aboutsummaryrefslogtreecommitdiff
path: root/gdb/aarch64-linux-tdep.c
blob: a1296a8f0c7e4deaad93e3c26516d0640adce01c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
/* Target-dependent code for GNU/Linux AArch64.

   Copyright (C) 2009-2024 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#include "exceptions.h"
#include "extract-store-integer.h"
#include "gdbarch.h"
#include "glibc-tdep.h"
#include "linux-tdep.h"
#include "aarch64-tdep.h"
#include "aarch64-linux-tdep.h"
#include "osabi.h"
#include "solib-svr4.h"
#include "symtab.h"
#include "tramp-frame.h"
#include "trad-frame.h"
#include "target.h"
#include "target/target.h"
#include "expop.h"
#include "auxv.h"

#include "regcache.h"
#include "regset.h"

#include "stap-probe.h"
#include "parser-defs.h"
#include "user-regs.h"
#include "xml-syscall.h"
#include <ctype.h>

#include "record-full.h"
#include "linux-record.h"

#include "arch/aarch64-mte-linux.h"
#include "arch/aarch64-scalable-linux.h"

#include "arch-utils.h"
#include "value.h"

#include "gdbsupport/selftest.h"

#include "elf/common.h"
#include "elf/aarch64.h"
#include "arch/aarch64-insn.h"

/* For std::pow */
#include <cmath>

/* Signal frame handling.

      +------------+  ^
      | saved lr   |  |
   +->| saved fp   |--+
   |  |            |
   |  |            |
   |  +------------+
   |  | saved lr   |
   +--| saved fp   |
   ^  |            |
   |  |            |
   |  +------------+
   ^  |            |
   |  | signal     |
   |  |            |        SIGTRAMP_FRAME (struct rt_sigframe)
   |  | saved regs |
   +--| saved sp   |--> interrupted_sp
   |  | saved pc   |--> interrupted_pc
   |  |            |
   |  +------------+
   |  | saved lr   |--> default_restorer (movz x8, NR_sys_rt_sigreturn; svc 0)
   +--| saved fp   |<- FP
      |            |         NORMAL_FRAME
      |            |<- SP
      +------------+

  On signal delivery, the kernel will create a signal handler stack
  frame and setup the return address in LR to point at restorer stub.
  The signal stack frame is defined by:

  struct rt_sigframe
  {
    siginfo_t info;
    struct ucontext uc;
  };

  The ucontext has the following form:
  struct ucontext
  {
    unsigned long uc_flags;
    struct ucontext *uc_link;
    stack_t uc_stack;
    sigset_t uc_sigmask;
    struct sigcontext uc_mcontext;
  };

  struct sigcontext
  {
    unsigned long fault_address;
    unsigned long regs[31];
    unsigned long sp;		/ * 31 * /
    unsigned long pc;		/ * 32 * /
    unsigned long pstate;	/ * 33 * /
    __u8 __reserved[4096]
  };

  The reserved space in sigcontext contains additional structures, each starting
  with a aarch64_ctx, which specifies a unique identifier and the total size of
  the structure.  The final structure in reserved will start will a null
  aarch64_ctx.  The penultimate entry in reserved may be a extra_context which
  then points to a further block of reserved space.

  struct aarch64_ctx {
	u32 magic;
	u32 size;
  };

  The restorer stub will always have the form:

  d28015a8        movz    x8, #0xad
  d4000001        svc     #0x0

  This is a system call sys_rt_sigreturn.

  We detect signal frames by snooping the return code for the restorer
  instruction sequence.

  The handler then needs to recover the saved register set from
  ucontext.uc_mcontext.  */

/* These magic numbers need to reflect the layout of the kernel
   defined struct rt_sigframe and ucontext.  */
#define AARCH64_SIGCONTEXT_REG_SIZE             8
#define AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET     128
#define AARCH64_UCONTEXT_SIGCONTEXT_OFFSET      176
#define AARCH64_SIGCONTEXT_XO_OFFSET            8
#define AARCH64_SIGCONTEXT_RESERVED_OFFSET      288

#define AARCH64_SIGCONTEXT_RESERVED_SIZE	4096

/* Unique identifiers that may be used for aarch64_ctx.magic.  */
#define AARCH64_EXTRA_MAGIC			0x45585401
#define AARCH64_FPSIMD_MAGIC			0x46508001
#define AARCH64_SVE_MAGIC			0x53564501
#define AARCH64_ZA_MAGIC			0x54366345
#define AARCH64_TPIDR2_MAGIC			0x54504902
#define AARCH64_ZT_MAGIC			0x5a544e01

/* Defines for the extra_context that follows an AARCH64_EXTRA_MAGIC.  */
#define AARCH64_EXTRA_DATAP_OFFSET		8

/* Defines for the fpsimd that follows an AARCH64_FPSIMD_MAGIC.  */
#define AARCH64_FPSIMD_FPSR_OFFSET		8
#define AARCH64_FPSIMD_FPCR_OFFSET		12
#define AARCH64_FPSIMD_V0_OFFSET		16
#define AARCH64_FPSIMD_VREG_SIZE		16

/* Defines for the sve structure that follows an AARCH64_SVE_MAGIC.  */
#define AARCH64_SVE_CONTEXT_VL_OFFSET		8
#define AARCH64_SVE_CONTEXT_FLAGS_OFFSET	10
#define AARCH64_SVE_CONTEXT_REGS_OFFSET		16
#define AARCH64_SVE_CONTEXT_P_REGS_OFFSET(vq) (32 * vq * 16)
#define AARCH64_SVE_CONTEXT_FFR_OFFSET(vq) \
  (AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq) + (16 * vq * 2))
#define AARCH64_SVE_CONTEXT_SIZE(vq) \
  (AARCH64_SVE_CONTEXT_FFR_OFFSET (vq) + (vq * 2))
/* Flag indicating the SVE Context describes streaming mode.  */
#define SVE_SIG_FLAG_SM				0x1

/* SME constants.  */
#define AARCH64_SME_CONTEXT_SVL_OFFSET		8
#define AARCH64_SME_CONTEXT_REGS_OFFSET		16
#define AARCH64_SME_CONTEXT_ZA_SIZE(svq) \
  ((sve_vl_from_vq (svq) * sve_vl_from_vq (svq)))
#define AARCH64_SME_CONTEXT_SIZE(svq) \
  (AARCH64_SME_CONTEXT_REGS_OFFSET + AARCH64_SME_CONTEXT_ZA_SIZE (svq))

/* TPIDR2 register value offset in the TPIDR2 signal frame context.  */
#define AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET	8

/* SME2 (ZT) constants.  */
/* Offset of the field containing the number of registers in the SME2 signal
   context state.  */
#define AARCH64_SME2_CONTEXT_NREGS_OFFSET	8
/* Offset of the beginning of the register data for the first ZT register in
   the signal context state.  */
#define AARCH64_SME2_CONTEXT_REGS_OFFSET	16

/* Holds information about the signal frame.  */
struct aarch64_linux_sigframe
{
  /* The stack pointer value.  */
  CORE_ADDR sp = 0;
  /* The sigcontext address.  */
  CORE_ADDR sigcontext_address = 0;
  /* The start/end signal frame section addresses.  */
  CORE_ADDR section = 0;
  CORE_ADDR section_end = 0;

  /* Starting address of the section containing the general purpose
     registers.  */
  CORE_ADDR gpr_section = 0;
  /* Starting address of the section containing the FPSIMD registers.  */
  CORE_ADDR fpsimd_section = 0;
  /* Starting address of the section containing the SVE registers.  */
  CORE_ADDR sve_section = 0;
  /* Starting address of the section containing the ZA register.  */
  CORE_ADDR za_section = 0;
  /* Starting address of the section containing the TPIDR2 register.  */
  CORE_ADDR tpidr2_section = 0;
  /* Starting address of the section containing the ZT registers.  */
  CORE_ADDR zt_section = 0;
  /* Starting address of the section containing extra information.  */
  CORE_ADDR extra_section = 0;

  /* The vector length (SVE or SSVE).  */
  ULONGEST vl = 0;
  /* The streaming vector length (SSVE/ZA).  */
  ULONGEST svl = 0;
  /* Number of ZT registers in this context.  */
  unsigned int zt_register_count = 0;

  /* True if we are in streaming mode, false otherwise.  */
  bool streaming_mode = false;
  /* True if we have a ZA payload, false otherwise.  */
  bool za_payload = false;
  /* True if we have a ZT entry in the signal context, false otherwise.  */
  bool zt_available = false;
};

/* Read an aarch64_ctx, returning the magic value, and setting *SIZE to the
   size, or return 0 on error.  */

static uint32_t
read_aarch64_ctx (CORE_ADDR ctx_addr, enum bfd_endian byte_order,
		  uint32_t *size)
{
  uint32_t magic = 0;
  gdb_byte buf[4];

  if (target_read_memory (ctx_addr, buf, 4) != 0)
    return 0;
  magic = extract_unsigned_integer (buf, 4, byte_order);

  if (target_read_memory (ctx_addr + 4, buf, 4) != 0)
    return 0;
  *size = extract_unsigned_integer (buf, 4, byte_order);

  return magic;
}

/* Given CACHE, use the trad_frame* functions to restore the FPSIMD
   registers from a signal frame.

   FPSIMD_CONTEXT is the address of the signal frame context containing FPSIMD
   data.  */

static void
aarch64_linux_restore_vregs (struct gdbarch *gdbarch,
			     struct trad_frame_cache *cache,
			     CORE_ADDR fpsimd_context)
{
  /* WARNING: SIMD state is laid out in memory in target-endian format.

     So we have a couple cases to consider:

     1 - If the target is big endian, then SIMD state is big endian,
     requiring a byteswap.

     2 - If the target is little endian, then SIMD state is little endian, so
     no byteswap is needed. */

  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int num_regs = gdbarch_num_regs (gdbarch);
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  for (int i = 0; i < 32; i++)
    {
      CORE_ADDR offset = (fpsimd_context + AARCH64_FPSIMD_V0_OFFSET
			  + (i * AARCH64_FPSIMD_VREG_SIZE));

      gdb_byte buf[V_REGISTER_SIZE];

      /* Read the contents of the V register.  */
      if (target_read_memory (offset, buf, V_REGISTER_SIZE))
	error (_("Failed to read fpsimd register from signal context."));

      if (byte_order == BFD_ENDIAN_BIG)
	{
	  size_t size = V_REGISTER_SIZE/2;

	  /* Read the two halves of the V register in reverse byte order.  */
	  CORE_ADDR u64 = extract_unsigned_integer (buf, size,
						    byte_order);
	  CORE_ADDR l64 = extract_unsigned_integer (buf + size, size,
						    byte_order);

	  /* Copy the reversed bytes to the buffer.  */
	  store_unsigned_integer (buf, size, BFD_ENDIAN_LITTLE, l64);
	  store_unsigned_integer (buf + size , size, BFD_ENDIAN_LITTLE, u64);

	  /* Now we can store the correct bytes for the V register.  */
	  trad_frame_set_reg_value_bytes (cache, AARCH64_V0_REGNUM + i,
					  {buf, V_REGISTER_SIZE});
	  trad_frame_set_reg_value_bytes (cache,
					  num_regs + AARCH64_Q0_REGNUM
					  + i, {buf, Q_REGISTER_SIZE});
	  trad_frame_set_reg_value_bytes (cache,
					  num_regs + AARCH64_D0_REGNUM
					  + i, {buf, D_REGISTER_SIZE});
	  trad_frame_set_reg_value_bytes (cache,
					  num_regs + AARCH64_S0_REGNUM
					  + i, {buf, S_REGISTER_SIZE});
	  trad_frame_set_reg_value_bytes (cache,
					  num_regs + AARCH64_H0_REGNUM
					  + i, {buf, H_REGISTER_SIZE});
	  trad_frame_set_reg_value_bytes (cache,
					  num_regs + AARCH64_B0_REGNUM
					  + i, {buf, B_REGISTER_SIZE});

	  if (tdep->has_sve ())
	    trad_frame_set_reg_value_bytes (cache,
					    num_regs + AARCH64_SVE_V0_REGNUM
					    + i, {buf, V_REGISTER_SIZE});
	}
      else
	{
	  /* Little endian, just point at the address containing the register
	     value.  */
	  trad_frame_set_reg_addr (cache, AARCH64_V0_REGNUM + i, offset);
	  trad_frame_set_reg_addr (cache, num_regs + AARCH64_Q0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (cache, num_regs + AARCH64_D0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (cache, num_regs + AARCH64_S0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (cache, num_regs + AARCH64_H0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (cache, num_regs + AARCH64_B0_REGNUM + i,
				   offset);

	  if (tdep->has_sve ())
	    trad_frame_set_reg_addr (cache, num_regs + AARCH64_SVE_V0_REGNUM
				     + i, offset);
	}

      if (tdep->has_sve ())
	{
	  /* If SVE is supported for this target, zero out the Z
	     registers then copy the first 16 bytes of each of the V
	     registers to the associated Z register.  Otherwise the Z
	     registers will contain uninitialized data.  */
	  std::vector<gdb_byte> z_buffer (tdep->vq * 16);

	  /* We have already handled the endianness swap above, so we don't need
	     to worry about it here.  */
	  memcpy (z_buffer.data (), buf, V_REGISTER_SIZE);
	  trad_frame_set_reg_value_bytes (cache,
					  AARCH64_SVE_Z0_REGNUM + i,
					  z_buffer);
	}
    }
}

/* Given a signal frame THIS_FRAME, read the signal frame information into
   SIGNAL_FRAME.  */

static void
aarch64_linux_read_signal_frame_info (const frame_info_ptr &this_frame,
				      aarch64_linux_sigframe &signal_frame)
{
  signal_frame.sp = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM);
  signal_frame.sigcontext_address
    = signal_frame.sp + AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET
      + AARCH64_UCONTEXT_SIGCONTEXT_OFFSET;
  signal_frame.section
    = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_RESERVED_OFFSET;
  signal_frame.section_end
    = signal_frame.section + AARCH64_SIGCONTEXT_RESERVED_SIZE;

  signal_frame.gpr_section
    = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_XO_OFFSET;

  /* Search for all the other sections, stopping at null.  */
  CORE_ADDR section = signal_frame.section;
  CORE_ADDR section_end = signal_frame.section_end;
  uint32_t size, magic;
  bool extra_found = false;
  enum bfd_endian byte_order
    = gdbarch_byte_order (get_frame_arch (this_frame));

  while ((magic = read_aarch64_ctx (section, byte_order, &size)) != 0
	 && size != 0)
    {
      switch (magic)
	{
	case AARCH64_FPSIMD_MAGIC:
	  {
	    signal_frame.fpsimd_section = section;
	    section += size;
	    break;
	  }

	case AARCH64_SVE_MAGIC:
	  {
	    /* Check if the section is followed by a full SVE dump, and set
	       sve_regs if it is.  */
	    gdb_byte buf[4];

	    /* Extract the vector length.  */
	    if (target_read_memory (section + AARCH64_SVE_CONTEXT_VL_OFFSET,
				    buf, 2) != 0)
	      {
		warning (_("Failed to read the vector length from the SVE "
			   "signal frame context."));
		section += size;
		break;
	      }

	    signal_frame.vl = extract_unsigned_integer (buf, 2, byte_order);

	    /* Extract the flags to check if we are in streaming mode.  */
	    if (target_read_memory (section
				    + AARCH64_SVE_CONTEXT_FLAGS_OFFSET,
				    buf, 2) != 0)
	      {
		warning (_("Failed to read the flags from the SVE signal frame"
			   " context."));
		section += size;
		break;
	      }

	    uint16_t flags = extract_unsigned_integer (buf, 2, byte_order);

	    /* Is this SSVE data? If so, we are in streaming mode.  */
	    signal_frame.streaming_mode
	      = (flags & SVE_SIG_FLAG_SM) ? true : false;

	    ULONGEST vq = sve_vq_from_vl (signal_frame.vl);
	    if (size >= AARCH64_SVE_CONTEXT_SIZE (vq))
	      {
		signal_frame.sve_section
		  = section + AARCH64_SVE_CONTEXT_REGS_OFFSET;
	      }
	    section += size;
	    break;
	  }

	case AARCH64_ZA_MAGIC:
	  {
	    /* Check if the section is followed by a full ZA dump, and set
	       za_state if it is.  */
	    gdb_byte buf[2];

	    /* Extract the streaming vector length.  */
	    if (target_read_memory (section + AARCH64_SME_CONTEXT_SVL_OFFSET,
				    buf, 2) != 0)
	      {
		warning (_("Failed to read the streaming vector length from "
			   "ZA signal frame context."));
		section += size;
		break;
	      }

	    signal_frame.svl = extract_unsigned_integer (buf, 2, byte_order);
	    ULONGEST svq = sve_vq_from_vl (signal_frame.svl);

	    if (size >= AARCH64_SME_CONTEXT_SIZE (svq))
	      {
		signal_frame.za_section
		  = section + AARCH64_SME_CONTEXT_REGS_OFFSET;
		signal_frame.za_payload = true;
	      }
	    section += size;
	    break;
	  }

	case AARCH64_TPIDR2_MAGIC:
	  {
	    /* This is context containing the tpidr2 register.  */
	    signal_frame.tpidr2_section = section;
	    section += size;
	    break;
	  }
	case AARCH64_ZT_MAGIC:
	  {
	    gdb_byte buf[2];

	    /* Extract the number of ZT registers available in this
	       context.  */
	    if (target_read_memory (section + AARCH64_SME2_CONTEXT_NREGS_OFFSET,
				    buf, 2) != 0)
	      {
		warning (_("Failed to read the number of ZT registers from the "
			   "ZT signal frame context."));
		section += size;
		break;
	      }

	    signal_frame.zt_register_count
	      = extract_unsigned_integer (buf, 2, byte_order);

	    /* This is a context containing the ZT registers.  This should only
	       exist if we also have the ZA context.  The presence of the ZT
	       context without the ZA context is invalid.  */
	    signal_frame.zt_section = section;
	    signal_frame.zt_available = true;

	    section += size;
	    break;
	  }
	case AARCH64_EXTRA_MAGIC:
	  {
	    /* Extra is always the last valid section in reserved and points to
	       an additional block of memory filled with more sections. Reset
	       the address to the extra section and continue looking for more
	       structures.  */
	    gdb_byte buf[8];

	    if (target_read_memory (section + AARCH64_EXTRA_DATAP_OFFSET,
				    buf, 8) != 0)
	      {
		warning (_("Failed to read the extra section address from the"
			   " signal frame context."));
		section += size;
		break;
	      }

	    section = extract_unsigned_integer (buf, 8, byte_order);
	    signal_frame.extra_section = section;
	    extra_found = true;
	    break;
	  }

	default:
	  section += size;
	  break;
	}

      /* Prevent searching past the end of the reserved section.  The extra
	 section does not have a hard coded limit - we have to rely on it ending
	 with nulls.  */
      if (!extra_found && section > section_end)
	break;
    }

    /* Sanity check that if the ZT entry exists, the ZA entry must also
       exist.  */
    if (signal_frame.zt_available && !signal_frame.za_payload)
      error (_("While reading signal context information, found a ZT context "
	       "without a ZA context, which is invalid."));
}

/* Implement the "init" method of struct tramp_frame.  */

static void
aarch64_linux_sigframe_init (const struct tramp_frame *self,
			     const frame_info_ptr &this_frame,
			     struct trad_frame_cache *this_cache,
			     CORE_ADDR func)
{
  /* Read the signal context information.  */
  struct aarch64_linux_sigframe signal_frame;
  aarch64_linux_read_signal_frame_info (this_frame, signal_frame);

  /* Now we have all the data required to restore the registers from the
     signal frame.  */

  /* Restore the general purpose registers.  */
  CORE_ADDR offset = signal_frame.gpr_section;
  for (int i = 0; i < 31; i++)
    {
      trad_frame_set_reg_addr (this_cache, AARCH64_X0_REGNUM + i, offset);
      offset += AARCH64_SIGCONTEXT_REG_SIZE;
    }
  trad_frame_set_reg_addr (this_cache, AARCH64_SP_REGNUM, offset);
  offset += AARCH64_SIGCONTEXT_REG_SIZE;
  trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM, offset);

  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  /* Restore the SVE / FPSIMD registers.  */
  if (tdep->has_sve () && signal_frame.sve_section != 0)
    {
      ULONGEST vq = sve_vq_from_vl (signal_frame.vl);
      CORE_ADDR sve_regs = signal_frame.sve_section;

      /* Restore VG.  */
      trad_frame_set_reg_value (this_cache, AARCH64_SVE_VG_REGNUM,
				sve_vg_from_vl (signal_frame.vl));

      int num_regs = gdbarch_num_regs (gdbarch);
      for (int i = 0; i < 32; i++)
	{
	  offset = sve_regs + (i * vq * 16);
	  trad_frame_set_reg_addr (this_cache, AARCH64_SVE_Z0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache,
				   num_regs + AARCH64_SVE_V0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_Q0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_D0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_S0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_H0_REGNUM + i,
				   offset);
	  trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_B0_REGNUM + i,
				   offset);
	}

      offset = sve_regs + AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq);
      for (int i = 0; i < 16; i++)
	trad_frame_set_reg_addr (this_cache, AARCH64_SVE_P0_REGNUM + i,
				 offset + (i * vq * 2));

      offset = sve_regs + AARCH64_SVE_CONTEXT_FFR_OFFSET (vq);
      trad_frame_set_reg_addr (this_cache, AARCH64_SVE_FFR_REGNUM, offset);
    }

  /* Restore the FPSIMD registers.  */
  if (signal_frame.fpsimd_section != 0)
    {
      CORE_ADDR fpsimd = signal_frame.fpsimd_section;

      trad_frame_set_reg_addr (this_cache, AARCH64_FPSR_REGNUM,
			       fpsimd + AARCH64_FPSIMD_FPSR_OFFSET);
      trad_frame_set_reg_addr (this_cache, AARCH64_FPCR_REGNUM,
			       fpsimd + AARCH64_FPSIMD_FPCR_OFFSET);

      /* If there was no SVE section then set up the V registers.  */
      if (!tdep->has_sve () || signal_frame.sve_section == 0)
	aarch64_linux_restore_vregs (gdbarch, this_cache, fpsimd);
    }

  /* Restore the SME registers.  */
  if (tdep->has_sme ())
    {
      if (signal_frame.za_section != 0)
	{
	  /* Restore the ZA state.  */
	  trad_frame_set_reg_addr (this_cache, tdep->sme_za_regnum,
				   signal_frame.za_section);
	}

      /* Restore/Reconstruct SVCR.  */
      ULONGEST svcr = 0;
      svcr |= signal_frame.za_payload ? SVCR_ZA_BIT : 0;
      svcr |= signal_frame.streaming_mode ? SVCR_SM_BIT : 0;
      trad_frame_set_reg_value (this_cache, tdep->sme_svcr_regnum, svcr);

      /* Restore SVG.  */
      trad_frame_set_reg_value (this_cache, tdep->sme_svg_regnum,
				sve_vg_from_vl (signal_frame.svl));

      /* Handle SME2 (ZT).  */
      if (tdep->has_sme2 ()
	  && signal_frame.za_section != 0
	  && signal_frame.zt_register_count > 0)
	{
	  /* Is ZA state available?  */
	  gdb_assert (svcr & SVCR_ZA_BIT);

	  /* Restore the ZT state.  For now we assume that we only have
	     a single ZT register.  If/When more ZT registers appear, we
	     should update the code to handle that case accordingly.  */
	  trad_frame_set_reg_addr (this_cache, tdep->sme2_zt0_regnum,
				   signal_frame.zt_section
				   + AARCH64_SME2_CONTEXT_REGS_OFFSET);
	}
    }

  /* Restore the tpidr2 register, if the target supports it and if there is
     an entry for it.  */
  if (signal_frame.tpidr2_section != 0 && tdep->has_tls ()
      && tdep->tls_register_count >= 2)
    {
      /* Restore tpidr2.  */
      trad_frame_set_reg_addr (this_cache, tdep->tls_regnum_base + 1,
			       signal_frame.tpidr2_section
			       + AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET);
    }

  trad_frame_set_id (this_cache, frame_id_build (signal_frame.sp, func));
}

/* Implements the "prev_arch" method of struct tramp_frame.  */

static struct gdbarch *
aarch64_linux_sigframe_prev_arch (const frame_info_ptr &this_frame,
				  void **frame_cache)
{
  struct trad_frame_cache *cache
    = (struct trad_frame_cache *) *frame_cache;

  gdb_assert (cache != nullptr);

  struct aarch64_linux_sigframe signal_frame;
  aarch64_linux_read_signal_frame_info (this_frame, signal_frame);

  /* The SVE vector length and the SME vector length may change from frame to
     frame.  Make sure we report the correct architecture to the previous
     frame.

     We can reuse the next frame's architecture here, as it should be mostly
     the same, except for potential different vg and svg values.  */
  const struct target_desc *tdesc
    = gdbarch_target_desc (get_frame_arch (this_frame));
  aarch64_features features = aarch64_features_from_target_desc (tdesc);
  features.vq = sve_vq_from_vl (signal_frame.vl);
  features.svq = (uint8_t) sve_vq_from_vl (signal_frame.svl);

  struct gdbarch_info info;
  info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64);
  info.target_desc = aarch64_read_description (features);
  return gdbarch_find_by_info (info);
}

static const struct tramp_frame aarch64_linux_rt_sigframe =
{
  SIGTRAMP_FRAME,
  4,
  {
    /* movz x8, 0x8b (S=1,o=10,h=0,i=0x8b,r=8)
       Soo1 0010 1hhi iiii iiii iiii iiir rrrr  */
    {0xd2801168, ULONGEST_MAX},

    /* svc  0x0      (o=0, l=1)
       1101 0100 oooi iiii iiii iiii iii0 00ll  */
    {0xd4000001, ULONGEST_MAX},
    {TRAMP_SENTINEL_INSN, ULONGEST_MAX}
  },
  aarch64_linux_sigframe_init,
  nullptr, /* validate */
  aarch64_linux_sigframe_prev_arch, /* prev_arch */
};

/* Register maps.  */

static const struct regcache_map_entry aarch64_linux_gregmap[] =
  {
    { 31, AARCH64_X0_REGNUM, 8 }, /* x0 ... x30 */
    { 1, AARCH64_SP_REGNUM, 8 },
    { 1, AARCH64_PC_REGNUM, 8 },
    { 1, AARCH64_CPSR_REGNUM, 8 },
    { 0 }
  };

static const struct regcache_map_entry aarch64_linux_fpregmap[] =
  {
    { 32, AARCH64_V0_REGNUM, 16 }, /* v0 ... v31 */
    { 1, AARCH64_FPSR_REGNUM, 4 },
    { 1, AARCH64_FPCR_REGNUM, 4 },
    { 0 }
  };

/* Register set definitions.  */

const struct regset aarch64_linux_gregset =
  {
    aarch64_linux_gregmap,
    regcache_supply_regset, regcache_collect_regset
  };

const struct regset aarch64_linux_fpregset =
  {
    aarch64_linux_fpregmap,
    regcache_supply_regset, regcache_collect_regset
  };

/* The fields in an SVE header at the start of a SVE regset.  */

#define SVE_HEADER_SIZE_LENGTH		4
#define SVE_HEADER_MAX_SIZE_LENGTH	4
#define SVE_HEADER_VL_LENGTH		2
#define SVE_HEADER_MAX_VL_LENGTH	2
#define SVE_HEADER_FLAGS_LENGTH		2
#define SVE_HEADER_RESERVED_LENGTH	2

#define SVE_HEADER_SIZE_OFFSET		0
#define SVE_HEADER_MAX_SIZE_OFFSET	\
  (SVE_HEADER_SIZE_OFFSET + SVE_HEADER_SIZE_LENGTH)
#define SVE_HEADER_VL_OFFSET		\
  (SVE_HEADER_MAX_SIZE_OFFSET + SVE_HEADER_MAX_SIZE_LENGTH)
#define SVE_HEADER_MAX_VL_OFFSET	\
  (SVE_HEADER_VL_OFFSET + SVE_HEADER_VL_LENGTH)
#define SVE_HEADER_FLAGS_OFFSET		\
  (SVE_HEADER_MAX_VL_OFFSET + SVE_HEADER_MAX_VL_LENGTH)
#define SVE_HEADER_RESERVED_OFFSET	\
  (SVE_HEADER_FLAGS_OFFSET + SVE_HEADER_FLAGS_LENGTH)
#define SVE_HEADER_SIZE			\
  (SVE_HEADER_RESERVED_OFFSET + SVE_HEADER_RESERVED_LENGTH)

#define SVE_HEADER_FLAG_SVE		1

/* Get the vector quotient (VQ) or streaming vector quotient (SVQ) value
   from the section named SECTION_NAME.

   Return non-zero if successful and 0 otherwise.  */

static uint64_t
aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd,
			    const char *section_name)
{
  gdb_assert (section_name != nullptr);

  asection *section = bfd_get_section_by_name (abfd, section_name);

  if (section == nullptr)
    {
      /* No SVE state.  */
      return 0;
    }

  size_t size = bfd_section_size (section);

  /* Check extended state size.  */
  if (size < SVE_HEADER_SIZE)
    {
      warning (_("'%s' core file section is too small. "
		 "Expected %s bytes, got %s bytes"), section_name,
		 pulongest (SVE_HEADER_SIZE), pulongest (size));
      return 0;
    }

  gdb_byte header[SVE_HEADER_SIZE];

  if (!bfd_get_section_contents (abfd, section, header, 0, SVE_HEADER_SIZE))
    {
      warning (_("Couldn't read sve header from "
		 "'%s' core file section."), section_name);
      return 0;
    }

  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  uint64_t vq
    = sve_vq_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
						SVE_HEADER_VL_LENGTH,
						byte_order));

  if (vq > AARCH64_MAX_SVE_VQ || vq == 0)
    {
      warning (_("SVE/SSVE vector length in core file is invalid."
		 " (max vq=%d) (detected vq=%s)"), AARCH64_MAX_SVE_VQ,
	       pulongest (vq));
      return 0;
    }

  return vq;
}

/* Get the vector quotient (VQ) value from CORE_BFD's sections.

   Return non-zero if successful and 0 otherwise.  */

static uint64_t
aarch64_linux_core_read_vq_from_sections (struct gdbarch *gdbarch,
					  bfd *core_bfd)
{
  /* First check if we have a SSVE section.  If so, check if it is active.  */
  asection *section = bfd_get_section_by_name (core_bfd, ".reg-aarch-ssve");

  if (section != nullptr)
    {
      /* We've found a SSVE section, so now fetch its data.  */
      gdb_byte header[SVE_HEADER_SIZE];

      if (bfd_get_section_contents (core_bfd, section, header, 0,
				    SVE_HEADER_SIZE))
	{
	  /* Check if the SSVE section has SVE contents.  */
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
	  uint16_t flags
	    = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
					SVE_HEADER_FLAGS_LENGTH, byte_order);

	  if (flags & SVE_HEADER_FLAG_SVE)
	    {
	      /* The SSVE state is active, so return the vector length from the
		 the SSVE section.  */
	      return aarch64_linux_core_read_vq (gdbarch, core_bfd,
						 ".reg-aarch-ssve");
	    }
	}
    }

  /* No valid SSVE section.  Return the vq from the SVE section (if any).  */
  return aarch64_linux_core_read_vq (gdbarch, core_bfd, ".reg-aarch-sve");
}

/* Supply register REGNUM from BUF to REGCACHE, using the register map
   in REGSET.  If REGNUM is -1, do this for all registers in REGSET.
   If BUF is nullptr, set the registers to "unavailable" status.  */

static void
supply_sve_regset (const struct regset *regset,
		   struct regcache *regcache,
		   int regnum, const void *buf, size_t size)
{
  gdb_byte *header = (gdb_byte *) buf;
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  if (buf == nullptr)
    return regcache->supply_regset (regset, regnum, nullptr, size);
  gdb_assert (size > SVE_HEADER_SIZE);

  /* BUF contains an SVE header followed by a register dump of either the
     passed in SVE regset or a NEON fpregset.  */

  /* Extract required fields from the header.  */
  ULONGEST vl = extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
					  SVE_HEADER_VL_LENGTH, byte_order);
  uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
					     SVE_HEADER_FLAGS_LENGTH,
					     byte_order);

  if (regnum == -1 || regnum == AARCH64_SVE_VG_REGNUM)
    {
      gdb_byte vg_target[8];
      store_integer ((gdb_byte *)&vg_target, sizeof (uint64_t), byte_order,
		     sve_vg_from_vl (vl));
      regcache->raw_supply (AARCH64_SVE_VG_REGNUM, &vg_target);
    }

  if (flags & SVE_HEADER_FLAG_SVE)
    {
      /* Register dump is a SVE structure.  */
      regcache->supply_regset (regset, regnum,
			       (gdb_byte *) buf + SVE_HEADER_SIZE,
			       size - SVE_HEADER_SIZE);
    }
  else
    {
      /* Register dump is a fpsimd structure.  First clear the SVE
	 registers.  */
      for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
	regcache->raw_supply_zeroed (AARCH64_SVE_Z0_REGNUM + i);
      for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
	regcache->raw_supply_zeroed (AARCH64_SVE_P0_REGNUM + i);
      regcache->raw_supply_zeroed (AARCH64_SVE_FFR_REGNUM);

      /* Then supply the fpsimd registers.  */
      regcache->supply_regset (&aarch64_linux_fpregset, regnum,
			       (gdb_byte *) buf + SVE_HEADER_SIZE,
			       size - SVE_HEADER_SIZE);
    }
}

/* Collect an inactive SVE register set state.  This is equivalent to a
   fpsimd layout.

   Collect the data from REGCACHE to BUF, using the register
   map in REGSET.  */

static void
collect_inactive_sve_regset (const struct regcache *regcache,
			     void *buf, size_t size, int vg_regnum)
{
  gdb_byte *header = (gdb_byte *) buf;
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  gdb_assert (buf != nullptr);
  gdb_assert (size >= SVE_CORE_DUMMY_SIZE);

  /* Zero out everything first.  */
  memset ((gdb_byte *) buf, 0, SVE_CORE_DUMMY_SIZE);

  /* BUF starts with a SVE header prior to the register dump.  */

  /* Dump the default size of an empty SVE payload.  */
  uint32_t real_size = SVE_CORE_DUMMY_SIZE;
  store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
			  SVE_HEADER_SIZE_LENGTH, byte_order, real_size);

  /* Dump a dummy max size.  */
  uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE;
  store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
			  SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);

  /* Dump the vector length.  */
  ULONGEST vg = 0;
  regcache->raw_collect (vg_regnum, &vg);
  uint16_t vl = sve_vl_from_vg (vg);
  store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
			  byte_order, vl);

  /* Dump the standard maximum vector length.  */
  uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
  store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
			  SVE_HEADER_MAX_VL_LENGTH, byte_order,
			  max_vl);

  /* The rest of the fields are zero.  */
  uint16_t flags = SVE_CORE_DUMMY_FLAGS;
  store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
			  SVE_HEADER_FLAGS_LENGTH, byte_order,
			  flags);
  uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
  store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
			  SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);

  /* We are done with the header part of it.  Now dump the register state
     in the FPSIMD format.  */

  /* Dump the first 128 bits of each of the Z registers.  */
  header += AARCH64_SVE_CONTEXT_REGS_OFFSET;
  for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
    regcache->raw_collect_part (AARCH64_SVE_Z0_REGNUM + i, 0, V_REGISTER_SIZE,
				header + V_REGISTER_SIZE * i);

  /* Dump FPSR and FPCR.  */
  header += 32 * V_REGISTER_SIZE;
  regcache->raw_collect (AARCH64_FPSR_REGNUM, header);
  regcache->raw_collect (AARCH64_FPCR_REGNUM, header + 4);

  /* Dump two reserved empty fields of 4 bytes.  */
  header += 8;
  memset (header, 0, 8);

  /* We should have a FPSIMD-formatted register dump now.  */
}

/* Collect register REGNUM from REGCACHE to BUF, using the register
   map in REGSET.  If REGNUM is -1, do this for all registers in
   REGSET.  */

static void
collect_sve_regset (const struct regset *regset,
		    const struct regcache *regcache,
		    int regnum, void *buf, size_t size)
{
  gdb_byte *header = (gdb_byte *) buf;
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
  uint64_t vq = tdep->vq;

  gdb_assert (buf != NULL);
  gdb_assert (size > SVE_HEADER_SIZE);

  /* BUF starts with a SVE header prior to the register dump.  */

  store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
			  SVE_HEADER_SIZE_LENGTH, byte_order, size);
  uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE;
  store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
			  SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);
  store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
			  byte_order, sve_vl_from_vq (vq));
  uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
  store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
			  SVE_HEADER_MAX_VL_LENGTH, byte_order,
			  max_vl);
  uint16_t flags = SVE_HEADER_FLAG_SVE;
  store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
			  SVE_HEADER_FLAGS_LENGTH, byte_order,
			  flags);
  uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
  store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
			  SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);

  /* The SVE register dump follows.  */
  regcache->collect_regset (regset, regnum, (gdb_byte *) buf + SVE_HEADER_SIZE,
			    size - SVE_HEADER_SIZE);
}

/* Supply register REGNUM from BUF to REGCACHE, using the register map
   in REGSET.  If REGNUM is -1, do this for all registers in REGSET.
   If BUF is NULL, set the registers to "unavailable" status.  */

static void
aarch64_linux_supply_sve_regset (const struct regset *regset,
				 struct regcache *regcache,
				 int regnum, const void *buf, size_t size)
{
  struct gdbarch *gdbarch = regcache->arch ();
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  if (tdep->has_sme ())
    {
      ULONGEST svcr = 0;
      regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);

      /* Is streaming mode enabled?  */
      if (svcr & SVCR_SM_BIT)
	/* If so, don't load SVE data from the SVE section.  The data to be
	   used is in the SSVE section.  */
	return;
    }
  /* If streaming mode is not enabled, load the SVE regcache data from the SVE
     section.  */
  supply_sve_regset (regset, regcache, regnum, buf, size);
}

/* Collect register REGNUM from REGCACHE to BUF, using the register
   map in REGSET.  If REGNUM is -1, do this for all registers in
   REGSET.  */

static void
aarch64_linux_collect_sve_regset (const struct regset *regset,
				  const struct regcache *regcache,
				  int regnum, void *buf, size_t size)
{
  struct gdbarch *gdbarch = regcache->arch ();
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
  bool streaming_mode = false;

  if (tdep->has_sme ())
    {
      ULONGEST svcr = 0;
      regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);

      /* Is streaming mode enabled?  */
      if (svcr & SVCR_SM_BIT)
	{
	  /* If so, don't dump SVE regcache data to the SVE section.  The SVE
	     data should be dumped to the SSVE section.  Dump an empty SVE
	     block instead.  */
	  streaming_mode = true;
	}
    }

  /* If streaming mode is not enabled or there is no SME support, dump the
     SVE regcache data to the SVE section.  */

  /* Check if we have an active SVE state (non-zero Z/P/FFR registers).
     If so, then we need to dump registers in the SVE format.

     Otherwise we should dump the registers in the FPSIMD format.  */
  if (sve_state_is_empty (regcache) || streaming_mode)
    collect_inactive_sve_regset (regcache, buf, size, AARCH64_SVE_VG_REGNUM);
  else
    collect_sve_regset (regset, regcache, regnum, buf, size);
}

/* Supply register REGNUM from BUF to REGCACHE, using the register map
   in REGSET.  If REGNUM is -1, do this for all registers in REGSET.
   If BUF is NULL, set the registers to "unavailable" status.  */

static void
aarch64_linux_supply_ssve_regset (const struct regset *regset,
				  struct regcache *regcache,
				  int regnum, const void *buf, size_t size)
{
  gdb_byte *header = (gdb_byte *) buf;
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
					     SVE_HEADER_FLAGS_LENGTH,
					     byte_order);

  /* Since SVCR's bits are inferred from the data we have in the header of the
     SSVE section, we need to initialize it to zero first, so that it doesn't
     carry garbage data.  */
  ULONGEST svcr = 0;
  regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);

  /* Is streaming mode enabled?  */
  if (flags & SVE_HEADER_FLAG_SVE)
    {
      /* Streaming mode is active, so flip the SM bit.  */
      svcr = SVCR_SM_BIT;
      regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);

      /* Fetch the SVE data from the SSVE section.  */
      supply_sve_regset (regset, regcache, regnum, buf, size);
    }
}

/* Collect register REGNUM from REGCACHE to BUF, using the register
   map in REGSET.  If REGNUM is -1, do this for all registers in
   REGSET.  */

static void
aarch64_linux_collect_ssve_regset (const struct regset *regset,
				   const struct regcache *regcache,
				   int regnum, void *buf, size_t size)
{
  struct gdbarch *gdbarch = regcache->arch ();
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
  ULONGEST svcr = 0;
  regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);

  /* Is streaming mode enabled?  */
  if (svcr & SVCR_SM_BIT)
    {
      /* If so, dump SVE regcache data to the SSVE section.  */
      collect_sve_regset (regset, regcache, regnum, buf, size);
    }
  else
    {
      /* Otherwise dump an empty SVE block to the SSVE section with the
	 streaming vector length.  */
      collect_inactive_sve_regset (regcache, buf, size, tdep->sme_svg_regnum);
    }
}

/* Supply register REGNUM from BUF to REGCACHE, using the register map
   in REGSET.  If REGNUM is -1, do this for all registers in REGSET.
   If BUF is NULL, set the registers to "unavailable" status.  */

static void
aarch64_linux_supply_za_regset (const struct regset *regset,
				struct regcache *regcache,
				int regnum, const void *buf, size_t size)
{
  gdb_byte *header = (gdb_byte *) buf;
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Handle an empty buffer.  */
  if (buf == nullptr)
    return regcache->supply_regset (regset, regnum, nullptr, size);

  if (size < SVE_HEADER_SIZE)
    error (_("ZA state header size (%s) invalid.  Should be at least %s."),
	   pulongest (size), pulongest (SVE_HEADER_SIZE));

  /* The ZA register note in a core file can have a couple of states:

     1 - Just the header without the payload.  This means that there is no
	 ZA data, and we should populate only SVCR and SVG registers on GDB's
	 side.  The ZA data should be marked as unavailable.

     2 - The header with an additional data payload.  This means there is
	 actual ZA data, and we should populate ZA, SVCR and SVG.  */

  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  /* Populate SVG.  */
  ULONGEST svg
    = sve_vg_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
						SVE_HEADER_VL_LENGTH,
						byte_order));
  regcache->raw_supply (tdep->sme_svg_regnum, &svg);

  size_t data_size
    = extract_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
				SVE_HEADER_SIZE_LENGTH, byte_order)
      - SVE_HEADER_SIZE;

  /* Populate SVCR.  */
  bool has_za_payload = (data_size > 0);
  ULONGEST svcr;
  regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);

  /* If we have a ZA payload, enable bit 2 of SVCR, otherwise clear it.  This
     register gets updated by the SVE/SSVE-handling functions as well, as they
     report the SM bit 1.  */
  if (has_za_payload)
    svcr |= SVCR_ZA_BIT;
  else
    svcr &= ~SVCR_ZA_BIT;

  /* Update SVCR in the register buffer.  */
  regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);

  /* Populate the register cache with ZA register contents, if we have any.  */
  buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr;

  size_t za_bytes = std::pow (sve_vl_from_vg (svg), 2);

  /* Update ZA in the register buffer.  */
  if (has_za_payload)
    {
      /* Check that the payload size is sane.  */
      if (size < SVE_HEADER_SIZE + za_bytes)
	{
	  error (_("ZA header + payload size (%s) invalid.  Should be at "
		   "least %s."),
		 pulongest (size), pulongest (SVE_HEADER_SIZE + za_bytes));
	}

      regcache->raw_supply (tdep->sme_za_regnum, buf);
    }
  else
    {
      gdb_byte za_zeroed[za_bytes];
      memset (za_zeroed, 0, za_bytes);
      regcache->raw_supply (tdep->sme_za_regnum, za_zeroed);
    }
}

/* Collect register REGNUM from REGCACHE to BUF, using the register
   map in REGSET.  If REGNUM is -1, do this for all registers in
   REGSET.  */

static void
aarch64_linux_collect_za_regset (const struct regset *regset,
				 const struct regcache *regcache,
				 int regnum, void *buf, size_t size)
{
  gdb_assert (buf != nullptr);

  /* Sanity check the dump size.  */
  gdb_assert (size >= SVE_HEADER_SIZE);

  /* The ZA register note in a core file can have a couple of states:

     1 - Just the header without the payload.  This means that there is no
	 ZA data, and we should dump just the header.

     2 - The header with an additional data payload.  This means there is
	 actual ZA data, and we should dump both the header and the ZA data
	 payload.  */

  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Determine if we have ZA state from the SVCR register ZA bit.  */
  ULONGEST svcr;
  regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);

  /* Check the ZA payload.  */
  bool has_za_payload = (svcr & SVCR_ZA_BIT) != 0;
  size = has_za_payload ? size : SVE_HEADER_SIZE;

  /* Write the size and max_size fields.  */
  gdb_byte *header = (gdb_byte *) buf;
  enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ());
  store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
			  SVE_HEADER_SIZE_LENGTH, byte_order, size);

  uint32_t max_size
    = SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2);
  store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
			  SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);

  /* Output the other fields of the ZA header (vl, max_vl, flags and
     reserved).  */
  uint64_t svq = tdep->sme_svq;
  store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
			  byte_order, sve_vl_from_vq (svq));

  uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
  store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
			  SVE_HEADER_MAX_VL_LENGTH, byte_order,
			  max_vl);

  uint16_t flags = SVE_CORE_DUMMY_FLAGS;
  store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
			  SVE_HEADER_FLAGS_LENGTH, byte_order, flags);

  uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
  store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
			  SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);

  buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr;

  /* Dump the register cache contents for the ZA register to the buffer.  */
  regcache->collect_regset (regset, regnum, (gdb_byte *) buf,
			    size - SVE_HEADER_SIZE);
}

/* Supply register REGNUM from BUF to REGCACHE, using the register map
   in REGSET.  If REGNUM is -1, do this for all registers in REGSET.
   If BUF is NULL, set the registers to "unavailable" status.  */

static void
aarch64_linux_supply_zt_regset (const struct regset *regset,
				struct regcache *regcache,
				int regnum, const void *buf, size_t size)
{
  /* Read the ZT register note from a core file into the register buffer.  */

  /* Make sure the buffer contains at least the expected amount of data we are
     supposed to get.  */
  gdb_assert (size >= AARCH64_SME2_ZT0_SIZE);

  /* Handle an empty buffer.  */
  if (buf == nullptr)
    return regcache->supply_regset (regset, regnum, nullptr, size);

  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Supply the ZT0 register contents.  */
  regcache->raw_supply (tdep->sme2_zt0_regnum, buf);
}

/* Collect register REGNUM from REGCACHE to BUF, using the register
   map in REGSET.  If REGNUM is -1, do this for all registers in
   REGSET.  */

static void
aarch64_linux_collect_zt_regset (const struct regset *regset,
				 const struct regcache *regcache,
				 int regnum, void *buf, size_t size)
{
  /* Read the ZT register contents from the register buffer into the core
     file section.  */

  /* Make sure the buffer can hold the data we need to return.  */
  gdb_assert (size >= AARCH64_SME2_ZT0_SIZE);
  gdb_assert (buf != nullptr);

  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Dump the register cache contents for the ZT register to the buffer.  */
  regcache->collect_regset (regset, tdep->sme2_zt0_regnum, buf,
			    AARCH64_SME2_ZT0_SIZE);
}

/* Implement the "iterate_over_regset_sections" gdbarch method.  */

static void
aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
					    iterate_over_regset_sections_cb *cb,
					    void *cb_data,
					    const struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  cb (".reg", AARCH64_LINUX_SIZEOF_GREGSET, AARCH64_LINUX_SIZEOF_GREGSET,
      &aarch64_linux_gregset, NULL, cb_data);

  if (tdep->has_sve ())
    {
      /* Create this on the fly in order to handle vector register sizes.  */
      const struct regcache_map_entry sve_regmap[] =
	{
	  { 32, AARCH64_SVE_Z0_REGNUM, (int) (tdep->vq * 16) },
	  { 16, AARCH64_SVE_P0_REGNUM, (int) (tdep->vq * 16 / 8) },
	  { 1, AARCH64_SVE_FFR_REGNUM, (int) (tdep->vq * 16 / 8) },
	  { 1, AARCH64_FPSR_REGNUM, 4 },
	  { 1, AARCH64_FPCR_REGNUM, 4 },
	  { 0 }
	};

      const struct regset aarch64_linux_ssve_regset =
	{
	  sve_regmap,
	  aarch64_linux_supply_ssve_regset, aarch64_linux_collect_ssve_regset,
	  REGSET_VARIABLE_SIZE
	};

      /* If SME is supported in the core file, process the SSVE section first,
	 and the SVE section last.  This is because we need information from
	 the SSVE set to determine if streaming mode is active.  If streaming
	 mode is active, we need to extract the data from the SSVE section.

	 Otherwise, if streaming mode is not active, we fetch the data from the
	 SVE section.  */
      if (tdep->has_sme ())
	{
	  cb (".reg-aarch-ssve",
	      SVE_HEADER_SIZE
	      + regcache_map_entry_size (aarch64_linux_fpregmap),
	      SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap),
	      &aarch64_linux_ssve_regset, "SSVE registers", cb_data);
	}

      /* Handle the SVE register set.  */
      const struct regset aarch64_linux_sve_regset =
	{
	  sve_regmap,
	  aarch64_linux_supply_sve_regset, aarch64_linux_collect_sve_regset,
	  REGSET_VARIABLE_SIZE
	};

      cb (".reg-aarch-sve",
	  SVE_HEADER_SIZE + regcache_map_entry_size (aarch64_linux_fpregmap),
	  SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap),
	  &aarch64_linux_sve_regset, "SVE registers", cb_data);
    }
  else
    cb (".reg2", AARCH64_LINUX_SIZEOF_FPREGSET, AARCH64_LINUX_SIZEOF_FPREGSET,
	&aarch64_linux_fpregset, NULL, cb_data);

  if (tdep->has_sme ())
    {
      /* Setup the register set information for a ZA register set core
	 dump.  */

      /* Create this on the fly in order to handle the ZA register size.  */
      const struct regcache_map_entry za_regmap[] =
	{
	  { 1, tdep->sme_za_regnum,
	    (int) std::pow (sve_vl_from_vq (tdep->sme_svq), 2) },
	  { 0 }
	};

      const struct regset aarch64_linux_za_regset =
	{
	  za_regmap,
	  aarch64_linux_supply_za_regset, aarch64_linux_collect_za_regset,
	  REGSET_VARIABLE_SIZE
	};

      cb (".reg-aarch-za",
	  SVE_HEADER_SIZE,
	  SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2),
	  &aarch64_linux_za_regset, "ZA register", cb_data);

      /* Handle SME2 (ZT) as well, which is only available if SME is
	 available.  */
      if (tdep->has_sme2 ())
	{
	  const struct regcache_map_entry zt_regmap[] =
	    {
	      { 1, tdep->sme2_zt0_regnum, AARCH64_SME2_ZT0_SIZE },
	      { 0 }
	    };

	  /* We set the register set size to REGSET_VARIABLE_SIZE here because
	     in the future there might be more ZT registers.  */
	  const struct regset aarch64_linux_zt_regset =
	    {
	      zt_regmap,
	      aarch64_linux_supply_zt_regset, aarch64_linux_collect_zt_regset,
	      REGSET_VARIABLE_SIZE
	    };

	  cb (".reg-aarch-zt",
	      AARCH64_SME2_ZT0_SIZE,
	      AARCH64_SME2_ZT0_SIZE,
	      &aarch64_linux_zt_regset, "ZT registers", cb_data);
	}
    }

  if (tdep->has_pauth ())
    {
      /* Create this on the fly in order to handle the variable location.  */
      const struct regcache_map_entry pauth_regmap[] =
	{
	  { 2, AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base), 8},
	  { 0 }
	};

      const struct regset aarch64_linux_pauth_regset =
	{
	  pauth_regmap, regcache_supply_regset, regcache_collect_regset
	};

      cb (".reg-aarch-pauth", AARCH64_LINUX_SIZEOF_PAUTH,
	  AARCH64_LINUX_SIZEOF_PAUTH, &aarch64_linux_pauth_regset,
	  "pauth registers", cb_data);
    }

  /* Handle MTE registers.  */
  if (tdep->has_mte ())
    {
      /* Create this on the fly in order to handle the variable location.  */
      const struct regcache_map_entry mte_regmap[] =
	{
	  { 1, tdep->mte_reg_base, 8},
	  { 0 }
	};

      const struct regset aarch64_linux_mte_regset =
	{
	  mte_regmap, regcache_supply_regset, regcache_collect_regset
	};

      cb (".reg-aarch-mte", AARCH64_LINUX_SIZEOF_MTE_REGSET,
	  AARCH64_LINUX_SIZEOF_MTE_REGSET, &aarch64_linux_mte_regset,
	  "MTE registers", cb_data);
    }

  /* Handle the TLS registers.  */
  if (tdep->has_tls ())
    {
      gdb_assert (tdep->tls_regnum_base != -1);
      gdb_assert (tdep->tls_register_count > 0);

      int sizeof_tls_regset
	= AARCH64_TLS_REGISTER_SIZE * tdep->tls_register_count;

      const struct regcache_map_entry tls_regmap[] =
	{
	  { tdep->tls_register_count, tdep->tls_regnum_base,
	    AARCH64_TLS_REGISTER_SIZE },
	  { 0 }
	};

      const struct regset aarch64_linux_tls_regset =
	{
	  tls_regmap, regcache_supply_regset, regcache_collect_regset,
	  REGSET_VARIABLE_SIZE
	};

      cb (".reg-aarch-tls", sizeof_tls_regset, sizeof_tls_regset,
	  &aarch64_linux_tls_regset, "TLS register", cb_data);
    }
}

/* Implement the "core_read_description" gdbarch method.  */

static const struct target_desc *
aarch64_linux_core_read_description (struct gdbarch *gdbarch,
				     struct target_ops *target, bfd *abfd)
{
  std::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target);
  CORE_ADDR hwcap = linux_get_hwcap (auxv, target, gdbarch);
  CORE_ADDR hwcap2 = linux_get_hwcap2 (auxv, target, gdbarch);

  aarch64_features features;

  /* We need to extract the SVE data from the .reg-aarch-sve section or the
     .reg-aarch-ssve section depending on which one was active when the core
     file was generated.

     If the SSVE section contains SVE data, then it is considered active.
     Otherwise the SVE section is considered active.  This guarantees we will
     have the correct target description with the correct SVE vector
     length.  */
  features.vq = aarch64_linux_core_read_vq_from_sections (gdbarch, abfd);
  features.pauth = hwcap & AARCH64_HWCAP_PACA;
  features.mte = hwcap2 & HWCAP2_MTE;

  /* Handle the TLS section.  */
  asection *tls = bfd_get_section_by_name (abfd, ".reg-aarch-tls");
  if (tls != nullptr)
    {
      size_t size = bfd_section_size (tls);
      /* Convert the size to the number of actual registers, by
	 dividing by 8.  */
      features.tls = size / AARCH64_TLS_REGISTER_SIZE;
    }

  features.svq
    = aarch64_linux_core_read_vq (gdbarch, abfd, ".reg-aarch-za");

  /* Are the ZT registers available?  */
  if (bfd_get_section_by_name (abfd, ".reg-aarch-zt") != nullptr)
    {
      /* Check if ZA is also available, otherwise this is an invalid
	 combination.  */
      if (bfd_get_section_by_name (abfd, ".reg-aarch-za") != nullptr)
	features.sme2 = true;
      else
	warning (_("While reading core file sections, found ZT registers entry "
		   "but no ZA register entry.  The ZT contents will be "
		   "ignored"));
    }

  return aarch64_read_description (features);
}

/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

static int
aarch64_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return (*s == '#' || isdigit (*s) /* Literal number.  */
	  || *s == '[' /* Register indirection.  */
	  || isalpha (*s)); /* Register value.  */
}

/* This routine is used to parse a special token in AArch64's assembly.

   The special tokens parsed by it are:

      - Register displacement (e.g, [fp, #-8])

   It returns one if the special token has been parsed successfully,
   or zero if the current token is not considered special.  */

static expr::operation_up
aarch64_stap_parse_special_token (struct gdbarch *gdbarch,
				  struct stap_parse_info *p)
{
  if (*p->arg == '[')
    {
      /* Temporary holder for lookahead.  */
      const char *tmp = p->arg;
      char *endp;
      /* Used to save the register name.  */
      const char *start;
      int len;
      int got_minus = 0;
      long displacement;

      ++tmp;
      start = tmp;

      /* Register name.  */
      while (isalnum (*tmp))
	++tmp;

      if (*tmp != ',')
	return {};

      len = tmp - start;
      std::string regname (start, len);

      if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       regname.c_str (), p->saved_arg);

      ++tmp;
      tmp = skip_spaces (tmp);
      /* Now we expect a number.  It can begin with '#' or simply
	 a digit.  */
      if (*tmp == '#')
	++tmp;

      if (*tmp == '-')
	{
	  ++tmp;
	  got_minus = 1;
	}
      else if (*tmp == '+')
	++tmp;

      if (!isdigit (*tmp))
	return {};

      displacement = strtol (tmp, &endp, 10);
      tmp = endp;

      /* Skipping last `]'.  */
      if (*tmp++ != ']')
	return {};
      p->arg = tmp;

      using namespace expr;

      /* The displacement.  */
      struct type *long_type = builtin_type (gdbarch)->builtin_long;
      if (got_minus)
	displacement = -displacement;
      operation_up disp = make_operation<long_const_operation> (long_type,
								displacement);

      /* The register name.  */
      operation_up reg
	= make_operation<register_operation> (std::move (regname));

      operation_up sum
	= make_operation<add_operation> (std::move (reg), std::move (disp));

      /* Casting to the expected type.  */
      struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
      sum = make_operation<unop_cast_operation> (std::move (sum),
						 arg_ptr_type);
      return make_operation<unop_ind_operation> (std::move (sum));
    }
  return {};
}

/* AArch64 process record-replay constructs: syscall, signal etc.  */

static linux_record_tdep aarch64_linux_record_tdep;

/* Enum that defines the AArch64 linux specific syscall identifiers used for
   process record/replay.  */

enum aarch64_syscall {
  aarch64_sys_io_setup = 0,
  aarch64_sys_io_destroy = 1,
  aarch64_sys_io_submit = 2,
  aarch64_sys_io_cancel = 3,
  aarch64_sys_io_getevents = 4,
  aarch64_sys_setxattr = 5,
  aarch64_sys_lsetxattr = 6,
  aarch64_sys_fsetxattr = 7,
  aarch64_sys_getxattr = 8,
  aarch64_sys_lgetxattr = 9,
  aarch64_sys_fgetxattr = 10,
  aarch64_sys_listxattr = 11,
  aarch64_sys_llistxattr = 12,
  aarch64_sys_flistxattr = 13,
  aarch64_sys_removexattr = 14,
  aarch64_sys_lremovexattr = 15,
  aarch64_sys_fremovexattr = 16,
  aarch64_sys_getcwd = 17,
  aarch64_sys_lookup_dcookie = 18,
  aarch64_sys_eventfd2 = 19,
  aarch64_sys_epoll_create1 = 20,
  aarch64_sys_epoll_ctl = 21,
  aarch64_sys_epoll_pwait = 22,
  aarch64_sys_dup = 23,
  aarch64_sys_dup3 = 24,
  aarch64_sys_fcntl = 25,
  aarch64_sys_inotify_init1 = 26,
  aarch64_sys_inotify_add_watch = 27,
  aarch64_sys_inotify_rm_watch = 28,
  aarch64_sys_ioctl = 29,
  aarch64_sys_ioprio_set = 30,
  aarch64_sys_ioprio_get = 31,
  aarch64_sys_flock = 32,
  aarch64_sys_mknodat = 33,
  aarch64_sys_mkdirat = 34,
  aarch64_sys_unlinkat = 35,
  aarch64_sys_symlinkat = 36,
  aarch64_sys_linkat = 37,
  aarch64_sys_renameat = 38,
  aarch64_sys_umount2 = 39,
  aarch64_sys_mount = 40,
  aarch64_sys_pivot_root = 41,
  aarch64_sys_nfsservctl = 42,
  aarch64_sys_statfs = 43,
  aarch64_sys_fstatfs = 44,
  aarch64_sys_truncate = 45,
  aarch64_sys_ftruncate = 46,
  aarch64_sys_fallocate = 47,
  aarch64_sys_faccessat = 48,
  aarch64_sys_chdir = 49,
  aarch64_sys_fchdir = 50,
  aarch64_sys_chroot = 51,
  aarch64_sys_fchmod = 52,
  aarch64_sys_fchmodat = 53,
  aarch64_sys_fchownat = 54,
  aarch64_sys_fchown = 55,
  aarch64_sys_openat = 56,
  aarch64_sys_close = 57,
  aarch64_sys_vhangup = 58,
  aarch64_sys_pipe2 = 59,
  aarch64_sys_quotactl = 60,
  aarch64_sys_getdents64 = 61,
  aarch64_sys_lseek = 62,
  aarch64_sys_read = 63,
  aarch64_sys_write = 64,
  aarch64_sys_readv = 65,
  aarch64_sys_writev = 66,
  aarch64_sys_pread64 = 67,
  aarch64_sys_pwrite64 = 68,
  aarch64_sys_preadv = 69,
  aarch64_sys_pwritev = 70,
  aarch64_sys_sendfile = 71,
  aarch64_sys_pselect6 = 72,
  aarch64_sys_ppoll = 73,
  aarch64_sys_signalfd4 = 74,
  aarch64_sys_vmsplice = 75,
  aarch64_sys_splice = 76,
  aarch64_sys_tee = 77,
  aarch64_sys_readlinkat = 78,
  aarch64_sys_newfstatat = 79,
  aarch64_sys_fstat = 80,
  aarch64_sys_sync = 81,
  aarch64_sys_fsync = 82,
  aarch64_sys_fdatasync = 83,
  aarch64_sys_sync_file_range2 = 84,
  aarch64_sys_sync_file_range = 84,
  aarch64_sys_timerfd_create = 85,
  aarch64_sys_timerfd_settime = 86,
  aarch64_sys_timerfd_gettime = 87,
  aarch64_sys_utimensat = 88,
  aarch64_sys_acct = 89,
  aarch64_sys_capget = 90,
  aarch64_sys_capset = 91,
  aarch64_sys_personality = 92,
  aarch64_sys_exit = 93,
  aarch64_sys_exit_group = 94,
  aarch64_sys_waitid = 95,
  aarch64_sys_set_tid_address = 96,
  aarch64_sys_unshare = 97,
  aarch64_sys_futex = 98,
  aarch64_sys_set_robust_list = 99,
  aarch64_sys_get_robust_list = 100,
  aarch64_sys_nanosleep = 101,
  aarch64_sys_getitimer = 102,
  aarch64_sys_setitimer = 103,
  aarch64_sys_kexec_load = 104,
  aarch64_sys_init_module = 105,
  aarch64_sys_delete_module = 106,
  aarch64_sys_timer_create = 107,
  aarch64_sys_timer_gettime = 108,
  aarch64_sys_timer_getoverrun = 109,
  aarch64_sys_timer_settime = 110,
  aarch64_sys_timer_delete = 111,
  aarch64_sys_clock_settime = 112,
  aarch64_sys_clock_gettime = 113,
  aarch64_sys_clock_getres = 114,
  aarch64_sys_clock_nanosleep = 115,
  aarch64_sys_syslog = 116,
  aarch64_sys_ptrace = 117,
  aarch64_sys_sched_setparam = 118,
  aarch64_sys_sched_setscheduler = 119,
  aarch64_sys_sched_getscheduler = 120,
  aarch64_sys_sched_getparam = 121,
  aarch64_sys_sched_setaffinity = 122,
  aarch64_sys_sched_getaffinity = 123,
  aarch64_sys_sched_yield = 124,
  aarch64_sys_sched_get_priority_max = 125,
  aarch64_sys_sched_get_priority_min = 126,
  aarch64_sys_sched_rr_get_interval = 127,
  aarch64_sys_kill = 129,
  aarch64_sys_tkill = 130,
  aarch64_sys_tgkill = 131,
  aarch64_sys_sigaltstack = 132,
  aarch64_sys_rt_sigsuspend = 133,
  aarch64_sys_rt_sigaction = 134,
  aarch64_sys_rt_sigprocmask = 135,
  aarch64_sys_rt_sigpending = 136,
  aarch64_sys_rt_sigtimedwait = 137,
  aarch64_sys_rt_sigqueueinfo = 138,
  aarch64_sys_rt_sigreturn = 139,
  aarch64_sys_setpriority = 140,
  aarch64_sys_getpriority = 141,
  aarch64_sys_reboot = 142,
  aarch64_sys_setregid = 143,
  aarch64_sys_setgid = 144,
  aarch64_sys_setreuid = 145,
  aarch64_sys_setuid = 146,
  aarch64_sys_setresuid = 147,
  aarch64_sys_getresuid = 148,
  aarch64_sys_setresgid = 149,
  aarch64_sys_getresgid = 150,
  aarch64_sys_setfsuid = 151,
  aarch64_sys_setfsgid = 152,
  aarch64_sys_times = 153,
  aarch64_sys_setpgid = 154,
  aarch64_sys_getpgid = 155,
  aarch64_sys_getsid = 156,
  aarch64_sys_setsid = 157,
  aarch64_sys_getgroups = 158,
  aarch64_sys_setgroups = 159,
  aarch64_sys_uname = 160,
  aarch64_sys_sethostname = 161,
  aarch64_sys_setdomainname = 162,
  aarch64_sys_getrlimit = 163,
  aarch64_sys_setrlimit = 164,
  aarch64_sys_getrusage = 165,
  aarch64_sys_umask = 166,
  aarch64_sys_prctl = 167,
  aarch64_sys_getcpu = 168,
  aarch64_sys_gettimeofday = 169,
  aarch64_sys_settimeofday = 170,
  aarch64_sys_adjtimex = 171,
  aarch64_sys_getpid = 172,
  aarch64_sys_getppid = 173,
  aarch64_sys_getuid = 174,
  aarch64_sys_geteuid = 175,
  aarch64_sys_getgid = 176,
  aarch64_sys_getegid = 177,
  aarch64_sys_gettid = 178,
  aarch64_sys_sysinfo = 179,
  aarch64_sys_mq_open = 180,
  aarch64_sys_mq_unlink = 181,
  aarch64_sys_mq_timedsend = 182,
  aarch64_sys_mq_timedreceive = 183,
  aarch64_sys_mq_notify = 184,
  aarch64_sys_mq_getsetattr = 185,
  aarch64_sys_msgget = 186,
  aarch64_sys_msgctl = 187,
  aarch64_sys_msgrcv = 188,
  aarch64_sys_msgsnd = 189,
  aarch64_sys_semget = 190,
  aarch64_sys_semctl = 191,
  aarch64_sys_semtimedop = 192,
  aarch64_sys_semop = 193,
  aarch64_sys_shmget = 194,
  aarch64_sys_shmctl = 195,
  aarch64_sys_shmat = 196,
  aarch64_sys_shmdt = 197,
  aarch64_sys_socket = 198,
  aarch64_sys_socketpair = 199,
  aarch64_sys_bind = 200,
  aarch64_sys_listen = 201,
  aarch64_sys_accept = 202,
  aarch64_sys_connect = 203,
  aarch64_sys_getsockname = 204,
  aarch64_sys_getpeername = 205,
  aarch64_sys_sendto = 206,
  aarch64_sys_recvfrom = 207,
  aarch64_sys_setsockopt = 208,
  aarch64_sys_getsockopt = 209,
  aarch64_sys_shutdown = 210,
  aarch64_sys_sendmsg = 211,
  aarch64_sys_recvmsg = 212,
  aarch64_sys_readahead = 213,
  aarch64_sys_brk = 214,
  aarch64_sys_munmap = 215,
  aarch64_sys_mremap = 216,
  aarch64_sys_add_key = 217,
  aarch64_sys_request_key = 218,
  aarch64_sys_keyctl = 219,
  aarch64_sys_clone = 220,
  aarch64_sys_execve = 221,
  aarch64_sys_mmap = 222,
  aarch64_sys_fadvise64 = 223,
  aarch64_sys_swapon = 224,
  aarch64_sys_swapoff = 225,
  aarch64_sys_mprotect = 226,
  aarch64_sys_msync = 227,
  aarch64_sys_mlock = 228,
  aarch64_sys_munlock = 229,
  aarch64_sys_mlockall = 230,
  aarch64_sys_munlockall = 231,
  aarch64_sys_mincore = 232,
  aarch64_sys_madvise = 233,
  aarch64_sys_remap_file_pages = 234,
  aarch64_sys_mbind = 235,
  aarch64_sys_get_mempolicy = 236,
  aarch64_sys_set_mempolicy = 237,
  aarch64_sys_migrate_pages = 238,
  aarch64_sys_move_pages = 239,
  aarch64_sys_rt_tgsigqueueinfo = 240,
  aarch64_sys_perf_event_open = 241,
  aarch64_sys_accept4 = 242,
  aarch64_sys_recvmmsg = 243,
  aarch64_sys_wait4 = 260,
  aarch64_sys_prlimit64 = 261,
  aarch64_sys_fanotify_init = 262,
  aarch64_sys_fanotify_mark = 263,
  aarch64_sys_name_to_handle_at = 264,
  aarch64_sys_open_by_handle_at = 265,
  aarch64_sys_clock_adjtime = 266,
  aarch64_sys_syncfs = 267,
  aarch64_sys_setns = 268,
  aarch64_sys_sendmmsg = 269,
  aarch64_sys_process_vm_readv = 270,
  aarch64_sys_process_vm_writev = 271,
  aarch64_sys_kcmp = 272,
  aarch64_sys_finit_module = 273,
  aarch64_sys_sched_setattr = 274,
  aarch64_sys_sched_getattr = 275,
  aarch64_sys_getrandom = 278
};

/* aarch64_canonicalize_syscall maps syscall ids from the native AArch64
   linux set of syscall ids into a canonical set of syscall ids used by
   process record.  */

static enum gdb_syscall
aarch64_canonicalize_syscall (enum aarch64_syscall syscall_number)
{
#define SYSCALL_MAP(SYSCALL) case aarch64_sys_##SYSCALL: \
  return gdb_sys_##SYSCALL

#define UNSUPPORTED_SYSCALL_MAP(SYSCALL) case aarch64_sys_##SYSCALL: \
  return gdb_sys_no_syscall

  switch (syscall_number)
    {
      SYSCALL_MAP (io_setup);
      SYSCALL_MAP (io_destroy);
      SYSCALL_MAP (io_submit);
      SYSCALL_MAP (io_cancel);
      SYSCALL_MAP (io_getevents);

      SYSCALL_MAP (setxattr);
      SYSCALL_MAP (lsetxattr);
      SYSCALL_MAP (fsetxattr);
      SYSCALL_MAP (getxattr);
      SYSCALL_MAP (lgetxattr);
      SYSCALL_MAP (fgetxattr);
      SYSCALL_MAP (listxattr);
      SYSCALL_MAP (llistxattr);
      SYSCALL_MAP (flistxattr);
      SYSCALL_MAP (removexattr);
      SYSCALL_MAP (lremovexattr);
      SYSCALL_MAP (fremovexattr);
      SYSCALL_MAP (getcwd);
      SYSCALL_MAP (lookup_dcookie);
      SYSCALL_MAP (eventfd2);
      SYSCALL_MAP (epoll_create1);
      SYSCALL_MAP (epoll_ctl);
      SYSCALL_MAP (epoll_pwait);
      SYSCALL_MAP (dup);
      SYSCALL_MAP (dup3);
      SYSCALL_MAP (fcntl);
      SYSCALL_MAP (inotify_init1);
      SYSCALL_MAP (inotify_add_watch);
      SYSCALL_MAP (inotify_rm_watch);
      SYSCALL_MAP (ioctl);
      SYSCALL_MAP (ioprio_set);
      SYSCALL_MAP (ioprio_get);
      SYSCALL_MAP (flock);
      SYSCALL_MAP (mknodat);
      SYSCALL_MAP (mkdirat);
      SYSCALL_MAP (unlinkat);
      SYSCALL_MAP (symlinkat);
      SYSCALL_MAP (linkat);
      SYSCALL_MAP (renameat);
      UNSUPPORTED_SYSCALL_MAP (umount2);
      SYSCALL_MAP (mount);
      SYSCALL_MAP (pivot_root);
      SYSCALL_MAP (nfsservctl);
      SYSCALL_MAP (statfs);
      SYSCALL_MAP (truncate);
      SYSCALL_MAP (ftruncate);
      SYSCALL_MAP (fallocate);
      SYSCALL_MAP (faccessat);
      SYSCALL_MAP (fchdir);
      SYSCALL_MAP (chroot);
      SYSCALL_MAP (fchmod);
      SYSCALL_MAP (fchmodat);
      SYSCALL_MAP (fchownat);
      SYSCALL_MAP (fchown);
      SYSCALL_MAP (openat);
      SYSCALL_MAP (close);
      SYSCALL_MAP (vhangup);
      SYSCALL_MAP (pipe2);
      SYSCALL_MAP (quotactl);
      SYSCALL_MAP (getdents64);
      SYSCALL_MAP (lseek);
      SYSCALL_MAP (read);
      SYSCALL_MAP (write);
      SYSCALL_MAP (readv);
      SYSCALL_MAP (writev);
      SYSCALL_MAP (pread64);
      SYSCALL_MAP (pwrite64);
      UNSUPPORTED_SYSCALL_MAP (preadv);
      UNSUPPORTED_SYSCALL_MAP (pwritev);
      SYSCALL_MAP (sendfile);
      SYSCALL_MAP (pselect6);
      SYSCALL_MAP (ppoll);
      UNSUPPORTED_SYSCALL_MAP (signalfd4);
      SYSCALL_MAP (vmsplice);
      SYSCALL_MAP (splice);
      SYSCALL_MAP (tee);
      SYSCALL_MAP (readlinkat);
      SYSCALL_MAP (newfstatat);

      SYSCALL_MAP (fstat);
      SYSCALL_MAP (sync);
      SYSCALL_MAP (fsync);
      SYSCALL_MAP (fdatasync);
      SYSCALL_MAP (sync_file_range);
      UNSUPPORTED_SYSCALL_MAP (timerfd_create);
      UNSUPPORTED_SYSCALL_MAP (timerfd_settime);
      UNSUPPORTED_SYSCALL_MAP (timerfd_gettime);
      UNSUPPORTED_SYSCALL_MAP (utimensat);
      SYSCALL_MAP (acct);
      SYSCALL_MAP (capget);
      SYSCALL_MAP (capset);
      SYSCALL_MAP (personality);
      SYSCALL_MAP (exit);
      SYSCALL_MAP (exit_group);
      SYSCALL_MAP (waitid);
      SYSCALL_MAP (set_tid_address);
      SYSCALL_MAP (unshare);
      SYSCALL_MAP (futex);
      SYSCALL_MAP (set_robust_list);
      SYSCALL_MAP (get_robust_list);
      SYSCALL_MAP (nanosleep);

      SYSCALL_MAP (getitimer);
      SYSCALL_MAP (setitimer);
      SYSCALL_MAP (kexec_load);
      SYSCALL_MAP (init_module);
      SYSCALL_MAP (delete_module);
      SYSCALL_MAP (timer_create);
      SYSCALL_MAP (timer_settime);
      SYSCALL_MAP (timer_gettime);
      SYSCALL_MAP (timer_getoverrun);
      SYSCALL_MAP (timer_delete);
      SYSCALL_MAP (clock_settime);
      SYSCALL_MAP (clock_gettime);
      SYSCALL_MAP (clock_getres);
      SYSCALL_MAP (clock_nanosleep);
      SYSCALL_MAP (syslog);
      SYSCALL_MAP (ptrace);
      SYSCALL_MAP (sched_setparam);
      SYSCALL_MAP (sched_setscheduler);
      SYSCALL_MAP (sched_getscheduler);
      SYSCALL_MAP (sched_getparam);
      SYSCALL_MAP (sched_setaffinity);
      SYSCALL_MAP (sched_getaffinity);
      SYSCALL_MAP (sched_yield);
      SYSCALL_MAP (sched_get_priority_max);
      SYSCALL_MAP (sched_get_priority_min);
      SYSCALL_MAP (sched_rr_get_interval);
      SYSCALL_MAP (kill);
      SYSCALL_MAP (tkill);
      SYSCALL_MAP (tgkill);
      SYSCALL_MAP (sigaltstack);
      SYSCALL_MAP (rt_sigsuspend);
      SYSCALL_MAP (rt_sigaction);
      SYSCALL_MAP (rt_sigprocmask);
      SYSCALL_MAP (rt_sigpending);
      SYSCALL_MAP (rt_sigtimedwait);
      SYSCALL_MAP (rt_sigqueueinfo);
      SYSCALL_MAP (rt_sigreturn);
      SYSCALL_MAP (setpriority);
      SYSCALL_MAP (getpriority);
      SYSCALL_MAP (reboot);
      SYSCALL_MAP (setregid);
      SYSCALL_MAP (setgid);
      SYSCALL_MAP (setreuid);
      SYSCALL_MAP (setuid);
      SYSCALL_MAP (setresuid);
      SYSCALL_MAP (getresuid);
      SYSCALL_MAP (setresgid);
      SYSCALL_MAP (getresgid);
      SYSCALL_MAP (setfsuid);
      SYSCALL_MAP (setfsgid);
      SYSCALL_MAP (times);
      SYSCALL_MAP (setpgid);
      SYSCALL_MAP (getpgid);
      SYSCALL_MAP (getsid);
      SYSCALL_MAP (setsid);
      SYSCALL_MAP (getgroups);
      SYSCALL_MAP (setgroups);
      SYSCALL_MAP (uname);
      SYSCALL_MAP (sethostname);
      SYSCALL_MAP (setdomainname);
      SYSCALL_MAP (getrlimit);
      SYSCALL_MAP (setrlimit);
      SYSCALL_MAP (getrusage);
      SYSCALL_MAP (umask);
      SYSCALL_MAP (prctl);
      SYSCALL_MAP (getcpu);
      SYSCALL_MAP (gettimeofday);
      SYSCALL_MAP (settimeofday);
      SYSCALL_MAP (adjtimex);
      SYSCALL_MAP (getpid);
      SYSCALL_MAP (getppid);
      SYSCALL_MAP (getuid);
      SYSCALL_MAP (geteuid);
      SYSCALL_MAP (getgid);
      SYSCALL_MAP (getegid);
      SYSCALL_MAP (gettid);
      SYSCALL_MAP (sysinfo);
      SYSCALL_MAP (mq_open);
      SYSCALL_MAP (mq_unlink);
      SYSCALL_MAP (mq_timedsend);
      SYSCALL_MAP (mq_timedreceive);
      SYSCALL_MAP (mq_notify);
      SYSCALL_MAP (mq_getsetattr);
      SYSCALL_MAP (msgget);
      SYSCALL_MAP (msgctl);
      SYSCALL_MAP (msgrcv);
      SYSCALL_MAP (msgsnd);
      SYSCALL_MAP (semget);
      SYSCALL_MAP (semctl);
      SYSCALL_MAP (semtimedop);
      SYSCALL_MAP (semop);
      SYSCALL_MAP (shmget);
      SYSCALL_MAP (shmctl);
      SYSCALL_MAP (shmat);
      SYSCALL_MAP (shmdt);
      SYSCALL_MAP (socket);
      SYSCALL_MAP (socketpair);
      SYSCALL_MAP (bind);
      SYSCALL_MAP (listen);
      SYSCALL_MAP (accept);
      SYSCALL_MAP (connect);
      SYSCALL_MAP (getsockname);
      SYSCALL_MAP (getpeername);
      SYSCALL_MAP (sendto);
      SYSCALL_MAP (recvfrom);
      SYSCALL_MAP (setsockopt);
      SYSCALL_MAP (getsockopt);
      SYSCALL_MAP (shutdown);
      SYSCALL_MAP (sendmsg);
      SYSCALL_MAP (recvmsg);
      SYSCALL_MAP (readahead);
      SYSCALL_MAP (brk);
      SYSCALL_MAP (munmap);
      SYSCALL_MAP (mremap);
      SYSCALL_MAP (add_key);
      SYSCALL_MAP (request_key);
      SYSCALL_MAP (keyctl);
      SYSCALL_MAP (clone);
      SYSCALL_MAP (execve);

    case aarch64_sys_mmap:
      return gdb_sys_mmap2;

      SYSCALL_MAP (fadvise64);
      SYSCALL_MAP (swapon);
      SYSCALL_MAP (swapoff);
      SYSCALL_MAP (mprotect);
      SYSCALL_MAP (msync);
      SYSCALL_MAP (mlock);
      SYSCALL_MAP (munlock);
      SYSCALL_MAP (mlockall);
      SYSCALL_MAP (munlockall);
      SYSCALL_MAP (mincore);
      SYSCALL_MAP (madvise);
      SYSCALL_MAP (remap_file_pages);
      SYSCALL_MAP (mbind);
      SYSCALL_MAP (get_mempolicy);
      SYSCALL_MAP (set_mempolicy);
      SYSCALL_MAP (migrate_pages);
      SYSCALL_MAP (move_pages);
      UNSUPPORTED_SYSCALL_MAP (rt_tgsigqueueinfo);
      UNSUPPORTED_SYSCALL_MAP (perf_event_open);
      UNSUPPORTED_SYSCALL_MAP (accept4);
      UNSUPPORTED_SYSCALL_MAP (recvmmsg);

      SYSCALL_MAP (wait4);

      UNSUPPORTED_SYSCALL_MAP (prlimit64);
      UNSUPPORTED_SYSCALL_MAP (fanotify_init);
      UNSUPPORTED_SYSCALL_MAP (fanotify_mark);
      UNSUPPORTED_SYSCALL_MAP (name_to_handle_at);
      UNSUPPORTED_SYSCALL_MAP (open_by_handle_at);
      UNSUPPORTED_SYSCALL_MAP (clock_adjtime);
      UNSUPPORTED_SYSCALL_MAP (syncfs);
      UNSUPPORTED_SYSCALL_MAP (setns);
      UNSUPPORTED_SYSCALL_MAP (sendmmsg);
      UNSUPPORTED_SYSCALL_MAP (process_vm_readv);
      UNSUPPORTED_SYSCALL_MAP (process_vm_writev);
      UNSUPPORTED_SYSCALL_MAP (kcmp);
      UNSUPPORTED_SYSCALL_MAP (finit_module);
      UNSUPPORTED_SYSCALL_MAP (sched_setattr);
      UNSUPPORTED_SYSCALL_MAP (sched_getattr);
      SYSCALL_MAP (getrandom);
  default:
    return gdb_sys_no_syscall;
  }
}

/* Retrieve the syscall number at a ptrace syscall-stop, either on syscall entry
   or exit.  Return -1 upon error.  */

static LONGEST
aarch64_linux_get_syscall_number (struct gdbarch *gdbarch, thread_info *thread)
{
  struct regcache *regs = get_thread_regcache (thread);
  LONGEST ret;

  /* Get the system call number from register x8.  */
  regs->cooked_read (AARCH64_X0_REGNUM + 8, &ret);

  /* On exit from a successful execve, we will be in a new process and all the
     registers will be cleared - x0 to x30 will be 0, except for a 1 in x7.
     This function will only ever get called when stopped at the entry or exit
     of a syscall, so by checking for 0 in x0 (arg0/retval), x1 (arg1), x8
     (syscall), x29 (FP) and x30 (LR) we can infer:
     1) Either inferior is at exit from successful execve.
     2) Or inferior is at entry to a call to io_setup with invalid arguments and
	a corrupted FP and LR.
     It should be safe enough to assume case 1.  */
  if (ret == 0)
    {
      LONGEST x1 = -1, fp = -1, lr = -1;
      regs->cooked_read (AARCH64_X0_REGNUM + 1, &x1);
      regs->cooked_read (AARCH64_FP_REGNUM, &fp);
      regs->cooked_read (AARCH64_LR_REGNUM, &lr);
      if (x1 == 0 && fp ==0 && lr == 0)
	return aarch64_sys_execve;
    }

  return ret;
}

/* Record all registers but PC register for process-record.  */

static int
aarch64_all_but_pc_registers_record (struct regcache *regcache)
{
  int i;

  for (i = AARCH64_X0_REGNUM; i < AARCH64_PC_REGNUM; i++)
    if (record_full_arch_list_add_reg (regcache, i))
      return -1;

  if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM))
    return -1;

  return 0;
}

/* Handler for aarch64 system call instruction recording.  */

static int
aarch64_linux_syscall_record (struct regcache *regcache,
			      unsigned long svc_number)
{
  int ret = 0;
  enum gdb_syscall syscall_gdb;

  syscall_gdb =
    aarch64_canonicalize_syscall ((enum aarch64_syscall) svc_number);

  if (syscall_gdb < 0)
    {
      gdb_printf (gdb_stderr,
		  _("Process record and replay target doesn't "
		    "support syscall number %s\n"),
		  plongest (svc_number));
      return -1;
    }

  if (syscall_gdb == gdb_sys_sigreturn
      || syscall_gdb == gdb_sys_rt_sigreturn)
   {
     if (aarch64_all_but_pc_registers_record (regcache))
       return -1;
     return 0;
   }

  ret = record_linux_system_call (syscall_gdb, regcache,
				  &aarch64_linux_record_tdep);
  if (ret != 0)
    return ret;

  /* Record the return value of the system call.  */
  if (record_full_arch_list_add_reg (regcache, AARCH64_X0_REGNUM))
    return -1;
  /* Record LR.  */
  if (record_full_arch_list_add_reg (regcache, AARCH64_LR_REGNUM))
    return -1;
  /* Record CPSR.  */
  if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM))
    return -1;

  return 0;
}

/* Implement the "gcc_target_options" gdbarch method.  */

static std::string
aarch64_linux_gcc_target_options (struct gdbarch *gdbarch)
{
  /* GCC doesn't know "-m64".  */
  return {};
}

/* Helper to get the allocation tag from a 64-bit ADDRESS.

   Return the allocation tag if successful and nullopt otherwise.  */

static std::optional<CORE_ADDR>
aarch64_mte_get_atag (CORE_ADDR address)
{
  gdb::byte_vector tags;

  /* Attempt to fetch the allocation tag.  */
  if (!target_fetch_memtags (address, 1, tags,
			     static_cast<int> (memtag_type::allocation)))
    return {};

  /* Only one tag should've been returned.  Make sure we got exactly that.  */
  if (tags.size () != 1)
    error (_("Target returned an unexpected number of tags."));

  /* Although our tags are 4 bits in size, they are stored in a
     byte.  */
  return tags[0];
}

/* Implement the tagged_address_p gdbarch method.  */

static bool
aarch64_linux_tagged_address_p (struct gdbarch *gdbarch, CORE_ADDR address)
{
  /* Remove the top byte for the memory range check.  */
  address = gdbarch_remove_non_address_bits (gdbarch, address);

  /* Check if the page that contains ADDRESS is mapped with PROT_MTE.  */
  if (!linux_address_in_memtag_page (address))
    return false;

  /* We have a valid tag in the top byte of the 64-bit address.  */
  return true;
}

/* Implement the memtag_matches_p gdbarch method.  */

static bool
aarch64_linux_memtag_matches_p (struct gdbarch *gdbarch,
				struct value *address)
{
  gdb_assert (address != nullptr);

  CORE_ADDR addr = value_as_address (address);

  /* Fetch the allocation tag for ADDRESS.  */
  std::optional<CORE_ADDR> atag
    = aarch64_mte_get_atag (gdbarch_remove_non_address_bits (gdbarch, addr));

  if (!atag.has_value ())
    return true;

  /* Fetch the logical tag for ADDRESS.  */
  gdb_byte ltag = aarch64_mte_get_ltag (addr);

  /* Are the tags the same?  */
  return ltag == *atag;
}

/* Implement the set_memtags gdbarch method.  */

static bool
aarch64_linux_set_memtags (struct gdbarch *gdbarch, struct value *address,
			   size_t length, const gdb::byte_vector &tags,
			   memtag_type tag_type)
{
  gdb_assert (!tags.empty ());
  gdb_assert (address != nullptr);

  CORE_ADDR addr = value_as_address (address);

  /* Set the logical tag or the allocation tag.  */
  if (tag_type == memtag_type::logical)
    {
      /* When setting logical tags, we don't care about the length, since
	 we are only setting a single logical tag.  */
      addr = aarch64_mte_set_ltag (addr, tags[0]);

      /* Update the value's content with the tag.  */
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      gdb_byte *srcbuf = address->contents_raw ().data ();
      store_unsigned_integer (srcbuf, sizeof (addr), byte_order, addr);
    }
  else
    {
      /* Remove the top byte.  */
      addr = gdbarch_remove_non_address_bits (gdbarch, addr);

      /* With G being the number of tag granules and N the number of tags
	 passed in, we can have the following cases:

	 1 - G == N: Store all the N tags to memory.

	 2 - G < N : Warn about having more tags than granules, but write G
		     tags.

	 3 - G > N : This is a "fill tags" operation.  We should use the tags
		     as a pattern to fill the granules repeatedly until we have
		     written G tags to memory.
      */

      size_t g = aarch64_mte_get_tag_granules (addr, length,
					       AARCH64_MTE_GRANULE_SIZE);
      size_t n = tags.size ();

      if (g < n)
	warning (_("Got more tags than memory granules.  Tags will be "
		   "truncated."));
      else if (g > n)
	warning (_("Using tag pattern to fill memory range."));

      if (!target_store_memtags (addr, length, tags,
				 static_cast<int> (memtag_type::allocation)))
	return false;
    }
  return true;
}

/* Implement the get_memtag gdbarch method.  */

static struct value *
aarch64_linux_get_memtag (struct gdbarch *gdbarch, struct value *address,
			  memtag_type tag_type)
{
  gdb_assert (address != nullptr);

  CORE_ADDR addr = value_as_address (address);
  CORE_ADDR tag = 0;

  /* Get the logical tag or the allocation tag.  */
  if (tag_type == memtag_type::logical)
    tag = aarch64_mte_get_ltag (addr);
  else
    {
      /* Remove the top byte.  */
      addr = gdbarch_remove_non_address_bits (gdbarch, addr);
      std::optional<CORE_ADDR> atag = aarch64_mte_get_atag (addr);

      if (!atag.has_value ())
	return nullptr;

      tag = *atag;
    }

  /* Convert the tag to a value.  */
  return value_from_ulongest (builtin_type (gdbarch)->builtin_unsigned_int,
			      tag);
}

/* Implement the memtag_to_string gdbarch method.  */

static std::string
aarch64_linux_memtag_to_string (struct gdbarch *gdbarch, struct value *tag_value)
{
  if (tag_value == nullptr)
    return "";

  CORE_ADDR tag = value_as_address (tag_value);

  return string_printf ("0x%s", phex_nz (tag, sizeof (tag)));
}

/* AArch64 Linux implementation of the report_signal_info gdbarch
   hook.  Displays information about possible memory tag violations.  */

static void
aarch64_linux_report_signal_info (struct gdbarch *gdbarch,
				  struct ui_out *uiout,
				  enum gdb_signal siggnal)
{
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  if (!tdep->has_mte () || siggnal != GDB_SIGNAL_SEGV)
    return;

  CORE_ADDR fault_addr = 0;
  long si_code = 0;

  try
    {
      /* Sigcode tells us if the segfault is actually a memory tag
	 violation.  */
      si_code = parse_and_eval_long ("$_siginfo.si_code");

      fault_addr
	= parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
    }
  catch (const gdb_exception_error &exception)
    {
      exception_print (gdb_stderr, exception);
      return;
    }

  /* If this is not a memory tag violation, just return.  */
  if (si_code != SEGV_MTEAERR && si_code != SEGV_MTESERR)
    return;

  uiout->text ("\n");

  uiout->field_string ("sigcode-meaning", _("Memory tag violation"));

  /* For synchronous faults, show additional information.  */
  if (si_code == SEGV_MTESERR)
    {
      uiout->text (_(" while accessing address "));
      uiout->field_core_addr ("fault-addr", gdbarch, fault_addr);
      uiout->text ("\n");

      std::optional<CORE_ADDR> atag
	= aarch64_mte_get_atag (gdbarch_remove_non_address_bits (gdbarch,
								 fault_addr));
      gdb_byte ltag = aarch64_mte_get_ltag (fault_addr);

      if (!atag.has_value ())
	uiout->text (_("Allocation tag unavailable"));
      else
	{
	  uiout->text (_("Allocation tag "));
	  uiout->field_string ("allocation-tag", hex_string (*atag));
	  uiout->text ("\n");
	  uiout->text (_("Logical tag "));
	  uiout->field_string ("logical-tag", hex_string (ltag));
	}
    }
  else
    {
      uiout->text ("\n");
      uiout->text (_("Fault address unavailable"));
    }
}

/* AArch64 Linux implementation of the gdbarch_create_memtag_section hook.  */

static asection *
aarch64_linux_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd,
				     CORE_ADDR address, size_t size)
{
  gdb_assert (obfd != nullptr);
  gdb_assert (size > 0);

  /* Create the section and associated program header.

     Make sure the section's flags has SEC_HAS_CONTENTS, otherwise BFD will
     refuse to write data to this section.  */
  asection *mte_section
    = bfd_make_section_anyway_with_flags (obfd, "memtag", SEC_HAS_CONTENTS);

  if (mte_section == nullptr)
    return nullptr;

  bfd_set_section_vma (mte_section, address);
  /* The size of the memory range covered by the memory tags.  We reuse the
     section's rawsize field for this purpose.  */
  mte_section->rawsize = size;

  /* Fetch the number of tags we need to save.  */
  size_t tags_count
    = aarch64_mte_get_tag_granules (address, size, AARCH64_MTE_GRANULE_SIZE);
  /* Tags are stored packed as 2 tags per byte.  */
  bfd_set_section_size (mte_section, (tags_count + 1) >> 1);
  /* Store program header information.  */
  bfd_record_phdr (obfd, PT_AARCH64_MEMTAG_MTE, 1, 0, 0, 0, 0, 0, 1,
		   &mte_section);

  return mte_section;
}

/* Maximum number of tags to request.  */
#define MAX_TAGS_TO_TRANSFER 1024

/* AArch64 Linux implementation of the gdbarch_fill_memtag_section hook.  */

static bool
aarch64_linux_fill_memtag_section (struct gdbarch *gdbarch, asection *osec)
{
  /* We only handle MTE tags for now.  */

  size_t segment_size = osec->rawsize;
  CORE_ADDR start_address = bfd_section_vma (osec);
  CORE_ADDR end_address = start_address + segment_size;

  /* Figure out how many tags we need to store in this memory range.  */
  size_t granules = aarch64_mte_get_tag_granules (start_address, segment_size,
						  AARCH64_MTE_GRANULE_SIZE);

  /* If there are no tag granules to fetch, just return.  */
  if (granules == 0)
    return true;

  CORE_ADDR address = start_address;

  /* Vector of tags.  */
  gdb::byte_vector tags;

  while (granules > 0)
    {
      /* Transfer tags in chunks.  */
      gdb::byte_vector tags_read;
      size_t xfer_len
	= ((granules >= MAX_TAGS_TO_TRANSFER)
	  ? MAX_TAGS_TO_TRANSFER * AARCH64_MTE_GRANULE_SIZE
	  : granules * AARCH64_MTE_GRANULE_SIZE);

      if (!target_fetch_memtags (address, xfer_len, tags_read,
				 static_cast<int> (memtag_type::allocation)))
	{
	  warning (_("Failed to read MTE tags from memory range [%s,%s)."),
		     phex_nz (start_address, sizeof (start_address)),
		     phex_nz (end_address, sizeof (end_address)));
	  return false;
	}

      /* Transfer over the tags that have been read.  */
      tags.insert (tags.end (), tags_read.begin (), tags_read.end ());

      /* Adjust the remaining granules and starting address.  */
      granules -= tags_read.size ();
      address += tags_read.size () * AARCH64_MTE_GRANULE_SIZE;
    }

  /* Pack the MTE tag bits.  */
  aarch64_mte_pack_tags (tags);

  if (!bfd_set_section_contents (osec->owner, osec, tags.data (),
				 0, tags.size ()))
    {
      warning (_("Failed to write %s bytes of corefile memory "
		 "tag content (%s)."),
	       pulongest (tags.size ()),
	       bfd_errmsg (bfd_get_error ()));
    }
  return true;
}

/* AArch64 Linux implementation of the gdbarch_decode_memtag_section
   hook.  Decode a memory tag section and return the requested tags.

   The section is guaranteed to cover the [ADDRESS, ADDRESS + length)
   range.  */

static gdb::byte_vector
aarch64_linux_decode_memtag_section (struct gdbarch *gdbarch,
				     bfd_section *section,
				     int type,
				     CORE_ADDR address, size_t length)
{
  gdb_assert (section != nullptr);

  /* The requested address must not be less than section->vma.  */
  gdb_assert (section->vma <= address);

  /* Figure out how many tags we need to fetch in this memory range.  */
  size_t granules = aarch64_mte_get_tag_granules (address, length,
						  AARCH64_MTE_GRANULE_SIZE);
  /* Sanity check.  */
  gdb_assert (granules > 0);

  /* Fetch the total number of tags in the range [VMA, address + length).  */
  size_t granules_from_vma
    = aarch64_mte_get_tag_granules (section->vma,
				    address - section->vma + length,
				    AARCH64_MTE_GRANULE_SIZE);

  /* Adjust the tags vector to contain the exact number of packed bytes.  */
  gdb::byte_vector tags (((granules - 1) >> 1) + 1);

  /* Figure out the starting offset into the packed tags data.  */
  file_ptr offset = ((granules_from_vma - granules) >> 1);

  if (!bfd_get_section_contents (section->owner, section, tags.data (),
				 offset, tags.size ()))
    error (_("Couldn't read contents from memtag section."));

  /* At this point, the tags are packed 2 per byte.  Unpack them before
     returning.  */
  bool skip_first = ((granules_from_vma - granules) % 2) != 0;
  aarch64_mte_unpack_tags (tags, skip_first);

  /* Resize to the exact number of tags that was requested.  */
  tags.resize (granules);

  return tags;
}

/* AArch64 Linux implementation of the
   gdbarch_use_target_description_from_corefile_notes hook.  */

static bool
aarch64_use_target_description_from_corefile_notes (gdbarch *gdbarch,
						    bfd *obfd)
{
  /* Sanity check.  */
  gdb_assert (obfd != nullptr);

  /* If the corefile contains any SVE or SME register data, we don't want to
     use the target description note, as it may be incorrect.

     Currently the target description note contains a potentially incorrect
     target description if the originating program changed the SVE or SME
     vector lengths mid-execution.

     Once we support per-thread target description notes in the corefiles, we
     can always trust those notes whenever they are available.  */
  if (bfd_get_section_by_name (obfd, ".reg-aarch-sve") != nullptr
      || bfd_get_section_by_name (obfd, ".reg-aarch-za") != nullptr
      || bfd_get_section_by_name (obfd, ".reg-aarch-zt") != nullptr)
    return false;

  return true;
}

static void
aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  static const char *const stap_integer_prefixes[] = { "#", "", NULL };
  static const char *const stap_register_prefixes[] = { "", NULL };
  static const char *const stap_register_indirection_prefixes[] = { "[",
								    NULL };
  static const char *const stap_register_indirection_suffixes[] = { "]",
								    NULL };
  aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);

  tdep->lowest_pc = 0x8000;

  linux_init_abi (info, gdbarch, 1);

  set_solib_svr4_fetch_link_map_offsets (gdbarch,
					 linux_lp64_fetch_link_map_offsets);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
					     svr4_fetch_objfile_link_map);

  /* Shared library handling.  */
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);

  tramp_frame_prepend_unwinder (gdbarch, &aarch64_linux_rt_sigframe);

  /* Enable longjmp.  */
  tdep->jb_pc = 11;

  set_gdbarch_iterate_over_regset_sections
    (gdbarch, aarch64_linux_iterate_over_regset_sections);
  set_gdbarch_core_read_description
    (gdbarch, aarch64_linux_core_read_description);

  /* SystemTap related.  */
  set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
					    stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
					    stap_register_indirection_suffixes);
  set_gdbarch_stap_is_single_operand (gdbarch, aarch64_stap_is_single_operand);
  set_gdbarch_stap_parse_special_token (gdbarch,
					aarch64_stap_parse_special_token);

  /* Reversible debugging, process record.  */
  set_gdbarch_process_record (gdbarch, aarch64_process_record);
  /* Syscall record.  */
  tdep->aarch64_syscall_record = aarch64_linux_syscall_record;

  /* MTE-specific settings and hooks.  */
  if (tdep->has_mte ())
    {
      /* Register a hook for checking if an address is tagged or not.  */
      set_gdbarch_tagged_address_p (gdbarch, aarch64_linux_tagged_address_p);

      /* Register a hook for checking if there is a memory tag match.  */
      set_gdbarch_memtag_matches_p (gdbarch,
				    aarch64_linux_memtag_matches_p);

      /* Register a hook for setting the logical/allocation tags for
	 a range of addresses.  */
      set_gdbarch_set_memtags (gdbarch, aarch64_linux_set_memtags);

      /* Register a hook for extracting the logical/allocation tag from an
	 address.  */
      set_gdbarch_get_memtag (gdbarch, aarch64_linux_get_memtag);

      /* Set the allocation tag granule size to 16 bytes.  */
      set_gdbarch_memtag_granule_size (gdbarch, AARCH64_MTE_GRANULE_SIZE);

      /* Register a hook for converting a memory tag to a string.  */
      set_gdbarch_memtag_to_string (gdbarch, aarch64_linux_memtag_to_string);

      set_gdbarch_report_signal_info (gdbarch,
				      aarch64_linux_report_signal_info);

      /* Core file helpers.  */

      /* Core file helper to create a memory tag section for a particular
	 PT_LOAD segment.  */
      set_gdbarch_create_memtag_section
	(gdbarch, aarch64_linux_create_memtag_section);

      /* Core file helper to fill a memory tag section with tag data.  */
      set_gdbarch_fill_memtag_section
	(gdbarch, aarch64_linux_fill_memtag_section);

      /* Core file helper to decode a memory tag section.  */
      set_gdbarch_decode_memtag_section (gdbarch,
					 aarch64_linux_decode_memtag_section);
    }

  /* Initialize the aarch64_linux_record_tdep.  */
  /* These values are the size of the type that will be used in a system
     call.  They are obtained from Linux Kernel source.  */
  aarch64_linux_record_tdep.size_pointer
    = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
  aarch64_linux_record_tdep.size__old_kernel_stat = 32;
  aarch64_linux_record_tdep.size_tms = 32;
  aarch64_linux_record_tdep.size_loff_t = 8;
  aarch64_linux_record_tdep.size_flock = 32;
  aarch64_linux_record_tdep.size_oldold_utsname = 45;
  aarch64_linux_record_tdep.size_ustat = 32;
  aarch64_linux_record_tdep.size_old_sigaction = 32;
  aarch64_linux_record_tdep.size_old_sigset_t = 8;
  aarch64_linux_record_tdep.size_rlimit = 16;
  aarch64_linux_record_tdep.size_rusage = 144;
  aarch64_linux_record_tdep.size_timeval = 16;
  aarch64_linux_record_tdep.size_timezone = 8;
  aarch64_linux_record_tdep.size_old_gid_t = 2;
  aarch64_linux_record_tdep.size_old_uid_t = 2;
  aarch64_linux_record_tdep.size_fd_set = 128;
  aarch64_linux_record_tdep.size_old_dirent = 280;
  aarch64_linux_record_tdep.size_statfs = 120;
  aarch64_linux_record_tdep.size_statfs64 = 120;
  aarch64_linux_record_tdep.size_sockaddr = 16;
  aarch64_linux_record_tdep.size_int
    = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
  aarch64_linux_record_tdep.size_long
    = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
  aarch64_linux_record_tdep.size_ulong
    = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
  aarch64_linux_record_tdep.size_msghdr = 56;
  aarch64_linux_record_tdep.size_itimerval = 32;
  aarch64_linux_record_tdep.size_stat = 144;
  aarch64_linux_record_tdep.size_old_utsname = 325;
  aarch64_linux_record_tdep.size_sysinfo = 112;
  aarch64_linux_record_tdep.size_msqid_ds = 120;
  aarch64_linux_record_tdep.size_shmid_ds = 112;
  aarch64_linux_record_tdep.size_new_utsname = 390;
  aarch64_linux_record_tdep.size_timex = 208;
  aarch64_linux_record_tdep.size_mem_dqinfo = 24;
  aarch64_linux_record_tdep.size_if_dqblk = 72;
  aarch64_linux_record_tdep.size_fs_quota_stat = 80;
  aarch64_linux_record_tdep.size_timespec = 16;
  aarch64_linux_record_tdep.size_pollfd = 8;
  aarch64_linux_record_tdep.size_NFS_FHSIZE = 32;
  aarch64_linux_record_tdep.size_knfsd_fh = 132;
  aarch64_linux_record_tdep.size_TASK_COMM_LEN = 16;
  aarch64_linux_record_tdep.size_sigaction = 32;
  aarch64_linux_record_tdep.size_sigset_t = 8;
  aarch64_linux_record_tdep.size_siginfo_t = 128;
  aarch64_linux_record_tdep.size_cap_user_data_t = 8;
  aarch64_linux_record_tdep.size_stack_t = 24;
  aarch64_linux_record_tdep.size_off_t = 8;
  aarch64_linux_record_tdep.size_stat64 = 144;
  aarch64_linux_record_tdep.size_gid_t = 4;
  aarch64_linux_record_tdep.size_uid_t = 4;
  aarch64_linux_record_tdep.size_PAGE_SIZE = 4096;
  aarch64_linux_record_tdep.size_flock64 = 32;
  aarch64_linux_record_tdep.size_user_desc = 16;
  aarch64_linux_record_tdep.size_io_event = 32;
  aarch64_linux_record_tdep.size_iocb = 64;
  aarch64_linux_record_tdep.size_epoll_event = 12;
  aarch64_linux_record_tdep.size_itimerspec = 32;
  aarch64_linux_record_tdep.size_mq_attr = 64;
  aarch64_linux_record_tdep.size_termios = 36;
  aarch64_linux_record_tdep.size_termios2 = 44;
  aarch64_linux_record_tdep.size_pid_t = 4;
  aarch64_linux_record_tdep.size_winsize = 8;
  aarch64_linux_record_tdep.size_serial_struct = 72;
  aarch64_linux_record_tdep.size_serial_icounter_struct = 80;
  aarch64_linux_record_tdep.size_hayes_esp_config = 12;
  aarch64_linux_record_tdep.size_size_t = 8;
  aarch64_linux_record_tdep.size_iovec = 16;
  aarch64_linux_record_tdep.size_time_t = 8;

  /* These values are the second argument of system call "sys_ioctl".
     They are obtained from Linux Kernel source.  */
  aarch64_linux_record_tdep.ioctl_TCGETS = 0x5401;
  aarch64_linux_record_tdep.ioctl_TCSETS = 0x5402;
  aarch64_linux_record_tdep.ioctl_TCSETSW = 0x5403;
  aarch64_linux_record_tdep.ioctl_TCSETSF = 0x5404;
  aarch64_linux_record_tdep.ioctl_TCGETA = 0x5405;
  aarch64_linux_record_tdep.ioctl_TCSETA = 0x5406;
  aarch64_linux_record_tdep.ioctl_TCSETAW = 0x5407;
  aarch64_linux_record_tdep.ioctl_TCSETAF = 0x5408;
  aarch64_linux_record_tdep.ioctl_TCSBRK = 0x5409;
  aarch64_linux_record_tdep.ioctl_TCXONC = 0x540a;
  aarch64_linux_record_tdep.ioctl_TCFLSH = 0x540b;
  aarch64_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
  aarch64_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
  aarch64_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
  aarch64_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
  aarch64_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
  aarch64_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
  aarch64_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
  aarch64_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
  aarch64_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
  aarch64_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
  aarch64_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
  aarch64_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
  aarch64_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
  aarch64_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
  aarch64_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
  aarch64_linux_record_tdep.ioctl_FIONREAD = 0x541b;
  aarch64_linux_record_tdep.ioctl_TIOCINQ = 0x541b;
  aarch64_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
  aarch64_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
  aarch64_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
  aarch64_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
  aarch64_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
  aarch64_linux_record_tdep.ioctl_FIONBIO = 0x5421;
  aarch64_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
  aarch64_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
  aarch64_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
  aarch64_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
  aarch64_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
  aarch64_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
  aarch64_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
  aarch64_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
  aarch64_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
  aarch64_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
  aarch64_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
  aarch64_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
  aarch64_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
  aarch64_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
  aarch64_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
  aarch64_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
  aarch64_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
  aarch64_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
  aarch64_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
  aarch64_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
  aarch64_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
  aarch64_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
  aarch64_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
  aarch64_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
  aarch64_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
  aarch64_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
  aarch64_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
  aarch64_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
  aarch64_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
  aarch64_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
  aarch64_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;

  /* These values are the second argument of system call "sys_fcntl"
     and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
  aarch64_linux_record_tdep.fcntl_F_GETLK = 5;
  aarch64_linux_record_tdep.fcntl_F_GETLK64 = 12;
  aarch64_linux_record_tdep.fcntl_F_SETLK64 = 13;
  aarch64_linux_record_tdep.fcntl_F_SETLKW64 = 14;

  /* The AArch64 syscall calling convention: reg x0-x6 for arguments,
     reg x8 for syscall number and return value in reg x0.  */
  aarch64_linux_record_tdep.arg1 = AARCH64_X0_REGNUM + 0;
  aarch64_linux_record_tdep.arg2 = AARCH64_X0_REGNUM + 1;
  aarch64_linux_record_tdep.arg3 = AARCH64_X0_REGNUM + 2;
  aarch64_linux_record_tdep.arg4 = AARCH64_X0_REGNUM + 3;
  aarch64_linux_record_tdep.arg5 = AARCH64_X0_REGNUM + 4;
  aarch64_linux_record_tdep.arg6 = AARCH64_X0_REGNUM + 5;
  aarch64_linux_record_tdep.arg7 = AARCH64_X0_REGNUM + 6;

  /* `catch syscall' */
  set_xml_syscall_file_name (gdbarch, "syscalls/aarch64-linux.xml");
  set_gdbarch_get_syscall_number (gdbarch, aarch64_linux_get_syscall_number);

  /* Displaced stepping.  */
  set_gdbarch_max_insn_length (gdbarch, 4);
  set_gdbarch_displaced_step_buffer_length
    (gdbarch, 4 * AARCH64_DISPLACED_MODIFIED_INSNS);
  set_gdbarch_displaced_step_copy_insn (gdbarch,
					aarch64_displaced_step_copy_insn);
  set_gdbarch_displaced_step_fixup (gdbarch, aarch64_displaced_step_fixup);
  set_gdbarch_displaced_step_hw_singlestep (gdbarch,
					    aarch64_displaced_step_hw_singlestep);

  set_gdbarch_gcc_target_options (gdbarch, aarch64_linux_gcc_target_options);

  /* Hook to decide if the target description should be obtained from
     corefile target description note(s) or inferred from the corefile
     sections.  */
  set_gdbarch_use_target_description_from_corefile_notes (gdbarch,
			    aarch64_use_target_description_from_corefile_notes);
}

#if GDB_SELF_TEST

namespace selftests {

/* Verify functions to read and write logical tags.  */

static void
aarch64_linux_ltag_tests (void)
{
  /* We have 4 bits of tags, but we test writing all the bits of the top
     byte of address.  */
  for (int i = 0; i < 1 << 8; i++)
    {
      CORE_ADDR addr = ((CORE_ADDR) i << 56) | 0xdeadbeef;
      SELF_CHECK (aarch64_mte_get_ltag (addr) == (i & 0xf));

      addr = aarch64_mte_set_ltag (0xdeadbeef, i);
      SELF_CHECK (addr = ((CORE_ADDR) (i & 0xf) << 56) | 0xdeadbeef);
    }
}

} // namespace selftests
#endif /* GDB_SELF_TEST */

void _initialize_aarch64_linux_tdep ();
void
_initialize_aarch64_linux_tdep ()
{
  gdbarch_register_osabi (bfd_arch_aarch64, 0, GDB_OSABI_LINUX,
			  aarch64_linux_init_abi);

#if GDB_SELF_TEST
  selftests::register_test ("aarch64-linux-tagged-address",
			    selftests::aarch64_linux_ltag_tests);
#endif
}