diff options
Diffstat (limited to 'sim/arm/armsupp.c')
-rw-r--r-- | sim/arm/armsupp.c | 1704 |
1 files changed, 0 insertions, 1704 deletions
diff --git a/sim/arm/armsupp.c b/sim/arm/armsupp.c deleted file mode 100644 index 9fcc7f6..0000000 --- a/sim/arm/armsupp.c +++ /dev/null @@ -1,1704 +0,0 @@ -/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator. - Copyright (C) 1994 Advanced RISC Machines Ltd. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, see <http://www.gnu.org/licenses/>. */ - -/* This must come before any other includes. */ -#include "defs.h" - -#include "armdefs.h" -#include "armemu.h" -#include "ansidecl.h" -#include "libiberty.h" -#include <math.h> - -/* Definitions for the support routines. */ - -static ARMword ModeToBank (ARMword); -static void EnvokeList (ARMul_State *, unsigned long, unsigned long); - -struct EventNode -{ /* An event list node. */ - unsigned (*func) (ARMul_State *); /* The function to call. */ - struct EventNode *next; -}; - -/* This routine returns the value of a register from a mode. */ - -ARMword -ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg) -{ - mode &= MODEBITS; - if (mode != state->Mode) - return (state->RegBank[ModeToBank ((ARMword) mode)][reg]); - else - return (state->Reg[reg]); -} - -/* This routine sets the value of a register for a mode. */ - -void -ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value) -{ - mode &= MODEBITS; - if (mode != state->Mode) - state->RegBank[ModeToBank ((ARMword) mode)][reg] = value; - else - state->Reg[reg] = value; -} - -/* This routine returns the value of the PC, mode independently. */ - -ARMword -ARMul_GetPC (ARMul_State * state) -{ - if (state->Mode > SVC26MODE) - return state->Reg[15]; - else - return R15PC; -} - -/* This routine returns the value of the PC, mode independently. */ - -ARMword -ARMul_GetNextPC (ARMul_State * state) -{ - if (state->Mode > SVC26MODE) - return state->Reg[15] + isize; - else - return (state->Reg[15] + isize) & R15PCBITS; -} - -/* This routine sets the value of the PC. */ - -void -ARMul_SetPC (ARMul_State * state, ARMword value) -{ - if (ARMul_MODE32BIT) - state->Reg[15] = value & PCBITS; - else - state->Reg[15] = R15CCINTMODE | (value & R15PCBITS); - FLUSHPIPE; -} - -/* This routine returns the value of register 15, mode independently. */ - -ARMword -ARMul_GetR15 (ARMul_State * state) -{ - if (state->Mode > SVC26MODE) - return (state->Reg[15]); - else - return (R15PC | ECC | ER15INT | EMODE); -} - -/* This routine sets the value of Register 15. */ - -void -ARMul_SetR15 (ARMul_State * state, ARMword value) -{ - if (ARMul_MODE32BIT) - state->Reg[15] = value & PCBITS; - else - { - state->Reg[15] = value; - ARMul_R15Altered (state); - } - FLUSHPIPE; -} - -/* This routine returns the value of the CPSR. */ - -ARMword -ARMul_GetCPSR (ARMul_State * state) -{ - return (CPSR | state->Cpsr); -} - -/* This routine sets the value of the CPSR. */ - -void -ARMul_SetCPSR (ARMul_State * state, ARMword value) -{ - state->Cpsr = value; - ARMul_CPSRAltered (state); -} - -/* This routine does all the nasty bits involved in a write to the CPSR, - including updating the register bank, given a MSR instruction. */ - -void -ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs) -{ - state->Cpsr = ARMul_GetCPSR (state); - - if (state->Mode != USER26MODE - && state->Mode != USER32MODE) - { - /* In user mode, only write flags. */ - if (BIT (16)) - SETPSR_C (state->Cpsr, rhs); - if (BIT (17)) - SETPSR_X (state->Cpsr, rhs); - if (BIT (18)) - SETPSR_S (state->Cpsr, rhs); - } - if (BIT (19)) - SETPSR_F (state->Cpsr, rhs); - ARMul_CPSRAltered (state); -} - -/* Get an SPSR from the specified mode. */ - -ARMword -ARMul_GetSPSR (ARMul_State * state, ARMword mode) -{ - ARMword bank = ModeToBank (mode & MODEBITS); - - if (! BANK_CAN_ACCESS_SPSR (bank)) - return ARMul_GetCPSR (state); - - return state->Spsr[bank]; -} - -/* This routine does a write to an SPSR. */ - -void -ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value) -{ - ARMword bank = ModeToBank (mode & MODEBITS); - - if (BANK_CAN_ACCESS_SPSR (bank)) - state->Spsr[bank] = value; -} - -/* This routine does a write to the current SPSR, given an MSR instruction. */ - -void -ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs) -{ - if (BANK_CAN_ACCESS_SPSR (state->Bank)) - { - if (BIT (16)) - SETPSR_C (state->Spsr[state->Bank], rhs); - if (BIT (17)) - SETPSR_X (state->Spsr[state->Bank], rhs); - if (BIT (18)) - SETPSR_S (state->Spsr[state->Bank], rhs); - if (BIT (19)) - SETPSR_F (state->Spsr[state->Bank], rhs); - } -} - -/* This routine updates the state of the emulator after the Cpsr has been - changed. Both the processor flags and register bank are updated. */ - -void -ARMul_CPSRAltered (ARMul_State * state) -{ - ARMword oldmode; - - if (state->prog32Sig == LOW) - state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS); - - oldmode = state->Mode; - - if (state->Mode != (state->Cpsr & MODEBITS)) - { - state->Mode = - ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS); - - state->NtransSig = (state->Mode & 3) ? HIGH : LOW; - } - state->Cpsr &= ~MODEBITS; - - ASSIGNINT (state->Cpsr & INTBITS); - state->Cpsr &= ~INTBITS; - ASSIGNN ((state->Cpsr & NBIT) != 0); - state->Cpsr &= ~NBIT; - ASSIGNZ ((state->Cpsr & ZBIT) != 0); - state->Cpsr &= ~ZBIT; - ASSIGNC ((state->Cpsr & CBIT) != 0); - state->Cpsr &= ~CBIT; - ASSIGNV ((state->Cpsr & VBIT) != 0); - state->Cpsr &= ~VBIT; - ASSIGNS ((state->Cpsr & SBIT) != 0); - state->Cpsr &= ~SBIT; -#ifdef MODET - ASSIGNT ((state->Cpsr & TBIT) != 0); - state->Cpsr &= ~TBIT; -#endif - - if (oldmode > SVC26MODE) - { - if (state->Mode <= SVC26MODE) - { - state->Emulate = CHANGEMODE; - state->Reg[15] = ECC | ER15INT | EMODE | R15PC; - } - } - else - { - if (state->Mode > SVC26MODE) - { - state->Emulate = CHANGEMODE; - state->Reg[15] = R15PC; - } - else - state->Reg[15] = ECC | ER15INT | EMODE | R15PC; - } -} - -/* This routine updates the state of the emulator after register 15 has - been changed. Both the processor flags and register bank are updated. - This routine should only be called from a 26 bit mode. */ - -void -ARMul_R15Altered (ARMul_State * state) -{ - if (state->Mode != R15MODE) - { - state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE); - state->NtransSig = (state->Mode & 3) ? HIGH : LOW; - } - - if (state->Mode > SVC26MODE) - state->Emulate = CHANGEMODE; - - ASSIGNR15INT (R15INT); - - ASSIGNN ((state->Reg[15] & NBIT) != 0); - ASSIGNZ ((state->Reg[15] & ZBIT) != 0); - ASSIGNC ((state->Reg[15] & CBIT) != 0); - ASSIGNV ((state->Reg[15] & VBIT) != 0); -} - -/* This routine controls the saving and restoring of registers across mode - changes. The regbank matrix is largely unused, only rows 13 and 14 are - used across all modes, 8 to 14 are used for FIQ, all others use the USER - column. It's easier this way. old and new parameter are modes numbers. - Notice the side effect of changing the Bank variable. */ - -ARMword -ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode) -{ - unsigned i; - ARMword oldbank; - ARMword newbank; - - oldbank = ModeToBank (oldmode); - newbank = state->Bank = ModeToBank (newmode); - - /* Do we really need to do it? */ - if (oldbank != newbank) - { - /* Save away the old registers. */ - switch (oldbank) - { - case USERBANK: - case IRQBANK: - case SVCBANK: - case ABORTBANK: - case UNDEFBANK: - if (newbank == FIQBANK) - for (i = 8; i < 13; i++) - state->RegBank[USERBANK][i] = state->Reg[i]; - state->RegBank[oldbank][13] = state->Reg[13]; - state->RegBank[oldbank][14] = state->Reg[14]; - break; - case FIQBANK: - for (i = 8; i < 15; i++) - state->RegBank[FIQBANK][i] = state->Reg[i]; - break; - case DUMMYBANK: - for (i = 8; i < 15; i++) - state->RegBank[DUMMYBANK][i] = 0; - break; - default: - abort (); - } - - /* Restore the new registers. */ - switch (newbank) - { - case USERBANK: - case IRQBANK: - case SVCBANK: - case ABORTBANK: - case UNDEFBANK: - if (oldbank == FIQBANK) - for (i = 8; i < 13; i++) - state->Reg[i] = state->RegBank[USERBANK][i]; - state->Reg[13] = state->RegBank[newbank][13]; - state->Reg[14] = state->RegBank[newbank][14]; - break; - case FIQBANK: - for (i = 8; i < 15; i++) - state->Reg[i] = state->RegBank[FIQBANK][i]; - break; - case DUMMYBANK: - for (i = 8; i < 15; i++) - state->Reg[i] = 0; - break; - default: - abort (); - } - } - - return newmode; -} - -/* Given a processor mode, this routine returns the - register bank that will be accessed in that mode. */ - -static ARMword -ModeToBank (ARMword mode) -{ - static ARMword bankofmode[] = - { - USERBANK, FIQBANK, IRQBANK, SVCBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, - USERBANK, FIQBANK, IRQBANK, SVCBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK, - DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK - }; - - if (mode >= ARRAY_SIZE (bankofmode)) - return DUMMYBANK; - - return bankofmode[mode]; -} - -/* Returns the register number of the nth register in a reg list. */ - -unsigned -ARMul_NthReg (ARMword instr, unsigned number) -{ - unsigned bit, up_to; - - for (bit = 0, up_to = 0; up_to <= number; bit ++) - if (BIT (bit)) - up_to ++; - - return (bit - 1); -} - -/* Assigns the N and Z flags depending on the value of result. */ - -void -ARMul_NegZero (ARMul_State * state, ARMword result) -{ - if (NEG (result)) - { - SETN; - CLEARZ; - } - else if (result == 0) - { - CLEARN; - SETZ; - } - else - { - CLEARN; - CLEARZ; - } -} - -/* Compute whether an addition of A and B, giving RESULT, overflowed. */ - -int -AddOverflow (ARMword a, ARMword b, ARMword result) -{ - return ((NEG (a) && NEG (b) && POS (result)) - || (POS (a) && POS (b) && NEG (result))); -} - -/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */ - -int -SubOverflow (ARMword a, ARMword b, ARMword result) -{ - return ((NEG (a) && POS (b) && POS (result)) - || (POS (a) && NEG (b) && NEG (result))); -} - -/* Assigns the C flag after an addition of a and b to give result. */ - -void -ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) -{ - ASSIGNC ((NEG (a) && NEG (b)) || - (NEG (a) && POS (result)) || (NEG (b) && POS (result))); -} - -/* Assigns the V flag after an addition of a and b to give result. */ - -void -ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) -{ - ASSIGNV (AddOverflow (a, b, result)); -} - -/* Assigns the C flag after an subtraction of a and b to give result. */ - -void -ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) -{ - ASSIGNC ((NEG (a) && POS (b)) || - (NEG (a) && POS (result)) || (POS (b) && POS (result))); -} - -/* Assigns the V flag after an subtraction of a and b to give result. */ - -void -ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) -{ - ASSIGNV (SubOverflow (a, b, result)); -} - -static void -handle_VFP_xfer (ARMul_State * state, ARMword instr) -{ - if (TOPBITS (28) == NV) - { - fprintf (stderr, "SIM: UNDEFINED VFP instruction\n"); - return; - } - - if (BITS (25, 27) != 0x6) - { - fprintf (stderr, "SIM: ISE: VFP handler called incorrectly\n"); - return; - } - - switch (BITS (20, 24)) - { - case 0x04: - case 0x05: - { - /* VMOV double precision to/from two ARM registers. */ - int vm = BITS (0, 3); - int rt1 = BITS (12, 15); - int rt2 = BITS (16, 19); - - /* FIXME: UNPREDICTABLE if rt1 == 15 or rt2 == 15. */ - if (BIT (20)) - { - /* Transfer to ARM. */ - /* FIXME: UPPREDICTABLE if rt1 == rt2. */ - state->Reg[rt1] = VFP_dword (vm) & 0xffffffff; - state->Reg[rt2] = VFP_dword (vm) >> 32; - } - else - { - VFP_dword (vm) = state->Reg[rt2]; - VFP_dword (vm) <<= 32; - VFP_dword (vm) |= (state->Reg[rt1] & 0xffffffff); - } - return; - } - - case 0x08: - case 0x0A: - case 0x0C: - case 0x0E: - { - /* VSTM with PUW=011 or PUW=010. */ - int n = BITS (16, 19); - int imm8 = BITS (0, 7); - - ARMword address = state->Reg[n]; - if (BIT (21)) - state->Reg[n] = address + (imm8 << 2); - - if (BIT (8)) - { - int src = (BIT (22) << 4) | BITS (12, 15); - imm8 >>= 1; - while (imm8--) - { - if (state->bigendSig) - { - ARMul_StoreWordN (state, address, VFP_dword (src) >> 32); - ARMul_StoreWordN (state, address + 4, VFP_dword (src)); - } - else - { - ARMul_StoreWordN (state, address, VFP_dword (src)); - ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32); - } - address += 8; - src += 1; - } - } - else - { - int src = (BITS (12, 15) << 1) | BIT (22); - while (imm8--) - { - ARMul_StoreWordN (state, address, VFP_uword (src)); - address += 4; - src += 1; - } - } - } - return; - - case 0x10: - case 0x14: - case 0x18: - case 0x1C: - { - /* VSTR */ - ARMword imm32 = BITS (0, 7) << 2; - int base = state->Reg[LHSReg]; - ARMword address; - int dest; - - if (LHSReg == 15) - base = (base + 3) & ~3; - - address = base + (BIT (23) ? imm32 : - imm32); - - if (CPNum == 10) - { - dest = (DESTReg << 1) + BIT (22); - - ARMul_StoreWordN (state, address, VFP_uword (dest)); - } - else - { - dest = (BIT (22) << 4) + DESTReg; - - if (state->bigendSig) - { - ARMul_StoreWordN (state, address, VFP_dword (dest) >> 32); - ARMul_StoreWordN (state, address + 4, VFP_dword (dest)); - } - else - { - ARMul_StoreWordN (state, address, VFP_dword (dest)); - ARMul_StoreWordN (state, address + 4, VFP_dword (dest) >> 32); - } - } - } - return; - - case 0x12: - case 0x16: - if (BITS (16, 19) == 13) - { - /* VPUSH */ - ARMword address = state->Reg[13] - (BITS (0, 7) << 2); - state->Reg[13] = address; - - if (BIT (8)) - { - int dreg = (BIT (22) << 4) | BITS (12, 15); - int num = BITS (0, 7) >> 1; - while (num--) - { - if (state->bigendSig) - { - ARMul_StoreWordN (state, address, VFP_dword (dreg) >> 32); - ARMul_StoreWordN (state, address + 4, VFP_dword (dreg)); - } - else - { - ARMul_StoreWordN (state, address, VFP_dword (dreg)); - ARMul_StoreWordN (state, address + 4, VFP_dword (dreg) >> 32); - } - address += 8; - dreg += 1; - } - } - else - { - int sreg = (BITS (12, 15) << 1) | BIT (22); - int num = BITS (0, 7); - while (num--) - { - ARMul_StoreWordN (state, address, VFP_uword (sreg)); - address += 4; - sreg += 1; - } - } - } - else if (BITS (9, 11) != 0x5) - break; - else - { - /* VSTM PUW=101 */ - int n = BITS (16, 19); - int imm8 = BITS (0, 7); - ARMword address = state->Reg[n] - (imm8 << 2); - state->Reg[n] = address; - - if (BIT (8)) - { - int src = (BIT (22) << 4) | BITS (12, 15); - - imm8 >>= 1; - while (imm8--) - { - if (state->bigendSig) - { - ARMul_StoreWordN (state, address, VFP_dword (src) >> 32); - ARMul_StoreWordN (state, address + 4, VFP_dword (src)); - } - else - { - ARMul_StoreWordN (state, address, VFP_dword (src)); - ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32); - } - address += 8; - src += 1; - } - } - else - { - int src = (BITS (12, 15) << 1) | BIT (22); - - while (imm8--) - { - ARMul_StoreWordN (state, address, VFP_uword (src)); - address += 4; - src += 1; - } - } - } - return; - - case 0x13: - case 0x17: - /* VLDM PUW=101 */ - case 0x09: - case 0x0D: - /* VLDM PUW=010 */ - { - int n = BITS (16, 19); - int imm8 = BITS (0, 7); - - ARMword address = state->Reg[n]; - if (BIT (23) == 0) - address -= imm8 << 2; - if (BIT (21)) - state->Reg[n] = BIT (23) ? address + (imm8 << 2) : address; - - if (BIT (8)) - { - int dest = (BIT (22) << 4) | BITS (12, 15); - imm8 >>= 1; - while (imm8--) - { - if (state->bigendSig) - { - VFP_dword (dest) = ARMul_LoadWordN (state, address); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); - } - else - { - VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address); - } - - if (trace) - fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest)); - - address += 8; - dest += 1; - } - } - else - { - int dest = (BITS (12, 15) << 1) | BIT (22); - - while (imm8--) - { - VFP_uword (dest) = ARMul_LoadWordN (state, address); - address += 4; - dest += 1; - } - } - } - return; - - case 0x0B: - case 0x0F: - if (BITS (16, 19) == 13) - { - /* VPOP */ - ARMword address = state->Reg[13]; - state->Reg[13] = address + (BITS (0, 7) << 2); - - if (BIT (8)) - { - int dest = (BIT (22) << 4) | BITS (12, 15); - int num = BITS (0, 7) >> 1; - - while (num--) - { - if (state->bigendSig) - { - VFP_dword (dest) = ARMul_LoadWordN (state, address); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); - } - else - { - VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address); - } - - if (trace) - fprintf (stderr, " VFP: VPOP: D%d = %g\n", dest, VFP_dval (dest)); - - address += 8; - dest += 1; - } - } - else - { - int sreg = (BITS (12, 15) << 1) | BIT (22); - int num = BITS (0, 7); - - while (num--) - { - VFP_uword (sreg) = ARMul_LoadWordN (state, address); - address += 4; - sreg += 1; - } - } - } - else if (BITS (9, 11) != 0x5) - break; - else - { - /* VLDM PUW=011 */ - int n = BITS (16, 19); - int imm8 = BITS (0, 7); - ARMword address = state->Reg[n]; - state->Reg[n] += imm8 << 2; - - if (BIT (8)) - { - int dest = (BIT (22) << 4) | BITS (12, 15); - - imm8 >>= 1; - while (imm8--) - { - if (state->bigendSig) - { - VFP_dword (dest) = ARMul_LoadWordN (state, address); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); - } - else - { - VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address); - } - - if (trace) - fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest)); - - address += 8; - dest += 1; - } - } - else - { - int dest = (BITS (12, 15) << 1) | BIT (22); - while (imm8--) - { - VFP_uword (dest) = ARMul_LoadWordN (state, address); - address += 4; - dest += 1; - } - } - } - return; - - case 0x11: - case 0x15: - case 0x19: - case 0x1D: - { - /* VLDR */ - ARMword imm32 = BITS (0, 7) << 2; - int base = state->Reg[LHSReg]; - ARMword address; - int dest; - - if (LHSReg == 15) - base = (base + 3) & ~3; - - address = base + (BIT (23) ? imm32 : - imm32); - - if (CPNum == 10) - { - dest = (DESTReg << 1) + BIT (22); - - VFP_uword (dest) = ARMul_LoadWordN (state, address); - } - else - { - dest = (BIT (22) << 4) + DESTReg; - - if (state->bigendSig) - { - VFP_dword (dest) = ARMul_LoadWordN (state, address); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); - } - else - { - VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); - VFP_dword (dest) <<= 32; - VFP_dword (dest) |= ARMul_LoadWordN (state, address); - } - - if (trace) - fprintf (stderr, " VFP: VLDR: D%d = %g\n", dest, VFP_dval (dest)); - } - } - return; - } - - fprintf (stderr, "SIM: VFP: Unimplemented: %0x\n", BITS (20, 24)); -} - -/* This function does the work of generating the addresses used in an - LDC instruction. The code here is always post-indexed, it's up to the - caller to get the input address correct and to handle base register - modification. It also handles the Busy-Waiting. */ - -void -ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address) -{ - unsigned cpab; - ARMword data; - - if (CPNum == 10 || CPNum == 11) - { - handle_VFP_xfer (state, instr); - return; - } - - UNDEF_LSCPCBaseWb; - - if (! CP_ACCESS_ALLOWED (state, CPNum)) - { - ARMul_UndefInstr (state, instr); - return; - } - - if (ADDREXCEPT (address)) - INTERNALABORT (address); - - cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0); - while (cpab == ARMul_BUSY) - { - ARMul_Icycles (state, 1, 0); - - if (IntPending (state)) - { - cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); - return; - } - else - cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0); - } - if (cpab == ARMul_CANT) - { - CPTAKEABORT; - return; - } - - cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0); - data = ARMul_LoadWordN (state, address); - BUSUSEDINCPCN; - - if (BIT (21)) - LSBase = state->Base; - cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); - - while (cpab == ARMul_INC) - { - address += 4; - data = ARMul_LoadWordN (state, address); - cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); - } - - if (state->abortSig || state->Aborted) - TAKEABORT; -} - -/* This function does the work of generating the addresses used in an - STC instruction. The code here is always post-indexed, it's up to the - caller to get the input address correct and to handle base register - modification. It also handles the Busy-Waiting. */ - -void -ARMul_STC (ARMul_State * state, ARMword instr, ARMword address) -{ - unsigned cpab; - ARMword data; - - if (CPNum == 10 || CPNum == 11) - { - handle_VFP_xfer (state, instr); - return; - } - - UNDEF_LSCPCBaseWb; - - if (! CP_ACCESS_ALLOWED (state, CPNum)) - { - ARMul_UndefInstr (state, instr); - return; - } - - if (ADDREXCEPT (address) || VECTORACCESS (address)) - INTERNALABORT (address); - - cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data); - while (cpab == ARMul_BUSY) - { - ARMul_Icycles (state, 1, 0); - if (IntPending (state)) - { - cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); - return; - } - else - cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data); - } - - if (cpab == ARMul_CANT) - { - CPTAKEABORT; - return; - } -#ifndef MODE32 - if (ADDREXCEPT (address) || VECTORACCESS (address)) - INTERNALABORT (address); -#endif - BUSUSEDINCPCN; - if (BIT (21)) - LSBase = state->Base; - cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); - ARMul_StoreWordN (state, address, data); - - while (cpab == ARMul_INC) - { - address += 4; - cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); - ARMul_StoreWordN (state, address, data); - } - - if (state->abortSig || state->Aborted) - TAKEABORT; -} - -/* This function does the Busy-Waiting for an MCR instruction. */ - -void -ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source) -{ - unsigned cpab; - - if (! CP_ACCESS_ALLOWED (state, CPNum)) - { - ARMul_UndefInstr (state, instr); - return; - } - - cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source); - - while (cpab == ARMul_BUSY) - { - ARMul_Icycles (state, 1, 0); - - if (IntPending (state)) - { - cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0); - return; - } - else - cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source); - } - - if (cpab == ARMul_CANT) - ARMul_Abort (state, ARMul_UndefinedInstrV); - else - { - BUSUSEDINCPCN; - ARMul_Ccycles (state, 1, 0); - } -} - -/* This function does the Busy-Waiting for an MRC instruction. */ - -ARMword -ARMul_MRC (ARMul_State * state, ARMword instr) -{ - unsigned cpab; - ARMword result = 0; - - if (! CP_ACCESS_ALLOWED (state, CPNum)) - { - ARMul_UndefInstr (state, instr); - return result; - } - - cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result); - while (cpab == ARMul_BUSY) - { - ARMul_Icycles (state, 1, 0); - if (IntPending (state)) - { - cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); - return (0); - } - else - cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result); - } - if (cpab == ARMul_CANT) - { - ARMul_Abort (state, ARMul_UndefinedInstrV); - /* Parent will destroy the flags otherwise. */ - result = ECC; - } - else - { - BUSUSEDINCPCN; - ARMul_Ccycles (state, 1, 0); - ARMul_Icycles (state, 1, 0); - } - - return result; -} - -static void -handle_VFP_op (ARMul_State * state, ARMword instr) -{ - int dest; - int srcN; - int srcM; - - if (BITS (9, 11) != 0x5 || BIT (4) != 0) - { - fprintf (stderr, "SIM: VFP: Unimplemented: Float op: %08x\n", BITS (0,31)); - return; - } - - if (BIT (8)) - { - dest = BITS(12,15) + (BIT (22) << 4); - srcN = LHSReg + (BIT (7) << 4); - srcM = BITS (0,3) + (BIT (5) << 4); - } - else - { - dest = (BITS(12,15) << 1) + BIT (22); - srcN = (LHSReg << 1) + BIT (7); - srcM = (BITS (0,3) << 1) + BIT (5); - } - - switch (BITS (20, 27)) - { - case 0xE0: - case 0xE4: - /* VMLA VMLS */ - if (BIT (8)) - { - ARMdval val = VFP_dval (srcN) * VFP_dval (srcM); - - if (BIT (6)) - { - if (trace) - fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n", - VFP_dval (dest) - val, - VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); - VFP_dval (dest) -= val; - } - else - { - if (trace) - fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n", - VFP_dval (dest) + val, - VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); - VFP_dval (dest) += val; - } - } - else - { - ARMfval val = VFP_fval (srcN) * VFP_fval (srcM); - - if (BIT (6)) - { - if (trace) - fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n", - VFP_fval (dest) - val, - VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM)); - VFP_fval (dest) -= val; - } - else - { - if (trace) - fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n", - VFP_fval (dest) + val, - VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM)); - VFP_fval (dest) += val; - } - } - return; - - case 0xE1: - case 0xE5: - if (BIT (8)) - { - ARMdval product = VFP_dval (srcN) * VFP_dval (srcM); - - if (BIT (6)) - { - /* VNMLA */ - if (trace) - fprintf (stderr, " VFP: VNMLA: %g = -(%g + (%g * %g))\n", - -(VFP_dval (dest) + product), - VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); - VFP_dval (dest) = -(product + VFP_dval (dest)); - } - else - { - /* VNMLS */ - if (trace) - fprintf (stderr, " VFP: VNMLS: %g = -(%g + (%g * %g))\n", - -(VFP_dval (dest) + product), - VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); - VFP_dval (dest) = product - VFP_dval (dest); - } - } - else - { - ARMfval product = VFP_fval (srcN) * VFP_fval (srcM); - - if (BIT (6)) - /* VNMLA */ - VFP_fval (dest) = -(product + VFP_fval (dest)); - else - /* VNMLS */ - VFP_fval (dest) = product - VFP_fval (dest); - } - return; - - case 0xE2: - case 0xE6: - if (BIT (8)) - { - ARMdval product = VFP_dval (srcN) * VFP_dval (srcM); - - if (BIT (6)) - { - if (trace) - fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", - - product, VFP_dval (srcN), VFP_dval (srcM)); - /* VNMUL */ - VFP_dval (dest) = - product; - } - else - { - if (trace) - fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", - product, VFP_dval (srcN), VFP_dval (srcM)); - /* VMUL */ - VFP_dval (dest) = product; - } - } - else - { - ARMfval product = VFP_fval (srcN) * VFP_fval (srcM); - - if (BIT (6)) - { - if (trace) - fprintf (stderr, " VFP: VNMUL: %g = %g * %g\n", - - product, VFP_fval (srcN), VFP_fval (srcM)); - - VFP_fval (dest) = - product; - } - else - { - if (trace) - fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", - product, VFP_fval (srcN), VFP_fval (srcM)); - - VFP_fval (dest) = product; - } - } - return; - - case 0xE3: - case 0xE7: - if (BIT (6) == 0) - { - /* VADD */ - if (BIT(8)) - { - if (trace) - fprintf (stderr, " VFP: VADD %g = %g + %g\n", - VFP_dval (srcN) + VFP_dval (srcM), - VFP_dval (srcN), - VFP_dval (srcM)); - VFP_dval (dest) = VFP_dval (srcN) + VFP_dval (srcM); - } - else - VFP_fval (dest) = VFP_fval (srcN) + VFP_fval (srcM); - - } - else - { - /* VSUB */ - if (BIT(8)) - { - if (trace) - fprintf (stderr, " VFP: VSUB %g = %g - %g\n", - VFP_dval (srcN) - VFP_dval (srcM), - VFP_dval (srcN), - VFP_dval (srcM)); - VFP_dval (dest) = VFP_dval (srcN) - VFP_dval (srcM); - } - else - VFP_fval (dest) = VFP_fval (srcN) - VFP_fval (srcM); - } - return; - - case 0xE8: - case 0xEC: - if (BIT (6) == 1) - break; - - /* VDIV */ - if (BIT (8)) - { - ARMdval res = VFP_dval (srcN) / VFP_dval (srcM); - if (trace) - fprintf (stderr, " VFP: VDIV (64bit): %g = %g / %g\n", - res, VFP_dval (srcN), VFP_dval (srcM)); - VFP_dval (dest) = res; - } - else - { - if (trace) - fprintf (stderr, " VFP: VDIV: %g = %g / %g\n", - VFP_fval (srcN) / VFP_fval (srcM), - VFP_fval (srcN), VFP_fval (srcM)); - - VFP_fval (dest) = VFP_fval (srcN) / VFP_fval (srcM); - } - return; - - case 0xEB: - case 0xEF: - if (BIT (6) != 1) - break; - - switch (BITS (16, 19)) - { - case 0x0: - if (BIT (7) == 0) - { - if (BIT (8)) - { - /* VMOV.F64 <Dd>, <Dm>. */ - VFP_dval (dest) = VFP_dval (srcM); - if (trace) - fprintf (stderr, " VFP: VMOV d%d, d%d: %g\n", dest, srcM, VFP_dval (srcM)); - } - else - { - /* VMOV.F32 <Sd>, <Sm>. */ - VFP_fval (dest) = VFP_fval (srcM); - if (trace) - fprintf (stderr, " VFP: VMOV s%d, s%d: %g\n", dest, srcM, VFP_fval (srcM)); - } - } - else - { - /* VABS */ - if (BIT (8)) - { - ARMdval src = VFP_dval (srcM); - - VFP_dval (dest) = fabs (src); - if (trace) - fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_dval (dest)); - } - else - { - ARMfval src = VFP_fval (srcM); - - VFP_fval (dest) = fabsf (src); - if (trace) - fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_fval (dest)); - } - } - return; - - case 0x1: - if (BIT (7) == 0) - { - /* VNEG */ - if (BIT (8)) - VFP_dval (dest) = - VFP_dval (srcM); - else - VFP_fval (dest) = - VFP_fval (srcM); - } - else - { - /* VSQRT */ - if (BIT (8)) - { - if (trace) - fprintf (stderr, " VFP: %g = root(%g)\n", - sqrt (VFP_dval (srcM)), VFP_dval (srcM)); - - VFP_dval (dest) = sqrt (VFP_dval (srcM)); - } - else - { - if (trace) - fprintf (stderr, " VFP: %g = root(%g)\n", - sqrtf (VFP_fval (srcM)), VFP_fval (srcM)); - - VFP_fval (dest) = sqrtf (VFP_fval (srcM)); - } - } - return; - - case 0x4: - case 0x5: - /* VCMP, VCMPE */ - if (BIT(8)) - { - ARMdval res = VFP_dval (dest); - - if (BIT (16) == 0) - { - ARMdval src = VFP_dval (srcM); - - if (isinf (res) && isinf (src)) - { - if (res > 0.0 && src > 0.0) - res = 0.0; - else if (res < 0.0 && src < 0.0) - res = 0.0; - /* else leave res alone. */ - } - else - res -= src; - } - - /* FIXME: Add handling of signalling NaNs and the E bit. */ - - state->FPSCR &= 0x0FFFFFFF; - if (res < 0.0) - state->FPSCR |= NBIT; - else - state->FPSCR |= CBIT; - if (res == 0.0) - state->FPSCR |= ZBIT; - if (isnan (res)) - state->FPSCR |= VBIT; - - if (trace) - fprintf (stderr, " VFP: VCMP (64bit) %g vs %g res %g, flags: %c%c%c%c\n", - VFP_dval (dest), BIT (16) ? 0.0 : VFP_dval (srcM), res, - state->FPSCR & NBIT ? 'N' : '-', - state->FPSCR & ZBIT ? 'Z' : '-', - state->FPSCR & CBIT ? 'C' : '-', - state->FPSCR & VBIT ? 'V' : '-'); - } - else - { - ARMfval res = VFP_fval (dest); - - if (BIT (16) == 0) - { - ARMfval src = VFP_fval (srcM); - - if (isinf (res) && isinf (src)) - { - if (res > 0.0 && src > 0.0) - res = 0.0; - else if (res < 0.0 && src < 0.0) - res = 0.0; - /* else leave res alone. */ - } - else - res -= src; - } - - /* FIXME: Add handling of signalling NaNs and the E bit. */ - - state->FPSCR &= 0x0FFFFFFF; - if (res < 0.0) - state->FPSCR |= NBIT; - else - state->FPSCR |= CBIT; - if (res == 0.0) - state->FPSCR |= ZBIT; - if (isnan (res)) - state->FPSCR |= VBIT; - - if (trace) - fprintf (stderr, " VFP: VCMP (32bit) %g vs %g res %g, flags: %c%c%c%c\n", - VFP_fval (dest), BIT (16) ? 0.0 : VFP_fval (srcM), res, - state->FPSCR & NBIT ? 'N' : '-', - state->FPSCR & ZBIT ? 'Z' : '-', - state->FPSCR & CBIT ? 'C' : '-', - state->FPSCR & VBIT ? 'V' : '-'); - } - return; - - case 0x7: - if (BIT (8)) - { - dest = (DESTReg << 1) + BIT (22); - VFP_fval (dest) = VFP_dval (srcM); - } - else - { - dest = DESTReg + (BIT (22) << 4); - VFP_dval (dest) = VFP_fval (srcM); - } - return; - - case 0x8: - case 0xC: - case 0xD: - /* VCVT integer <-> FP */ - if (BIT (18)) - { - /* To integer. */ - if (BIT (8)) - { - dest = (BITS(12,15) << 1) + BIT (22); - if (BIT (16)) - VFP_sword (dest) = VFP_dval (srcM); - else - VFP_uword (dest) = VFP_dval (srcM); - } - else - { - if (BIT (16)) - VFP_sword (dest) = VFP_fval (srcM); - else - VFP_uword (dest) = VFP_fval (srcM); - } - } - else - { - /* From integer. */ - if (BIT (8)) - { - srcM = (BITS (0,3) << 1) + BIT (5); - if (BIT (7)) - VFP_dval (dest) = VFP_sword (srcM); - else - VFP_dval (dest) = VFP_uword (srcM); - } - else - { - if (BIT (7)) - VFP_fval (dest) = VFP_sword (srcM); - else - VFP_fval (dest) = VFP_uword (srcM); - } - } - return; - } - - fprintf (stderr, "SIM: VFP: Unimplemented: Float op3: %03x\n", BITS (16,27)); - return; - } - - fprintf (stderr, "SIM: VFP: Unimplemented: Float op2: %02x\n", BITS (20, 27)); - return; -} - -/* This function does the Busy-Waiting for an CDP instruction. */ - -void -ARMul_CDP (ARMul_State * state, ARMword instr) -{ - unsigned cpab; - - if (CPNum == 10 || CPNum == 11) - { - handle_VFP_op (state, instr); - return; - } - - if (! CP_ACCESS_ALLOWED (state, CPNum)) - { - ARMul_UndefInstr (state, instr); - return; - } - - cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr); - while (cpab == ARMul_BUSY) - { - ARMul_Icycles (state, 1, 0); - if (IntPending (state)) - { - cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr); - return; - } - else - cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr); - } - if (cpab == ARMul_CANT) - ARMul_Abort (state, ARMul_UndefinedInstrV); - else - BUSUSEDN; -} - -/* This function handles Undefined instructions, as CP isntruction. */ - -void -ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED) -{ - ARMul_Abort (state, ARMul_UndefinedInstrV); -} - -/* Return TRUE if an interrupt is pending, FALSE otherwise. */ - -unsigned -IntPending (ARMul_State * state) -{ - if (state->Exception) - { - /* Any exceptions. */ - if (state->NresetSig == LOW) - { - ARMul_Abort (state, ARMul_ResetV); - return TRUE; - } - else if (!state->NfiqSig && !FFLAG) - { - ARMul_Abort (state, ARMul_FIQV); - return TRUE; - } - else if (!state->NirqSig && !IFLAG) - { - ARMul_Abort (state, ARMul_IRQV); - return TRUE; - } - } - - return FALSE; -} - -/* Align a word access to a non word boundary. */ - -ARMword -ARMul_Align (ARMul_State *state ATTRIBUTE_UNUSED, ARMword address, ARMword data) -{ - /* This code assumes the address is really unaligned, - as a shift by 32 is undefined in C. */ - - address = (address & 3) << 3; /* Get the word address. */ - return ((data >> address) | (data << (32 - address))); /* rot right */ -} - -/* This routine is used to call another routine after a certain number of - cycles have been executed. The first parameter is the number of cycles - delay before the function is called, the second argument is a pointer - to the function. A delay of zero doesn't work, just call the function. */ - -void -ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay, - unsigned (*what) (ARMul_State *)) -{ - unsigned long when; - struct EventNode *event; - - if (state->EventSet++ == 0) - state->Now = ARMul_Time (state); - when = (state->Now + delay) % EVENTLISTSIZE; - event = (struct EventNode *) malloc (sizeof (struct EventNode)); - event->func = what; - event->next = *(state->EventPtr + when); - *(state->EventPtr + when) = event; -} - -/* This routine is called at the beginning of - every cycle, to envoke scheduled events. */ - -void -ARMul_EnvokeEvent (ARMul_State * state) -{ - static unsigned long then; - - then = state->Now; - state->Now = ARMul_Time (state) % EVENTLISTSIZE; - if (then < state->Now) - /* Schedule events. */ - EnvokeList (state, then, state->Now); - else if (then > state->Now) - { - /* Need to wrap around the list. */ - EnvokeList (state, then, EVENTLISTSIZE - 1L); - EnvokeList (state, 0L, state->Now); - } -} - -/* Envokes all the entries in a range. */ - -static void -EnvokeList (ARMul_State * state, unsigned long from, unsigned long to) -{ - for (; from <= to; from++) - { - struct EventNode *anevent; - - anevent = *(state->EventPtr + from); - while (anevent) - { - (anevent->func) (state); - state->EventSet--; - anevent = anevent->next; - } - *(state->EventPtr + from) = NULL; - } -} - -/* This routine is returns the number of clock ticks since the last reset. */ - -unsigned long -ARMul_Time (ARMul_State * state) -{ - return (state->NumScycles + state->NumNcycles + - state->NumIcycles + state->NumCcycles + state->NumFcycles); -} |