mark_node)
    return false;

  /* It should be movable.  */
  if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
      || TREE_THIS_VOLATILE (ref->mem.ref)
      || !for_each_index (&ref->mem.ref, may_move_till, loop))
    return false;

  /* If it can throw fail, we do not properly update EH info.  */
  if (tree_could_throw_p (ref->mem.ref))
    return false;

  /* If it can trap, it must be always executed in LOOP.
     Readonly memory locations may trap when storing to them, but
     tree_could_trap_p is a predicate for rvalues, so check that
     explicitly.  */
  base = get_base_address (ref->mem.ref);
  if ((tree_could_trap_p (ref->mem.ref)
       || (DECL_P (base) && TREE_READONLY (base)))
      /* ???  We can at least use false here, allowing loads?  We
	 are forcing conditional stores if the ref is not always
	 stored to later anyway.  So this would only guard
	 the load we need to emit.  Thus when the ref is not
	 loaded we can elide this completely?  */
      && !ref_always_accessed_p (loop, ref, true))
    return false;

  /* Verify all loads of ref can be hoisted.  */
  if (ref->loaded
      && bitmap_bit_p (ref->loaded, loop->num)
      && !ref_indep_loop_p (loop, ref, lim_raw))
    return false;

  /* Verify the candidate can be disambiguated against all loads,
     that is, we can elide all in-loop stores.  Disambiguation
     against stores is done later when we cannot guarantee preserving
     the order of stores.  */
  if (!ref_indep_loop_p (loop, ref, sm_war))
    return false;

  /* Verify whether the candidate is hot for LOOP.  Only do store motion if the
    candidate's profile count is hot.  Statement in cold BB shouldn't be moved
    out of it's loop_father.  */
  if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop)))
    return false;

  return true;
}

/* Marks the references in LOOP for that store motion should be performed
   in REFS_TO_SM.  SM_EXECUTED is the set of references for that store
   motion was performed in one of the outer loops.  */

static void
find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
{
  bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
  unsigned i;
  bitmap_iterator bi;
  im_mem_ref *ref;

  EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
    {
      ref = memory_accesses.refs_list[i];
      if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
	bitmap_set_bit (refs_to_sm, i);
    }
}

/* Checks whether LOOP (with exits stored in EXITS array) is suitable
   for a store motion optimization (i.e. whether we can insert statement
   on its exits).  */

static bool
loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
		      const vec<edge> &exits)
{
  unsigned i;
  edge ex;

  FOR_EACH_VEC_ELT (exits, i, ex)
    if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
      return false;

  return true;
}

/* Try to perform store motion for all memory references modified inside
   LOOP.  SM_EXECUTED is the bitmap of the memory references for that
   store motion was executed in one of the outer loops.  */

static void
store_motion_loop (class loop *loop, bitmap sm_executed)
{
  auto_vec<edge> exits = get_loop_exit_edges (loop);
  class loop *subloop;
  bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);

  if (loop_suitable_for_sm (loop, exits))
    {
      find_refs_for_sm (loop, sm_executed, sm_in_loop);
      if (!bitmap_empty_p (sm_in_loop))
	hoist_memory_references (loop, sm_in_loop, exits);
    }

  bitmap_ior_into (sm_executed, sm_in_loop);
  for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
    store_motion_loop (subloop, sm_executed);
  bitmap_and_compl_into (sm_executed, sm_in_loop);
  BITMAP_FREE (sm_in_loop);
}

/* Try to perform store motion for all memory references modified inside
   loops.  */

static void
do_store_motion (void)
{
  class loop *loop;
  bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);

  for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
    store_motion_loop (loop, sm_executed);

  BITMAP_FREE (sm_executed);
}

/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
   for each such basic block bb records the outermost loop for that execution
   of its header implies execution of bb.  CONTAINS_CALL is the bitmap of
   blocks that contain a nonpure call.  */

static void
fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
{
  basic_block bb = NULL, last = NULL;
  edge e;
  class loop *inn_loop = loop;

  if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
    {
      auto_vec<basic_block, 64> worklist;
      worklist.reserve_exact (loop->num_nodes);
      worklist.quick_push (loop->header);
      do
	{
	  edge_iterator ei;
	  bb = worklist.pop ();

	  if (!flow_bb_inside_loop_p (inn_loop, bb))
	    {
	      /* When we are leaving a possibly infinite inner loop
		 we have to stop processing.  */
	      if (!finite_loop_p (inn_loop))
		break;
	      /* If the loop was finite we can continue with processing
		 the loop we exited to.  */
	      inn_loop = bb->loop_father;
	    }

	  if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
	    last = bb;

	  if (bitmap_bit_p (contains_call, bb->index))
	    break;

	  /* If LOOP exits from this BB stop processing.  */
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (!flow_bb_inside_loop_p (loop, e->dest))
	      break;
	  if (e)
	    break;

	  /* A loop might be infinite (TODO use simple loop analysis
	     to disprove this if possible).  */
	  if (bb->flags & BB_IRREDUCIBLE_LOOP)
	    break;

	  if (bb->loop_father->header == bb)
	    /* Record that we enter into a subloop since it might not
	       be finite.  */
	    /* ???  Entering into a not always executed subloop makes
	       fill_always_executed_in quadratic in loop depth since
	       we walk those loops N times.  This is not a problem
	       in practice though, see PR102253 for a worst-case testcase.  */
	    inn_loop = bb->loop_father;

	  /* Walk the body of LOOP sorted by dominance relation.  Additionally,
	     if a basic block S dominates the latch, then only blocks dominated
	     by S are after it.
	     This is get_loop_body_in_dom_order using a worklist algorithm and
	     stopping once we are no longer interested in visiting further
	     blocks.  */
	  unsigned old_len = worklist.length ();
	  unsigned postpone = 0;
	  for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
	       son;
	       son = next_dom_son (CDI_DOMINATORS, son))
	    {
	      if (!flow_bb_inside_loop_p (loop, son))
		continue;
	      if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
		postpone = worklist.length ();
	      worklist.quick_push (son);
	    }
	  if (postpone)
	    /* Postponing the block that dominates the latch means
	       processing it last and thus putting it earliest in the
	       worklist.  */
	    std::swap (worklist[old_len], worklist[postpone]);
	}
      while (!worklist.is_empty ());

      while (1)
	{
	  if (dump_enabled_p ())
	    dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n",
			 last->index, loop->num);
	  SET_ALWAYS_EXECUTED_IN (last, loop);
	  if (last == loop->header)
	    break;
	  last = get_immediate_dominator (CDI_DOMINATORS, last);
	}
    }

  for (loop = loop->inner; loop; loop = loop->next)
    fill_always_executed_in_1 (loop, contains_call);
}

/* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
   for each such basic block bb records the outermost loop for that execution
   of its header implies execution of bb.  */

static void
fill_always_executed_in (void)
{
  basic_block bb;
  class loop *loop;

  auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
  bitmap_clear (contains_call);
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  if (nonpure_call_p (gsi_stmt (gsi)))
	    break;
	}

      if (!gsi_end_p (gsi))
	bitmap_set_bit (contains_call, bb->index);
    }

  for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
    fill_always_executed_in_1 (loop, contains_call);
}

/* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
   to LOOP.  Then recursively iterate each inner loop.  */

void
fill_coldest_and_hotter_out_loop (class loop *coldest_loop,
				  class loop *hotter_loop, class loop *loop)
{
  if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
				     coldest_loop))
    coldest_loop = loop;

  coldest_outermost_loop[loop->num] = coldest_loop;

  hotter_than_inner_loop[loop->num] = NULL;
  class loop *outer_loop = loop_outer (loop);
  if (hotter_loop
      && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
					hotter_loop))
    hotter_than_inner_loop[loop->num] = hotter_loop;

  if (outer_loop && outer_loop != current_loops->tree_root
      && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
					outer_loop))
    hotter_than_inner_loop[loop->num] = outer_loop;

  if (dump_enabled_p ())
    {
      dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ",
		   loop->num, coldest_loop->num);
      if (hotter_than_inner_loop[loop->num])
	dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n",
		     hotter_than_inner_loop[loop->num]->num);
      else
	dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n");
    }

  class loop *inner_loop;
  for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next)
    fill_coldest_and_hotter_out_loop (coldest_loop,